Computational Linguistics II: Parsing

Summing up CF Languages: Derivations

Frank Richter & Jan-Philipp Söhn

fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de

The Big Picture

hierarchy	grammar	machine	other
type 3	reg. grammar	D/NFA	reg. expressions
det. cf.	LR(k) grammar	DPDA	
type 2	CFG	PDA	
type 1	CSG	LBA	
type 0	unrestricted	Turing	
	grammar	machine	

Form of Grammars of Type 0–3

For $i \in \{0, 1, 2, 3\}$, a grammar $\langle N, T, P, S \rangle$ of Type *i*, with *N* the set of non-terminal symbols, *T* the set of terminal symbols (*N* and *T* disjoint, $\Sigma = N \cup T$), *P* the set of productions, and *S* the start symbol ($S \in N$), obeys the following restrictions:

- T3: Every production in P is of the form $A \rightarrow aB$ or $A \rightarrow \epsilon$, with $B, A \in N$, $a \in T$.
- T2: Every production in *P* is of the form $A \rightarrow x$, with $A \in N$ and $x \in \Sigma^*$.
- T1: Every production in P is of the form $x_1Ax_2 \rightarrow x_1yx_2$, with $x_1, x_2 \in \Sigma^*$, $y \in \Sigma^+$, $A \in N$ and the possible exception of $C \rightarrow \epsilon$ in case C does not occur on the righthand side of a rule in P.
- T0: No restrictions.

Derivation Steps of Grammars

Definition

For every grammar G with $G = \langle N, T, P, S \rangle$ and $\Sigma = N \cup T$, for every $u, v \in \Sigma^*$,

if there is a rule $l \rightarrow r \in P$ with $u = w_1 l w_2$ and $v = w_1 r w_2$, where $w_1, w_2 \in \Sigma^*$ then

 $u \Rightarrow^1_G v.$

We say that u directly derives v in grammar G.

We write \Rightarrow_G^* for the reflexive transitive closure of \Rightarrow_G^1 and omit the subscript *G* if the grammar is clear from the context.

Language Generated by a Grammar

Definition

For every grammar *G* with $G = \langle N, T, P, S \rangle$ the language L(G) generated by *G* is

 $L(G) = \{ x \in T^* | S \Rightarrow^*_G x \}.$

More on Derivations (1)

If at each step in a derivation a production is applied to the leftmost nonterminal, then the derivation is said to be *leftmost*.

More on Derivations (1)

If at each step in a derivation a production is applied to the leftmost nonterminal, then the derivation is said to be *leftmost*.

A derivation in which the rightmost nonterminal is replaced at each step is said to be *rightmost*.