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Speeded perceptual classification experiments were conducted to distinguish among the predictions of
exemplar-retrieval, decision-boundary, and prototype models. The key manipulation was that across
conditions, individual stimuli received either probabilistic or deterministic category feedback. Regardless
of the probabilistic feedback, however, an ideal observer would always classify the stimuli by using an
identical linear decision boundary. Subjects classified the probabilistic stimuli with lower accuracy and
longer response times than they classified the deterministic stimuli. These results are in accord with the
predictions of the exemplar model and challenge the predictions of the prototype and decision-boundary
models.

A fundamental issue in the field of perceptual classification
concerns the manner in which people represent categories in
memory and the decision processes that they use for making
classification judgments. Among the major formal models of per-
ceptual classification are exemplar-retrieval, prototype, and
decision-boundary models. According to exemplar-retrieval mod-
els (Hintzman, 1986; Medin & Schaffer, 1978; Nosofsky, 1986),
people represent categories by storing individual exemplars of
categories in memory, and they make classification decisions on
the basis of the similarity of test items to these stored exemplars.
According to prototype models (Posner & Keele, 1968; Reed,
1972; Smith, Murray, & Minda, 1997), a category representation
consists of an idealized prototype, usually assumed to be the
central tendency of the category training exemplars. And accord-
ing to decision-boundary models (Ashby & Townsend, 1986),
people use decision boundaries for dividing a multidimensional
psychological space into category-response regions. These bound-
aries can correspond either to simple, verbalizable rules or to
complex, nonverbalizable ones. Hybrid or multiple-system models
have also been proposed that involve combinations of these types
of representations and decision processes (Anderson & Betz, 2001;
Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Erickson &
Kruschke, 1998; Nosofsky, Palmeri, & McKinley, 1994; Vandier-
endonck, 1995). However, the research reported in this article
sought to develop contrasts among the predictions of the single-
system models.

One of the emerging themes in the perceptual classification
literature has been to test formal models not only on their ability to
predict classification choice probabilities but on their ability to
account for the actual time course of classification decision mak-
ing (Anderson & Betz, 2001; Ashby, Boynton, & Lee, 1994;

Ashby & Maddox, 1994; Cohen & Nosofsky, 2003; Lamberts,
1995, 1998, 2000; Maddox & Ashby, 1996; Nosofsky & Palmeri,
1997a, 1997b; Ratcliff & Rouder, 1998; Verguts, Storms, & Tu-
erlinckx, 2003). Thus, versions of the models have been developed
that predict classification response times (RTs). We pursue this
theme in the present article. Specifically, the purpose of this
research was to conduct experiments to distinguish among the
predictions of three formal models of choice probability and RT in
tasks of speeded perceptual classification. The three models are
representatives of the main model types described above: the
exemplar-based random-walk (exemplar-RW) model (Nosofsky &
Palmeri, 1997b), a newly proposed prototype-based random-walk
( prototype-RW) model, and models based on the RT–distance
hypothesis of decision-boundary theory (Ashby, 2000; Ashby et
al., 1994).

Although the models are conceptually very different, they make
surprisingly similar predictions across a variety of situations. In the
present experiments, our key idea was to manipulate the probabil-
ity with which specific exemplars were assigned to categories
across different conditions of testing. As we show, the models
make fundamentally different qualitative predictions in such a
paradigm. Our goal was both to test these qualitative predictions
and to evaluate the models on their ability to quantitatively fit the
individual-subject accuracy and RT data.

It is important to note that Rouder and Ratcliff (2004) recently
reported an extensive and highly systematic series of experiments
for distinguishing between the exemplar-retrieval and decision-
boundary models. Furthermore, as is the case in the present re-
search, one of their key manipulations involved varying the prob-
ability with which individual stimuli were assigned to categories.
We discuss the Rouder and Ratcliff experiments at length in this
article. To anticipate, although the research themes are closely
related, we suggest that our experimental manipulation provides an
important qualitative contrast between the predictions of the com-
peting models that was not present in Rouder and Ratcliff’s de-
signs. In addition, whereas Rouder and Ratcliff measured choice
probability in the domain of unidimensional classification, we
generalize the inquiry by examining both RTs and choice proba-
bilities in tasks of speeded multidimensional classification. Thus,
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our research provides a significant complement to the work of
Rouder and Ratcliff.

We organize the remainder of the article as follows. First, we
briefly review the formal exemplar-RW and decision-boundary
models and also introduce the newly proposed prototype-RW
model. Next, we explain the reason that the models tend to make
similar predictions in various of the experimental paradigms that
have been tested to date. We then review and evaluate some recent
work that has attempted to distinguish the models. Finally, the
main section of the article reports tests of the three models in a new
experimental paradigm in which probabilistic assignments of ex-
emplars to categories are manipulated.

