
 

 

Principal Component Analysis  
An affine transformation converts a standard normal distribution into a possibly non-centered and correlated normal distribution.

 

 

 

using LinearAlgebra, Plots

gr(size=(500, 500), legend=false)

Plots.GRBackend()

xx = 0:0.01:2π

d = randn(30, 2)

plot(sin.(xx), cos.(xx))

plot!(2 .* sin.(xx), 2 .* cos.(xx))

plot!(3 .* sin.(xx), 3 .* cos.(xx))

scatter!(d[:,1], d[:,2])

transformation(x) = (x * [1. 3; 2 1]  .+ [1. 2])

x1 = transformation([sin.(xx) cos.(xx)])

x2 = transformation(2 .*[sin.(xx) cos.(xx)])

x3 = transformation(3 .*[sin.(xx) cos.(xx)])

plot(x1[:,1], x1[:,2])

plot!(x2[:,1], x2[:,2])

plot!(x3[:,1], x3[:,2])

dt = transformation(d)

scatter!(dt[:,1], dt[:,2])
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First goals of PCA:

identify original center
identify main axes of ellipsoid (eigenvectors)

This boils down to the task of tranforming the data back into standard normally distributed ones.

Final goal of PCA:

reduce dimensionality of data by preserving as much information as possible

PCA relies on the assumption that data points a independent draws from a transformed normal distribution.

Population data (including language data) are not independent.

Illustration: Chris' data:  

Before we can apply PCA to the columns, we have to decorrelate the rows!
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Phylogenies as matrices  
Let us assume a phylogeny  with  branches and  tips, and a character  evolving along  according to a Brownian motion. 
Evolution along each branch  ( ) is drawn from an independent normal distribution with mean 0 and variance , leading 
to a vector  of length  which is multivariate normal with mean  and covariance matrix .

The state of  at the root is . 

 

 

The topology of  can be represented by an  matrix  where

(Alternatively, one can identify the rows and columns with the non-root nodes, where  means that  is on the path from the 
root to , including  itself. So  is essentially the transitive closure of the adjacency matrix of .)

Let us consider a few examples.

 

 

using SymPy

sy(A) = convert(Array{Sym, 2}, A)

function sySVD(A)

    V, D = (A.T * A).diagonalize(normalize=true, sort=true);

    S = reverse(sqrt.(D[D.> 0]))

    V = V[:,reverse(1:size(V,2))]

    V = V[:,1:size(A,1)]

    U = A * V * Diagonal(1 ./ S)

    return (U, S, V)

end;

function syPinv(A)

    U, S, V = sySVD(A)

    return V * Diagonal(1 ./ S) * U.T

end;

T = sy([

    1 0 1

    0 1 1

    0 0 1

])
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Let  be a vector of branch-wise Brownian motion steps, i.e., a random vector drawn from

Then  is the vector of  values of  at the nodes (including the internal ones).   is distributed according to a 
multivarate normal distribution

where . Proof:

T = sy([

    1 0 0

    0 1 0

    0 0 1

])

T = sy([

    1 0 0 0 1 0

    0 1 0 0 1 0

    0 0 1 0 0 1

    0 0 0 1 0 1

    0 0 0 0 1 0

    0 0 0 0 0 1

])



It is easy to see that 

Let  be the restriction of  to the tips, and  the restriction of  to the tip rows. Then by the same token, 

 

For simplicity's sake, I define

 is the result of multiplying each column of the topology matrix  with the square root of the corresponding branch length and 
restricting the rows to the tips.

Examples:

 

 

 

 

Φ = sy([

    1 0 1

    0 1 1

])

Φ = sy([

    1 0 0

    0 1 0

    0 0 1

])



 

 

 

 

 is the covariance matrix of . It is easy to see that  is the length of the path from the root to the latest common 
ancestor of tips  and .

 

 

 can be seen as a linear transformation that maps a standard normally distributed vector to . The Singular Value 
Decomposition of  decomposes this transformation into three components:

 changes the coordinate system into 's eigenspace,
 stretches or shrinks along the dimensions of the eigenspace, and
 changes the coordinates again, mapping into the system of the standard normally distributed random variable.

It holds that

and this factorization is always possible.

