Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

TRALE feature logic

Johannes Dellert

Seminar für Sprachwissenschaft, Universität Tübingen

January 09, 2008

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Facts about ALE

- ALE stands for Attribute Logic Engine
- it is the name for both a formalism and its Prolog implementation
- a logic programming environment in which terms are typed feature structures
- the feature logic we will have a look at is in essence an attribute-value logic with variables
- understanding this logic is essential to be able to write grammars in ALE

▲日▼▲□▼▲□▼▲□▼ □ のので

ALE will compile such grammars into parsers

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Facts about TRALE

- TRALE is an extension of the ALE system that supports some extra functionality
- on the logical level, the main difference between ALE and TRALE is the view on subtyping
- since we will mainly be dealing with TRALE, everything presented today will be from the TRALE perspective
- we will mostly be concerned with TRALE signatures and their meaning

・ロット 4 雪 > ・ 4 目 > ・ ・ 日 ・ うらう

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness

Outlook: TRALE descriptions

Conclusion

Outline

- 1. Basic type system, type hierarchies, TRALE signatures
- 2. Feature structures
- 3. Subsumption und unification
- 4. Enhanced type system, feature appropriateness in signatures

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

5. Outlook: TRALE descriptions, Attribute-Value Logic

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

- Substructures and structure sharing Cyclic structures
- Subsumption and Unification
- Subsumption Unification

Extended Type System

- Feature appropriateness Restrictions Well-typedness
- Outlook: TRALE descriptions
- Conclusion

Overview: ALE type system

- ALE is a language with strong typing every structure it uses comes with a type
- the user must declare all the of types that will be used
- types are arranged in an inheritance hierarchy
- many types will typically have subtypes
- constraints on more general types are inherited by their subtypes: inheritance-based polymorphism

▲日▼▲□▼▲□▼▲□▼ □ のので

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies

TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Inheritance Hierarchies

- subtyping relation only specified by immediate subtyping declarations
- however, the subtyping itself is transitive
- it is also anti-symmetric ($a < b \land b < a \rightarrow a = b$)

 \longrightarrow subtyping constitutes a $\ensuremath{\textit{partial order}}$ on the types

- there are additional restrictions:
 - there must be a unique most general type named bot

▲日▼▲□▼▲□▼▲□▼ □ のので

 type hierarchies must be bounded complete (explanation to come)

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies

TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

A simple example

first second third singular plural fem masc

・ロト ・日・・日・・日・ うくの

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies

TRALE signatures Bounded completeness

Feature Structures

Substructures an structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

The signature in TRALE format

イロト 不得 とくほと イヨト

э.

type_hierarchy bot

per

first second third num singular plural

gen

•

fem masc

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies

Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Bounded completeness

- if a poset is **bounded complete**, every subset that has some upper bound must also have a least upper bound
- for type hierarchies: every collection of types with a common subtype must have a unique most general common subtype

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Problematic:	Solution:		
type_hierarchy	type_hierarchy		
bot	bot		
а	а		
с	е		
d	С		
b	d		
С	b		
d	e		

Johannes Dellert

Introductio

Basic type system

Inheritance Hierarchies

Bounded completeness

Eastura Structura

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Feature Structures in ALE

- primary representational device in ALE
- serve as universal data structure
- a feature structure consists of
 - a type drawn from the inheritance hierarchy

Examples in ALE output notation:

noun	verb
CASE akk	PERS first
NUM pl	NUM pl
GEN f	SUBCAT ne_list
	HD noun
	CASE akk
	TL e list

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing

Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Substructures and structure sharing

- a substructure is the value of a feature at some level of nesting
- ► two different substructures can be token-identical → substructure sharing
- > a **path** is a sequence of features designating a substructure
- if two paths are in a structure sharing relation, their values are token-identical
- structure sharing is indicated by numbered tags in the feature structures

▲日▼▲□▼▲□▼▲□▼ □ のので

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing

Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Cyclic structures

"This sentence is false." [0] false ARG1 [0]

- this is a legal feature structure!
- structure sharing between paths: ϵ, ARG1, ARG1 ARG1, ARG1 ARG1 ARG1 ...

"It is false that this sentence is false." false ARG1 [0] false ARG1[0]

the two structures are not treated as identical, a cyclic structure is not conflated with its infinite unfolding

Johannes Dellert

Introductio

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing

Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Subsumption and Unification

- feature structures provide partial information (Why?)
- we can order feature structures based on the amount of information they provide
- this order is called the subsumption ordering, providing a formal notion of information containment
- with subsumption, we can define information combination (unification)

▲日▼▲□▼▲□▼▲□▼ □ のので

 unification is the standard mechanism to perform computations with feature structures

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption

Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Subsumption

- Iet F, G feature structures
- F subsumes G iff
 - the type of F is more general than the type of G
 - if a feature f is defined in F then f is also defined in G such that the value in F subsumes the value in G

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▶ if two parts are shared in F then they are also shared in G

Johannes Dellert

Subsumption

Subsumption - Examples

agr <agr PERS first

sign SUBJ agr PERS first NUM plu <OBJ agr PERS first NUM plu

PERS first NUM plu

sign SUBJ [0] agr PERS first NUM plu OBJ [0]

