

Principal Component Analysis
An affine transformation converts a standard normal distribution into a possibly non-centered and correlated normal distribution.

using LinearAlgebra, Plots

gr(size=(500, 500), legend=false)

Plots.GRBackend()

xx = 0:0.01:2π

d = randn(30, 2)

plot(sin.(xx), cos.(xx))

plot!(2 .* sin.(xx), 2 .* cos.(xx))

plot!(3 .* sin.(xx), 3 .* cos.(xx))

scatter!(d[:,1], d[:,2])

transformation(x) = (x * [1. 3; 2 1] .+ [1. 2])

x1 = transformation([sin.(xx) cos.(xx)])

x2 = transformation(2 .*[sin.(xx) cos.(xx)])

x3 = transformation(3 .*[sin.(xx) cos.(xx)])

plot(x1[:,1], x1[:,2])

plot!(x2[:,1], x2[:,2])

plot!(x3[:,1], x3[:,2])

dt = transformation(d)

scatter!(dt[:,1], dt[:,2])

af://n457

First goals of PCA:

identify original center
identify main axes of ellipsoid (eigenvectors)

This boils down to the task of tranforming the data back into standard normally distributed ones.

Final goal of PCA:

reduce dimensionality of data by preserving as much information as possible

PCA relies on the assumption that data points a independent draws from a transformed normal distribution.

Population data (including language data) are not independent.

Illustration: Chris' data:

Before we can apply PCA to the columns, we have to decorrelate the rows!

af://n482
af://n485

Phylogenies as matrices
Let us assume a phylogeny with branches and tips, and a character evolving along according to a Brownian motion.
Evolution along each branch () is drawn from an independent normal distribution with mean 0 and variance , leading
to a vector of length which is multivariate normal with mean and covariance matrix .

The state of at the root is .

The topology of can be represented by an matrix where

(Alternatively, one can identify the rows and columns with the non-root nodes, where means that is on the path from the
root to , including itself. So is essentially the transitive closure of the adjacency matrix of .)

Let us consider a few examples.

using SymPy

sy(A) = convert(Array{Sym, 2}, A)

function sySVD(A)

 V, D = (A.T * A).diagonalize(normalize=true, sort=true);

 S = reverse(sqrt.(D[D.> 0]))

 V = V[:,reverse(1:size(V,2))]

 V = V[:,1:size(A,1)]

 U = A * V * Diagonal(1 ./ S)

 return (U, S, V)

end;

function syPinv(A)

 U, S, V = sySVD(A)

 return V * Diagonal(1 ./ S) * U.T

end;

T = sy([

 1 0 1

 0 1 1

 0 0 1

])

af://n485

Let be a vector of branch-wise Brownian motion steps, i.e., a random vector drawn from

Then is the vector of values of at the nodes (including the internal ones). is distributed according to a
multivarate normal distribution

where . Proof:

T = sy([

 1 0 0

 0 1 0

 0 0 1

])

T = sy([

 1 0 0 0 1 0

 0 1 0 0 1 0

 0 0 1 0 0 1

 0 0 0 1 0 1

 0 0 0 0 1 0

 0 0 0 0 0 1

])

It is easy to see that

Let be the restriction of to the tips, and the restriction of to the tip rows. Then by the same token,

For simplicity's sake, I define

 is the result of multiplying each column of the topology matrix with the square root of the corresponding branch length and
restricting the rows to the tips.

Examples:

Φ = sy([

 1 0 1

 0 1 1

])

Φ = sy([

 1 0 0

 0 1 0

 0 0 1

])

 is the covariance matrix of . It is easy to see that is the length of the path from the root to the latest common
ancestor of tips and .

 can be seen as a linear transformation that maps a standard normally distributed vector to . The Singular Value
Decomposition of decomposes this transformation into three components:

 changes the coordinate system into 's eigenspace,
 stretches or shrinks along the dimensions of the eigenspace, and
 changes the coordinates again, mapping into the system of the standard normally distributed random variable.

It holds that

and this factorization is always possible.