Overview of the Formal Models

In this section, we describe the three formal models. In the
to-be-reported experiments, the stimuli were Munsell colors of a
constant hue that varied in their saturation and brightness. Such
stimuli are classic examples of integral-dimension stimuli, in
which the dimensions combine into relatively unanalyzable, uni-
tary wholes (Garner, 1974; Shepard, 1987). Furthermore, in our
experiments, the stimuli were assigned to one of two categories (A
and B). Below, we describe the three formal models as they are
applied in such a paradigm.

Exemplar-Based Random-Walk Model

According to the exemplar-RW model, people represent cate-
gories by storing individual exemplars in memory. Test items
cause individual exemplars to be retrieved. The retrieved exem-
plars then drive a random-walk process (e.g., Busemeyer, 1985;
Link, 1992; Luce, 1986; Ratcliff, 1978; Townsend & Ashby, 1983)
that leads to classification decisions.

In the model, each exemplar is represented as a point in a
multidimensional psychological space. Let xim denote the value of
exemplar i on psychological dimension m. When applied to the
classification of integral-dimension stimuli, the distance between
exemplars i and j is computed by using a weighted euclidean
distance metric,

dij � �� wm�xim � xjm�2�1/ 2, (1)

where the wms (0 � wm � 1, � wm � 1) are free parameters
representing the attention weight given to each dimension m. The
similarity between exemplars i and j (sij) is an exponential decay
function of psychological distance (Shepard, 1987), given by

sij � exp� � c � dij�, (2)

where c is an overall sensitivity parameter that describes the rate at
which similarity declines with distance. The higher the value of c,
the steeper the similarity gradient (i.e., the more discriminable are
the exemplars in the psychological space).

Each exemplar resides in memory with strength Mj. In the
baseline version of the model, the memory strengths are assumed
to be proportional to the frequency with which each individual
exemplar is presented in combination with given category feed-
back (Nosofsky, 1988b). When a test item is presented, it causes
all exemplars to be activated. The activation for exemplar j, given
presentation of item i, is given by

aij � Mj � sij. (3)

Thus, the exemplars that are most highly activated are those that
have the greatest memory strengths and are highly similar to the
test item.

When item i is presented, all category exemplars stored in
memory race to be retrieved (cf. Logan, 1988). The race times are
independent exponential random variables with rates proportional
to the degree to which exemplar j is activated by item i (Bundesen,
1990; Logan, 1997; Marley, 1992; Marley & Colonius, 1992).
Thus, the probability density that exemplar j completes its race at
time t, given presentation of item i, is given by

f�t� � aij � exp� � aij � t�. (4)

This assumption formalizes the idea that although the retrieval
process is stochastic, the exemplars that tend to race most quickly
are those that are most highly activated by the test item.

Finally, the exemplar that “wins” the race is retrieved and enters
into a random-walk decision process. Specifically, the random-
walk process is organized into a sequence of retrieval steps. In a
two-category situation, the process operates as follows. First, there
is a random-walk counter with an initial value of 0. The observer
establishes criteria representing the amount of evidence needed to
make either a Category-A response (�A) or a Category-B re-
sponse (�B). Suppose that exemplar x wins the race on a given
retrieval step. If x belongs to Category A, then the random-walk
counter is increased by unit value in the direction of �A, whereas
if x belongs to Category B, the counter is decreased by unit value
in the direction of �B. If the counter reaches either criterion �A
or �B, the appropriate categorization response is made. Other-
wise, a new race is initiated, another exemplar is retrieved (pos-
sibly the same one as on the previous step), and the process
continues.

Given the processing assumptions outlined above, Nosofsky and
Palmeri (1997b) showed that on each step of the random walk, the
probability ( pi) that the counter is increased in the direction of
Category A is given by

pi �
SiA

�SiA � SiB�
, (5)

where SiA denotes the summed activation of all currently stored
Category-A exemplars given presentation of item i, and likewise
for SiB. (The probability that the counter is decreased in the
direction of Category B is given by qi � 1 � pi.) So, for example,
as the summed activation of Category-A exemplars increases, the
probability of retrieving Category-A exemplars and thereby mov-
ing the counter in the direction of �A increases.