 

Examples  

Φ = sy([

    1 0 0 0 1 0

    0 1 0 0 1 0

    0 0 1 0 0 1

    0 0 0 1 0 1

])

Φ = sy([

    1 0 0       1

    0 1 0       1

    0 0 sympy.sqrt(2) 0

])

Φ * Φ.T
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Φ = sy([

    1 0 1

    0 1 1

])

U,S,V = sySVD(Φ);

U

Diagonal(S)

V

Φ = sy([

    1 0 0

    0 1 0

    0 0 1

])



 

 

 

 

 

 

 

 

 

 

U, S, V = sySVD(Φ);

U

diagm(S)

V

Φ = sy([

    1 0 0 0 1 0

    0 1 0 0 1 0

    0 0 1 0 0 1

    0 0 0 1 0 1

])

U, S, V = sySVD(Φ);

U



 

 

 

 

 

 

 

 

 

 

 

diagm(S)

V

Φ = sy([

    1 0 0       1

    0 1 0       1

    0 0 sympy.sqrt(2) 0

])

U, S, V = sySVD(Φ);

U

Diagonal(S)

V



 

 

 

 

 

 

 

Φ = sy([

        sympy.sqrt(2) 0 0 0 0 1 sympy.sqrt(2) 0

        0 sympy.sqrt(2) 0 0 0 1 sympy.sqrt(2) 0

        0 0 sympy.sqrt(3) 0 0 0 sympy.sqrt(2) 0

        0 0 0 1 0 0 0 2

        0 0 0 0 1 0 0 2

        ])

Φ * Φ.T

U, S, V = sySVD(Φ);

U



 

 

 

 

 

 

 

 

 

 

S

V

U, S, V = svd(convert(Matrix{Float64}, Φ));

U

5×5 Array{Float64,2}:

 0.605913  0.0       -0.364513  -0.707107      0.0

 0.605913  0.0       -0.364513   0.707107      0.0

 0.515499  0.0        0.85689    2.05391e-15   0.0

 0.0       0.707107   0.0        0.0          -0.707107

 0.0       0.707107   0.0        0.0           0.707107

S

5-element Array{Float64,1}:

 3.1147330734296355

 3.0

 1.8161602025381944

 1.4142135623730954

 1.0000000000000002

V



 

 

8×5 Adjoint{Float64,Array{Float64,2}}:

 0.275109  -0.0       -0.28384    -0.707107     -0.0

 0.275109  -0.0       -0.28384     0.707107     -0.0

 0.28666   -0.0        0.817206    2.83107e-15  -0.0

 0.0        0.235702   0.0        -0.0          -0.707107

 0.0        0.235702   0.0        -0.0           0.707107

 0.389062   0.0       -0.401411   -1.33227e-15   0.0

 0.784275   0.0        0.0995657   3.88578e-16   0.0

 0.0        0.942809   0.0         0.0           1.11022e-16

Φ = sy([

        1 0 0  0 0 0  0 0  0  1 0 0

        0 1 0  0 0 0  0 0  0  1 0 0

        0 0 1  0 0 0  0 0  0  1 0 0

        0 0 0  1 0 0  0 0  0  0 1 0

        0 0 0  0 1 0  0 0  0  0 1 0

        0 0 0  0 0 1  0 0  0  0 1 0

        0 0 0  0 0 0  1 0  0  0 0 1

        0 0 0  0 0 0  0 1  0  0 0 1

        0 0 0  0 0 0  0 0  1  0 0 0

        ])



 

 

 

 

 

 

 

 

Φ * Φ.T

U, S, V = sySVD(Φ);

U

S

V
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Rule of thumb  

There is one eigenvector/singular value for each daughter branch of the root. Additionally, for all non-root nodes with  daughters, 
there are  eigenvectors/singular values.

 

@vars a b c

Φ = sy([

    sympy.sqrt(b) 0 sympy.sqrt(a)

    0 sympy.sqrt(c) sympy.sqrt(a)

])
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Estimating the phylogenetic mean  

The values  at the tips are observed. We want to estimate the value  at the root.

Recall that  is distributed according to a multivariate normal distribution with mean  and covariance matrix . According to 
the SVD of , we have

Therefore the distribution of  can be represented as

, the maximum likelihood estimate of , is the value that maximizes the joint likelihood of . This is equivalent of demanding that 
 — the sum of squares of the components of  — is maximized.