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Unification

- unification is an operation defined over pairs of feature structures returning a feature structure combining the information contained in the input structures if they are consistent and fails otherwise
- the result is the most general feature structure subsumed by both input structures
- from an operational point of view:
 - unify the types of the structures according to the hierarchy (unique result required, this is why we need bounded completeness)
 - recursively unify the values of the features which occur in both structures
 - if a feature only occurs in one structure, copy it over into the result

▲日▼▲□▼▲□▼▲□▼ □ のので

Johannes Dellert

Introduction

Inheritance Hierarchies						
TRALE signatures	agr	+	agr	=	*failure*	
Bounded completeness						
	PERS first		PERS second			
Substructures and structure sharing						
Cyclic structures	agr	+	agr	=	agr	
	PERS first		NUM plu		PERS first	
Subsumption					NUM plu	
Unification					I	
Feature	sign		sign		sign	
Restrictions	CLIDIA					
Well-typedness	SODT age	+	20P1 [0] por	=	2007 [0] agi	
Subtype covering	PERS 1s	t	OBJ [0]		PERS firs	t
Outlook: TRALE	OBLagr				NHM plu	
descriptions						
	NUM plu				OR1 [0]	

Unification - Examples

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption

Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness

Outlook: TRALE descriptions

Conclusion

Unification - Examples

t t t F [0] t Ft F[1] t +=G [0] F [1] F[1] G [1] G [1] bot t +t e_list ne_list *failure* +HD a TL e_list

Johannes Dellert

Introductio

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption

Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Questions?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへ⊙

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness

Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Extending the type system

- so far, our notion of the type system was built almost entirely around the notion of subtyping
- with the features in place, we can now add the notion of feature appropriateness
- each type must specify which features it can be defined for, and which types of values these features can take
- these appropriateness specifications are inherited in the type hierarchy

・ロット 4 雪 > ・ 4 目 > ・ ・ 日 ・ うらう

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness

Restrictions Well-typedness Subtype coverin

Outlook: TRALE descriptions

Conclusion

A TRALE signature with features

type_hierarchy bot

list

e_list ne_list hd:bot tl:list

イロト 不得 とくほと イヨト

э.

atom

.

a b

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriate

Restrictions

Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Restrictions on appropriateness conditions

- appropriateness conditions must be acyclic
- every feature must be introduced at a unique most general type
- each type must specify which features it can be defined for, and which types of values these features can take
- these appropriateness specifications are inherited in the type hierarchy

▲日▼▲□▼▲□▼▲□▼ □ のので

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriatenes Restrictions

Well-typedness

Subtype covering

Outlook: TRALE descriptions

Conclusion

Well-typedness

- every feature structure must respect the appropriateness restrictions
- this amounts to two conditions on feature structures:
 - if a feature is defined on a structure, its type must be appropriate for the feature and the value of the feature must have the appropriate type
 - if a type was declared with a feature, every feature structure of that type must have a value for the feature

▲日▼▲□▼▲□▼▲□▼ □ のので

 feature structures fulfilling these conditions are called totally well-typed

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRAL

Conclusion

Subtype covering

 TRALE assumes that subtypes exhaustively cover their supertypes

 \rightarrow every object of a non-maximal type is also of one of the maximal types subsumed by it

- the following hierarchy fragment illustrates what this implies:
- t f:bool g:bool

t F + G +

- t_1 f:+ g:-
- *t*₂ f:- g:+
- this signature will not allow structures like the following:

・ロト ・ 一下・ ・ ヨト ・ 日 ・

-

Johannes Dellert

Introductio

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness

Subtype covering

Outlook: TRALI descriptions

Conclusion

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

From types to descriptions

- so far, the feature structures we allowed for where only specified by a signature
- the constraints we can impose in this way are rather restricted
- trying to define a language like this inevitably leads to severe overgeneration
- to write grammars, we need another device that allows us to impose much more complex conditions on valid feature structures
- to achieve this, we need a syntax to write rules and principles in a way similar to logic programming
- to generalize over feature structures, we need a description language that allows us to select classes of structures by means of properties that we are interested in
- for this purpose, we will introduce TRALE descriptions

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Conclusion

We know

- how signatures are written and what they mean
- how feature structures and their unification are defined
- a lot of basic facts about TRALE's feature logic
- In the next session, we will learn about
 - atomic values and why they are not in the signature
 - the difference between token identity and structural identity

 the syntax of basic descriptions in TRALE, allowing us to start writing grammars

Johannes Dellert

Introductio

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

Thank you.

Johannes Dellert

Introduction

Basic type system

Inheritance Hierarchies TRALE signatures Bounded completeness

Feature Structures

Substructures and structure sharing Cyclic structures

Subsumption and Unification

Subsumption Unification

Extended Type System

Feature appropriateness Restrictions Well-typedness Subtype covering

Outlook: TRALE descriptions

Conclusion

TRALE descriptions

the set of descriptions used in ALE can be described by the following grammar:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

<desc> ::= <type> | <variable> | (<feature>:<desc>) | (<desc>,<desc>) | (<desc>;<desc>) | (=\= <desc>)