Given these random-walk processing assumptions, it is straight-
forward to derive analytic predictions of classification choice
probabilities and mean RTs for each stimulus at any given stage of
the learning process. The relevant equations are summarized by
Nosofsky and Palmeri (1997b, pp. 269–270, 291–292). Because
the current experiments used stimuli that varied along two dimen-
sions and that were organized into two categories, the
exemplar-RW model had six free parameters: the overall sensitiv-
ity parameter c; an attention-weight parameter w1 (with w2 � 1 �
w1); the random-walk criteria �A and �B; a scaling constant, k,
for transforming the number of steps in the random walk into
milliseconds; and a parameter, �, representing the mean residual
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time not related to classification decision making (e.g., encoding
and response-execution time).1

One of the main predictions from the model is that the most
rapid and accurate classification decisions should be made for
those items that are highly similar to the exemplars of their own
category and dissimilar to the exemplars of the alternative cate-
gory. Under such conditions, each retrieved exemplar will tend to
come from the same category, so the random walk will march in
consistent fashion to a single criterion. By contrast, items that are
similar to exemplars from both categories should yield longer RTs.
The reason is that the random-walk counter will tend to wander
back and forth, sometimes retrieving exemplars from one category
and other times retrieving exemplars from the contrast category.

It is important to note that in addition to yielding quantitative
predictions of RTs, the exemplar-RW model provides a direct
processing interpretation for the descriptive equations of choice
probability found in the well-known generalized context model
(GCM; Nosofsky, 1986; Nosofsky & Palmeri, 1997b, pp. 291–
292). The GCM is an exemplar-based categorization model that
has had a long record of success in predicting choice probabilities
for individual stimuli in a wide variety of perceptual classification
paradigms (e.g., McKinley & Nosofsky, 1995; Nosofsky, 1987,
1991; Nosofsky & Zaki, 2002). Specifically, consider a special
case of the exemplar-RW model in which the criteria �A and �B
are set an equal magnitude � from the starting point of the random
walk (i.e., |A| � |�B| � �). In this case, the model predicts that the
probability that item i is classified into Category A is given by

P�A�i� �
SiA

�

�SiA
� � SiB

��
, (6)

which is the GCM response rule (see Nosofsky & Palmeri, 1997b, p.
291). In this equation, SiA and SiB give the summed similarities of test
item i to the exemplars of Categories A and B, respectively, whereas
� is a response-scaling parameter (Ashby & Maddox, 1993; McKin-
ley & Nosofsky, 1995; Nosofsky & Zaki, 2002). When � � 1,
subjects respond by probability matching to the relative summed
similarities of each category, whereas as � grows greater than 1,
subjects respond more deterministically with the category that yields
the larger summed similarity. This role of the � response-scaling
parameter is discussed in greater detail in the Applications to Past
Experimental Data section.

Prototype-Based Random-Walk Model

According to prototype models, people represent categories by
forming abstract summary representations of categories, and they
classify objects on the basis of their similarity to these prototypes.
A prototype is usually assumed to correspond to the central ten-
dency of a category’s exemplars. Although exemplar and proto-
type models have been compared extensively on their ability to
predict individual-stimulus choice probabilities in unspeeded clas-
sification paradigms, there has been little work comparing these
models’ predictions of speeded classification performance. In this
section, we propose a prototype-RW model that is directly analo-
gous to the exemplar-RW model, thereby allowing direct compar-
isons of RT predictions to be made.

In the prototype-RW model, the prototype of Category A is defined
as the central tendency computed over Category A’s training exem-
plars, and likewise for the prototype of Category B. The distance
between a test item and the prototype is computed as in Equation 1;

the similarity of the test item to the prototype is computed as in
Equation 2; and the degree to which each prototype is activated and
the rate at which it races is computed as in Equations 3 and 4. On each
step of the random walk, the two prototypes race to be retrieved, and
the winning prototype drives the random walk in the same manner as
in the exemplar-RW model. Assuming that the prototypes have equal
memory strengths, it is straightforward to show that on each step of
the random walk, the probability of taking a step in the direction of
Category A is given by

pi �
SiPA

�SiPA � SiPB�
, (7)

where SiPA denotes the similarity of item i to the prototype of
Category A. The mean RT and choice probability predictions of
the prototype-RW model are then given by the same equations
reported by Nosofsky and Palmeri (1997b, pp. 269–270) for the
exemplar-RW model, with the exception of the new computation
of pi given in Equation 7 above.