 

Using calculus to minimize , we have

Setting the derivative to 0:

Estimating the rate of evolution  

Suppose we know the phylogeny, but the unit of times of the branch lengths are not identical to the time unit of the Brownian 
motion. Then we have another parameter , the standard deviation of  after one unit of time.

Then the branch-wise Brownian motion steps are distributed as

and  as

The distribution of  can be represented as

U, D = (Φ*Φ.T).diagonalize()

U

S = sqrt.(diag(D))
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Therefore 

The log-likelihood of  is

Then the log-likelihood of  is

 

The gradient against  and  is

Setting the gradient to 0, we get the maximum likelihood estimates

Examples  

 

 

 

 

 

Φ = sy([

    1 0 0 1

    0 1 0 1

    0 0 sympy.sqrt(2) 0

])

U, S, V = sySVD(Φ);

U

diagm(S)
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xt = [3, 3, -1]

3-element Array{Int64,1}:

  3

  3

 -1

invCov = U * diagm(S.^-2) * U'

xr = (xt' * invCov * ones(Int, 3))/(ones(Int, 3)' * invCov*ones(Int, 3))

float(xr)

1.2857142857142858

residuals = xt .- xr

σ = sqrt((residuals' * invCov * residuals)/length(xt))

float(σ)

1.234426799696735282088755702111999363372419868011113628516448456725641405303631

float(residuals/σ)

3-element Array{Float64,1}:

  1.3887301496588271

  1.3887301496588271

 -1.8516401995451028

z = convert(Vector{Sym}, diagm(1 ./ S) * U' * (xt .- xr))



 

 

 

 

The phylogenetic mean is a weighted mean of the values at the tips. The weights only depend on ; they are given by the formula

 

 

Another example:

 

 

 

float.(z)

3-element Array{AbstractFloat,1}:

  1.399708424447530341827019471260509366837684274660954359104395752714834501404173

 -1.616244071283537198630501399096797804079625000430797797916205414846551403956686

  0.0

w = (invCov * ones(Int, 3)) / (ones(Int, 3)' * invCov * ones(Int, 3))

Φ = [

        sqrt(2) 0 0 0 0 1 sqrt(2) 0

        0 sqrt(2) 0 0 0 1 sqrt(2) 0

        0 0 sqrt(3) 0 0 0 sqrt(2) 0

        0 0 0 1 0 0 0 2

        0 0 0 0 1 0 0 2

        ]

5×8 Array{Float64,2}:

 1.41421  0.0      0.0      0.0  0.0  1.0  1.41421  0.0

 0.0      1.41421  0.0      0.0  0.0  1.0  1.41421  0.0

 0.0      0.0      1.73205  0.0  0.0  0.0  1.41421  0.0

 0.0      0.0      0.0      1.0  0.0  0.0  0.0      2.0

 0.0      0.0      0.0      0.0  1.0  0.0  0.0      2.0

invCov = inv(Φ*Φ')

w = (invCov * ones(Int, 5)) / (ones(Int, 5)' * invCov * ones(Int, 5))



 

Phylogenetic PCA  
We assume that we are dealing with several characters that evolve according to a correlated Brownian motion along the branches 
of a phylogeny. This means that the evolution on each branch is drawn from a centered but correlated normal distribution.

Let  be a  matrix, where  is the number of branches of the phylogeny and  the number of features. We assume that the 
rows of  are stochastically independent, and each row is drawn from a multivariate normal distribution:

 is an  phylogenetic matrix, with the SVD

 is the matrix of eigenvectors of , so it is a permutation matrix. 

So the rows of  are mutually independent and drawn from the same distribution as . 

The observed data  form an -matrix (  being the number of tips and  the number of features). It is generated by the 
process

According to the SVD theorem,

We can estimate the phylogenetic means  and the rates of evolution . After normalizing each of the columns of  (subtracting 
the phylogenetic mean and dividing by the rate of evolution), we apply the transformation  to obtain estimates for . Since 
the rows of this matrix are drawn from the same distribution as , we can apply regular PCA to this matrix.

5-element Array{Float64,1}:

 0.1753246753246753

 0.1753246753246753

 0.23376623376623382

 0.20779220779220783

 0.20779220779220783
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