Examples

Φ = sy([

 1 0 0 0 1 0

 0 1 0 0 1 0

 0 0 1 0 0 1

 0 0 0 1 0 1

])

Φ = sy([

 1 0 0 1

 0 1 0 1

 0 0 sympy.sqrt(2) 0

])

Φ * Φ.T

af://n573

Φ = sy([

 1 0 1

 0 1 1

])

U,S,V = sySVD(Φ);

U

Diagonal(S)

V

Φ = sy([

 1 0 0

 0 1 0

 0 0 1

])

U, S, V = sySVD(Φ);

U

diagm(S)

V

Φ = sy([

 1 0 0 0 1 0

 0 1 0 0 1 0

 0 0 1 0 0 1

 0 0 0 1 0 1

])

U, S, V = sySVD(Φ);

U

diagm(S)

V

Φ = sy([

 1 0 0 1

 0 1 0 1

 0 0 sympy.sqrt(2) 0

])

U, S, V = sySVD(Φ);

U

Diagonal(S)

V

Φ = sy([

 sympy.sqrt(2) 0 0 0 0 1 sympy.sqrt(2) 0

 0 sympy.sqrt(2) 0 0 0 1 sympy.sqrt(2) 0

 0 0 sympy.sqrt(3) 0 0 0 sympy.sqrt(2) 0

 0 0 0 1 0 0 0 2

 0 0 0 0 1 0 0 2

])

Φ * Φ.T

U, S, V = sySVD(Φ);

U

S

V

U, S, V = svd(convert(Matrix{Float64}, Φ));

U

5×5 Array{Float64,2}:

 0.605913 0.0 -0.364513 -0.707107 0.0

 0.605913 0.0 -0.364513 0.707107 0.0

 0.515499 0.0 0.85689 2.05391e-15 0.0

 0.0 0.707107 0.0 0.0 -0.707107

 0.0 0.707107 0.0 0.0 0.707107

S

5-element Array{Float64,1}:

 3.1147330734296355

 3.0

 1.8161602025381944

 1.4142135623730954

 1.0000000000000002

V

8×5 Adjoint{Float64,Array{Float64,2}}:

 0.275109 -0.0 -0.28384 -0.707107 -0.0

 0.275109 -0.0 -0.28384 0.707107 -0.0

 0.28666 -0.0 0.817206 2.83107e-15 -0.0

 0.0 0.235702 0.0 -0.0 -0.707107

 0.0 0.235702 0.0 -0.0 0.707107

 0.389062 0.0 -0.401411 -1.33227e-15 0.0

 0.784275 0.0 0.0995657 3.88578e-16 0.0

 0.0 0.942809 0.0 0.0 1.11022e-16

Φ = sy([

 1 0 0 0 0 0 0 0 0 1 0 0

 0 1 0 0 0 0 0 0 0 1 0 0

 0 0 1 0 0 0 0 0 0 1 0 0

 0 0 0 1 0 0 0 0 0 0 1 0

 0 0 0 0 1 0 0 0 0 0 1 0

 0 0 0 0 0 1 0 0 0 0 1 0

 0 0 0 0 0 0 1 0 0 0 0 1

 0 0 0 0 0 0 0 1 0 0 0 1

 0 0 0 0 0 0 0 0 1 0 0 0

])

Φ * Φ.T

U, S, V = sySVD(Φ);

U

S

V

1 2 3 4 5 6 7 8 91

1
2

3
4

567

8
9

Rule of thumb

There is one eigenvector/singular value for each daughter branch of the root. Additionally, for all non-root nodes with daughters,
there are eigenvectors/singular values.

@vars a b c

Φ = sy([

 sympy.sqrt(b) 0 sympy.sqrt(a)

 0 sympy.sqrt(c) sympy.sqrt(a)

])

af://n744

Estimating the phylogenetic mean

The values at the tips are observed. We want to estimate the value at the root.

Recall that is distributed according to a multivariate normal distribution with mean and covariance matrix . According to
the SVD of , we have

Therefore the distribution of can be represented as

, the maximum likelihood estimate of , is the value that maximizes the joint likelihood of . This is equivalent of demanding that
 — the sum of squares of the components of — is maximized.