A special case of interest arises when the random-walk criteria are
set an equal magnitude � from the starting point of the random walk.
In this case, the prototype-RW model predicts that the probability
with which test item i is classified into Category A is given by

P� A�i� �
SiPA

�

�SiPA
� � SiPB

��
, (8)

where � is the response-scaling parameter. Equation 8 has been
used extensively in previous work in applying prototype theory to
the prediction of choice probabilities. However, as explained in
previous work (e.g., Ashby & Maddox, 1993; Nosofsky & Zaki,
2002), if one limits consideration to the prediction of choice
probabilities, then in the prototype model, the � response-scaling
parameter cannot be estimated separately from the overall sensi-
tivity parameter c, so it is typically held fixed at 1. However, in the
present RT domain, the value of � (i.e., the values of �A and
|�B|) cannot be held fixed at 1 if the prototype-RW model is to
provide plausible predictions of speeded classification perfor-
mance. In such a case, for example, the model would predict that
all stimuli are classified with equal response speed, regardless of
their difficulty.2 The parameters in the prototype-RW model are
the same as in the exemplar-RW model: overall sensitivity param-
eter c, attention-weight parameter w1, random-walk criteria �A
and �B, scaling constant k, and residual-time parameter �.

1 The version of the exemplar-RW model tested in this study differs
from the original version in some minor respects. First, in the original
version, the time to take each individual step in the random walk (Tstep) was
given by � � t, where � is a constant term associated with each step, and
t is the time to retrieve the winning exemplar. Because the stochastic
retrieval-time component does not add materially to the steady-state pre-
dictions from the model, for simplicity, we now instead set Tstep equal to
unit value (see also Cohen & Nosofsky, 2003). In addition, some previous
applications of the exemplar-RW model have included a background-noise
parameter, representing the rate at which background elements stored in
memory race against the stored exemplars to enter into the random walk.
Because the background-noise parameter is important mainly for modeling
initial learning, it is not included in the present model fits.

2 Specifically, in the exemplar-RW and prototype-RW models, RT is
determined by the total number of retrieval steps required to complete the
random walk. If � � 1, then the random walk is always completed in a
single step, regardless of stimulus difficulty.
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Decision-Boundary Model

According to decision-boundary theory (Ashby & Townsend,
1986), people use decision boundaries for dividing a perceptual
space into category-response regions. Test items are assumed to
give rise to noisy representations in the multidimensional percep-
tual space. For simplicity, in this article, we assume that the
perceptual representations are independently and normally distrib-
uted along each dimension, with variance �p

2. (We consider the
implications of some more complex assumptions as well.) If a test
item gives rise to a point in Region A of the space, then the
observer responds with Category A.

In most applications of decision-boundary theory, it is assumed
that the observer uses a decision boundary that is optimal in form
(i.e., a decision boundary with a functional form that would max-
imize the observer’s proportion of correct classifications; Maddox
& Ashby, 1993). In the to-be-reported experiments, the optimal
decision boundary is linear in form, regardless of the probabilistic
assignments of exemplars to categories. Thus, in this article, we
focus on the predictions of the linear decision-boundary model.

Past approaches to generating RT predictions from decision-
boundary theory involved application of the RT–distance hypoth-
esis (Ashby et al., 1994). According to this hypothesis, mean RT
is a decreasing function of the distance of a stimulus from the
decision boundary. To generate quantitative predictions, specific
assumptions are needed of the function relating RT to distance-
from-boundary. In past tests, Maddox and Ashby (1996) found
strongest support for an exponential function in which mean de-
cision time (MDT) is given by

MDT � k � exp(�	 � D), (9)

where D is distance-from-boundary, 	 determines the rate at which
RT decreases with distance, and k is a scaling parameter. We
assume this exponential model in deriving the quantitative predic-
tions from decision-bound theory. It is important, however, to note
that regardless of the specific quantitative function that is assumed,
the linear decision-boundary model makes the same fundamental
qualitative predictions of the effects of our probabilistic assign-
ments of exemplars to categories.

In the present applications, the linear decision-boundary model
uses six free parameters: a slope (m) and y-intercept (b) of the
best-fitting linear decision boundary, the perceptual-variance pa-
rameter �p

2, the rate parameter 	, the scaling constant k, and the
mean residual-time parameter �.

For completeness, in Appendix A, we also describe a random-
walk version of the linear decision-boundary model (for a similar
development using a continuous-time diffusion process, see
Ashby, 2000). This random-walk version of the linear decision-
boundary model has the same form as the exemplar-RW and
prototype-RW models, except that the step probabilities are now
determined by distance-from-boundary rather than by the retrieval
of exemplars or prototypes. The random-walk version of the linear
decision-boundary model yielded slightly better fits to our speeded
classification data than did the standard RT–distance version, but
it did so at the expense of an additional free parameter. Because
none of our conclusions are changed by this, in this article we
report the fits of only the standard RT–distance version.

Applications to Past Experimental Data

In early tests of classification RT predictions, Ashby et al.
(1994) conducted experiments in which subjects classified objects
from two bivariate, normally distributed categories. An illustration
of their paradigm is shown in Figure 1, in which the category
distributions A and B have the same variance along each of their
dimensions. On each trial, a stimulus is selected randomly from
one of the two categories, the subject classifies it as rapidly as
possible, and the correct category label is then provided by the
experimenter. Note that because the category distributions are
overlapping, it is impossible to achieve perfect accuracy in such a
paradigm.

The diagonal line in Figure 1B is the optimal decision boundary
for separating the categories. An ideal observer will maximize his
or her proportion of correct responses by classifying all items to
the upper left of the boundary into Category A and all items to the
lower right into Category B. Ashby and colleagues have observed
that in this type of paradigm, individual subjects often make
classification responses in a near-deterministic fashion in accor-
dance with such an optimal decision boundary (Ashby & Gott,
1988; Ashby & Maddox, 1992). Furthermore, in the speeded
classification version of this task, Ashby et al. (1994) found strong
support for the RT–distance hypothesis. They observed a strong

Figure 1. A: Schematic illustration of an experimental paradigm (see
Ashby, Boynton, & Lee, 1994) in which subjects classify objects into two
bivariate normal category distributions. fA denotes the bivariate density
associated with category distribution A, and fB denotes the bivariate density
associated with category distribution B. B: Equal-probability cross-
sections of the bivariate normal distributions projected onto the x–y plane.
The dashed diagonal line is the optimal decision boundary for dividing the
x–y plane into response regions.
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negative correlation between RTs and distance-from-boundary
such that stimuli far from the boundary tended to be classified
more rapidly than were stimuli close to the boundary.

Note that the � response-scaling parameter in the GCM is
crucial for allowing that model to account for the pattern of
near-deterministic responding in this paradigm. Recall that with
� � 1 in Equation 6, the GCM predicts that subjects will respond
by probability matching to the relative summed similarities of each
category. Maddox and Ashby (1993) provided clear evidence that
individual subjects responded more deterministically than pre-
dicted by this probability-matching rule. McKinley and Nosofsky
(1995) showed that with � allowed to vary freely, the GCM
provided quantitative accounts of accuracy data in this paradigm
that were as good as those provided by decision-boundary theory.
And because the exemplar-RW model provides a direct process-
model interpretation of the emergence of the � response-scaling
parameter, it accounts for such data as well.

Furthermore, Nosofsky and Palmeri (1997b) conducted simulations
demonstrating that the exemplar-RW model successfully accounted
for the RT data reported by Ashby et al. (1994; for details, see
Nosofsky & Palmeri, 1997b, pp. 272–273). In general, in the para-
digm illustrated in Figure 1, an exemplar that is far from the boundary
tends to be highly similar only to exemplars from its own category.
Thus, on each step of the random walk, exemplars from the correct
category are retrieved, and the counter marches in consistent fashion
to the appropriate category criterion. By contrast, an exemplar that lies
close to the boundary tends to be similar both to exemplars from its
own category and to exemplars from the contrast category. Thus, the
random walk wanders back and forth, and decision times are longer.

In addition to considering performance in paradigms involving
bivariate normal categories, Nosofsky and Palmeri (1997b, Experi-
ment 1) tested the exemplar-RW model and the decision-boundary
model in designs involving a smaller number of stimuli, with each
individual stimulus presented on multiple trials. In such designs, one
can measure choice probabilities and RTs for individual stimuli and
provide rigorous tests of the models’ ability to quantitatively fit the
individual-stimulus data. Despite their vast conceptual differences, the
quantitative fits provided by the exemplar-RW model and the
decision-boundary model were essentially the same, and the models
could not be sharply distinguished (for details, see Nosofsky &
Palmeri, 1997b, pp. 276–280).

The reason that the exemplar-RW and decision-boundary mod-
els make similar predictions is that distance-from-boundary and
relative summed similarity tend to be highly correlated in such
designs. As explained above, items that are far from the boundary
tend to be highly similar to exemplars from their own category and
not similar to exemplars from the contrast category.