Using calculus to minimize , we have

Setting the derivative to 0:

Estimating the rate of evolution

Suppose we know the phylogeny, but the unit of times of the branch lengths are not identical to the time unit of the Brownian
motion. Then we have another parameter , the standard deviation of after one unit of time.

Then the branch-wise Brownian motion steps are distributed as

and as

The distribution of can be represented as

U, D = (Φ*Φ.T).diagonalize()

U

S = sqrt.(diag(D))

af://n762
af://n776

Therefore

The log-likelihood of is

Then the log-likelihood of is

The gradient against and is

Setting the gradient to 0, we get the maximum likelihood estimates

Examples

Φ = sy([

 1 0 0 1

 0 1 0 1

 0 0 sympy.sqrt(2) 0

])

U, S, V = sySVD(Φ);

U

diagm(S)

af://n797

xt = [3, 3, -1]

3-element Array{Int64,1}:

 3

 3

 -1

invCov = U * diagm(S.^-2) * U'

xr = (xt' * invCov * ones(Int, 3))/(ones(Int, 3)' * invCov*ones(Int, 3))

float(xr)

1.2857142857142858

residuals = xt .- xr

σ = sqrt((residuals' * invCov * residuals)/length(xt))

float(σ)

1.234426799696735282088755702111999363372419868011113628516448456725641405303631

float(residuals/σ)

3-element Array{Float64,1}:

 1.3887301496588271

 1.3887301496588271

 -1.8516401995451028

z = convert(Vector{Sym}, diagm(1 ./ S) * U' * (xt .- xr))

The phylogenetic mean is a weighted mean of the values at the tips. The weights only depend on ; they are given by the formula

Another example:

float.(z)

3-element Array{AbstractFloat,1}:

 1.399708424447530341827019471260509366837684274660954359104395752714834501404173

 -1.616244071283537198630501399096797804079625000430797797916205414846551403956686

 0.0

w = (invCov * ones(Int, 3)) / (ones(Int, 3)' * invCov * ones(Int, 3))

Φ = [

 sqrt(2) 0 0 0 0 1 sqrt(2) 0

 0 sqrt(2) 0 0 0 1 sqrt(2) 0

 0 0 sqrt(3) 0 0 0 sqrt(2) 0

 0 0 0 1 0 0 0 2

 0 0 0 0 1 0 0 2

]

5×8 Array{Float64,2}:

 1.41421 0.0 0.0 0.0 0.0 1.0 1.41421 0.0

 0.0 1.41421 0.0 0.0 0.0 1.0 1.41421 0.0

 0.0 0.0 1.73205 0.0 0.0 0.0 1.41421 0.0

 0.0 0.0 0.0 1.0 0.0 0.0 0.0 2.0

 0.0 0.0 0.0 0.0 1.0 0.0 0.0 2.0

invCov = inv(Φ*Φ')

w = (invCov * ones(Int, 5)) / (ones(Int, 5)' * invCov * ones(Int, 5))

Phylogenetic PCA
We assume that we are dealing with several characters that evolve according to a correlated Brownian motion along the branches
of a phylogeny. This means that the evolution on each branch is drawn from a centered but correlated normal distribution.

Let be a matrix, where is the number of branches of the phylogeny and the number of features. We assume that the
rows of are stochastically independent, and each row is drawn from a multivariate normal distribution:

 is an phylogenetic matrix, with the SVD

 is the matrix of eigenvectors of , so it is a permutation matrix.

So the rows of are mutually independent and drawn from the same distribution as .

The observed data form an -matrix (being the number of tips and the number of features). It is generated by the
process

According to the SVD theorem,

We can estimate the phylogenetic means and the rates of evolution . After normalizing each of the columns of (subtracting
the phylogenetic mean and dividing by the rate of evolution), we apply the transformation to obtain estimates for . Since
the rows of this matrix are drawn from the same distribution as , we can apply regular PCA to this matrix.

5-element Array{Float64,1}:

 0.1753246753246753

 0.1753246753246753

 0.23376623376623382

 0.20779220779220783

 0.20779220779220783

af://n887