The key to distinguishing between the predictions from the models
is to develop paradigms in which distance-from-boundary and relative
summed similarity are decoupled. In some past work, one approach to
achieving this aim has been to manipulate the absolute frequency with
which individual stimuli are experienced during classification training
(Nosofsky & Palmeri, 1997b, Experiment 2; Verguts et al., 2003).
The exemplar-RW model predicts that, all other things being equal,
familiar stimuli should be classified more rapidly than unfamiliar
ones, because increasing the frequency of an item boosts its summed
similarity to the target-category exemplars. This prediction from the
exemplar-RW has been confirmed in studies in which absolute fre-
quency was manipulated experimentally across conditions. However,
it is possible that effects of absolute frequency may involve “surprise”

effects, and their locus may reside in psychological factors not asso-
ciated with classification decision making. It is important, therefore,
to seek converging evidence for such effects by using alternative
experimental manipulations.

Rouder and Ratcliff (2004)

One such manipulation was carried out by Rouder and Ratcliff
(2004) in a recent series of experiments involving unidimensional
classification. The key idea in their experiments was to decouple
distance-from-boundary and relative summed similarity by manip-
ulating the probability with which individual stimuli were assigned
to alternative categories. The design of a representative experiment
from their studies is illustrated in Figure 2A. As illustrated in the
figure, there were eight equally spaced stimuli varying along a
unidimensional continuum. The stimuli were assigned to one of
two categories (A and B). The middle stimuli were assigned
deterministically to their respective categories. Thus, Stimuli 3 and
4 received Category-A feedback with probability 1, whereas Stim-
uli 5 and 6 received Category-A feedback with probability 0. By
contrast, the extreme stimuli (Stimuli 1 and 2 and Stimuli 7 and 8)
were assigned probabilistically to the categories. In the present
illustration, all of the extreme stimuli received Category-A feed-
back with probability .60.

To apply decision-boundary theory, Rouder and Ratcliff (2004)
assumed that subjects would partition the perceptual space by
establishing cutoffs between Stimuli 4 and 5 and between Stimuli
6 and 7 (see Figure 2B). Any percept falling within the interior
region defined by these cutoffs would be classified in Category B,
whereas percepts falling outside these cutoffs would be classified
in Category A.

Rouder and Ratcliff’s (2004) design decouples stimulus proba-
bility and distance-from-boundary by placing them in opposition
to one another. That is, Stimuli 1 and 2 are farther from the
decision boundary than are Stimuli 3 and 4, but they receive
Category-A feedback with lower probability. As a result,
exemplar-retrieval and decision-boundary models tend to make
contrasting predictions. The typical response-probability predic-
tions from the decision-boundary model are as illustrated in Figure
2B: The farther away that an A stimulus is from the nearest cutoff,
the higher should its Category-A response probability be. By
contrast, the typical response-probability predictions from the ex-
emplar model are as illustrated in Figure 2C: Because the exemplar
model’s predictions are influenced by the category-assignment
probabilities, it tends to predict lower Category-A response prob-
abilities for the extreme stimuli (Stimuli 1 and 2) than for the
middle ones (Stimuli 3 and 4).

Rouder and Ratcliff’s (2004) design does indeed place severe
constraints on the predictions from the alternative models. Fur-
thermore, these researchers conducted extensive and painstaking
quantitative model-fitting analyses to determine the experimental
conditions that tended to favor one model over the other. Their
general pattern of observed results was that in conditions involving
highly confusable stimuli in which it was difficult to discriminate
among individual exemplars, the quantitative predictions favored
the decision-boundary model over the exemplar model. By con-
trast, in conditions involving more discriminable stimuli, the quan-
titative predictions from the exemplar model were favored.

Despite this systematic pattern of observed results, the key point
that we make here is to emphasize that in Rouder and Ratcliff’s
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(2004) design, the variables of distance-from-boundary and stim-
ulus probability are pitted against one another, not manipulated as
orthogonal experimental factors. Furthermore, the exemplar-
retrieval model predicts that classification choice probabilities and
RTs should be sensitive to both factors, with the relative impact of
each factor depending on specific parameter settings and detailed
assumptions in the modeling.

Indeed, in Figure 3 we illustrate predictions from a version of
the exemplar model that does not conform to the typical pattern
described by Rouder and Ratcliff (2004). Details of this modeling
illustration are provided in Appendix B. In brief, this version of the
exemplar model makes allowance for the reasonable idea that in
situations involving highly confusable stimuli, one needs to model
explicitly the sensory and memory noise associated with the stored
exemplars (Nosofsky, 1988a, 1997). As can be seen in the figure,
when allowance is made for the role of sensory and memory noise,
the exemplar model can predict a response-probability gradient
that increases monotonically with distance from the decision bound-
ary, despite the probabilistic feedback associated with the extreme
stimuli. Indeed, the predicted gradient matches the typical pattern
that is predicted by the decision-boundary model extremely well.

We emphasize that the point of this illustration is not to claim
that the exemplar-retrieval model is sufficient to account for all of
Rouder and Ratcliff’s (2004) data. It remains an open question, for
example, whether an exemplar model that makes allowance for
sensory–memory noise can quantitatively fit the data from their
conditions involving highly confusable stimuli. Rather, we are
suggesting only that in Rouder and Ratcliff’s design, the qualita-
tive contrast between the models may not be quite as sharp as is
illustrated by the differing response-probability gradients in Fig-
ures 2B and 2C. Accordingly, there is a need to rely on quantitative
fit indexes as a basis for comparing the models. As is well known,
however, such indexes can be highly influenced by detailed formal
assumptions that are not central to the key conceptual underpin-
nings of models. Furthermore, the quantitative fits that are achieved
will also be influenced by the inherent flexibility (or complexity) of
the competing models (e.g., Pitt, Myung, & Zhang, 2002).

Thus, although Rouder and Ratcliff’s (2004) design places se-
vere constraints on the alternative models, our view is that other
approaches to developing qualitative contrasts would also be valu-
able. In the present experiments, we pursued the general tack taken
by Rouder and Ratcliff, except we did not pit stimulus probability
and distance-from-boundary against one another. Instead, we at-
tempted to manipulate stimulus probability as an independent
experimental factor while holding distance-from-boundary
roughly constant. As we show, despite manipulating probabilistic
categorization assignments across conditions, our design ensured
that the optimal decision boundary, as well as the distance of
individual stimuli to the boundary, remained unchanged across the

Figure 2. A: Schematic design of a representative experiment from
Rouder and Ratcliff (2004). B: Typical predictions from the decision-
boundary model. The vertical dashed lines represent cutoffs by which
subjects partitioned perceptual space. C: Typical predictions from the
exemplar-retrieval model. From “Comparing Categorization Models,” by
J. N. Rouder & R. Ratcliff, 2004, Journal of Experimental Psychology:
General, 133, p. 65. Copyright 2004 by the American Psychological
Association. Adapted with permission.
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conditions. As a result, the exemplar-RW and decision-boundary
models made sharply different qualitative predictions.

Our experiments differed from those of Rouder and Ratcliff
(2004) in other important ways as well. First, recall that Rouder
and Ratcliff examined choice probability in tasks of unidimen-
sional classification, whereas our experiments examined both RTs
and choice probability in tasks of multidimensional classification.
The distinction between unidimensional and multidimensional
classification is of major potential importance. In the domain of
unidimensional classification, forming decision boundaries
amounts to setting cutoffs (i.e., establishing single points) along a
dimension. A similar psychological process operates in 2-D clas-
sification only when the decision boundaries are straight lines that
are orthogonal to the coordinate dimensions. In this case, the
observer establishes cutoffs along a single dimension while ignor-
ing values along the second dimension. By contrast, in our exper-
iments the presumed decision boundary was an oblique line that
required integration of perceptual information from both dimen-
sions. As noted by Ashby et al. (1998), this type of decision
boundary is extremely difficult to verbalize, in contrast to what is
involved in setting cutoffs along individual dimensions. Indeed,
Ashby and colleagues have argued that the distinction between
these types of decision boundaries is so fundamental that separate
cognitive systems underlie their use (for an extensive discussion
and review, see Ashby & Casale, 2003). It is critical, therefore, to
test whether the types of results observed by Rouder and Ratcliff
generalize to multidimensional domains.

Finally, the motivating theme of our research was to contrast the
predictions of models of the time course of classification. Thus, we
extended Rouder and Ratcliff’s investigations by examining the
effects of probabilistic exemplar assignments on RTs in addition to
choice probabilities.

Experiment 1

The design of Experiment 1 is illustrated in Figure 4. The
stimuli were 12 Munsell colors of a constant hue, varying in

brightness and saturation. The colors were assigned to one of two
categories (A and B). As illustrated in the figure, Colors 1–6
belonged to Category A, whereas Colors 7–12 belonged to Cate-
gory B. Given our above-discussed simplifying assumptions about
perceptual noise, the optimal boundary for separating the two
classes of colors into response regions was the diagonal linear
decision boundary illustrated in the figure. (We consider some
alternative perceptual-noise assumptions in the Theoretical Anal-
ysis section of Experiment 2.)

The key experimental manipulation was that across conditions,
either Stimulus Pair 4/8 or Stimulus Pair 5/9 received probabilistic
feedback, whereas all other stimuli received deterministic feed-
back. Specifically, in Condition 4/8, Stimulus 4 received
Category-A feedback on .75 of the trials, and it received
Category-B feedback on .25 of the trials. Likewise, Stimulus 8
received Category-B feedback on .75 of the trials, and it received
Category-A feedback on .25 of the trials. Analogous probabilistic
feedback was assigned to Stimulus Pair 5/9 in Condition 5/9. We
refer to these four centrally located stimuli (Pairs 4/8 and 5/9),
which received probabilistic feedback across conditions, as the
critical stimuli. The pair that received probabilistic feedback is the
probabilistic critical pair, whereas the pair that received determin-
istic feedback is the deterministic critical pair.

It is straightforward to see that because of the symmetric prob-
abilistic assignments of stimuli to categories, the optimal boundary
for partitioning the space into response regions was the same linear
boundary illustrated in Figure 4. Because decision-boundary the-
ory assumes that mean RT is based solely on distance from this
boundary, it therefore predicts equal mean RTs for the probabilis-
tic and deterministic critical stimuli. Intuitively, according to this
theory, the observer has established a simple (nonverbal) rule for
classifying objects, formalized in terms of the placement of the

Figure 3. Illustrative predictions of performance in the Figure 2A design
from a version of the exemplar model with sensory/memory noise (see
Appendix B for details).

Figure 4. Schematic illustration of the design in Experiments 1 and 2.
Circles are members of Category A, and triangles are members of Category
B. The solid diagonal line is the optimal decision boundary for dividing the
space into category-response regions. Across conditions, either Stimulus
Pair 4/8 or Stimulus Pair 5/9 was assigned probabilistically to the
categories.

614 NOSOFSKY AND STANTON



boundary. Memories for probabilistic assignments of exemplars do
not influence the application of the rule.

By contrast, the exemplar-RW model predicts that the probabi-
listic critical stimuli will be classified with lower accuracy and
with slower response speed than the deterministic critical stimuli.
For example, in Condition 4/8, in cases in which Stimulus 4 is
presented and tokens of Exemplar 4 are retrieved from memory,
.75 of the individual steps in the random walk will move in the
direction of Category A, but .25 of the steps will move in the
direction of Category B. Presentations of the deterministic critical
stimuli will result in more consistent steps of the random walk,
thereby leading to higher accuracy and shorter RTs.

Furthermore, the design is highly diagnostic because it relies on
the collection of both accuracy and RT data. As noted previously,
in much past work involving, for example, the testing of bivariate
normal categories, subjects have been observed to respond in
near-deterministic fashion, classifying all stimuli to one side of the
decision boundary into one category and all stimuli to the other
side of the boundary into the contrast category. Although the
exemplar-RW model can account for this pattern of near-
deterministic responding by setting the random-walk criteria at a
sufficiently large magnitude, it would still predict a large effect of
the probabilistic feedback assignments on the observed RT data.

It is interesting to note that this design also provides a strong
contrast between the predictions of the exemplar-RW and
prototype-RW models. It turns out that with the current probabi-
listic assignments and stimulus spacings, the centroids of each
category are equidistant to the probabilistic and deterministic
critical pairs. Thus, like decision-boundary theory, the
prototype-RW model predicts identical choice probabilities and
RTs for the probabilistic and deterministic critical pairs.

Finally, we comment on a few remaining aspects of the exper-
imental design. We refer to Stimuli 1, 2, 11, and 12 in Figure 4 as
the far stimuli (because they are far from the decision boundary).
All three models predict that the far stimuli will be classified with
the highest accuracy and fastest response speed. These stimuli
were included in the design to check that the same basic distance-
from-boundary effects observed in previous work would also be
observed in the present experimental setting. We refer to Stimuli 3,
6, 7, and 10 in Figure 4 as the edge stimuli. One reason for
including the edge stimuli in the design was to motivate subjects to
establish the diagonal linear boundary across the range of the
perceptual space. (Without the edge stimuli, subjects could learn
the classification by forming a single-dimension rule and remem-
bering a single exception.) In addition, the results for the edge
stimuli provide additional constraints for quantitative model fit-
ting. As we show, because the edge stimuli are more distant from
the prototypes than are the centrally located critical stimuli, the
prototype-RW model predicts much lower accuracies and longer
RTs for them. By contrast, the exemplar-RW and decision-
boundary models predict smaller differences in performance be-
tween the deterministic critical pairs and the edge stimuli.

We tested highly practiced subjects in the present experiment.
Our aim was to test for effects of the probabilistic exemplar
assignments on experienced performance rather than simply on
initial learning. In addition, our goal was to conduct quantitative
model fitting at the individual-subject level, so sufficient data
needed to be collected for each individual subject.

Method

Subjects. The 16 subjects who participated in the speeded classifica-
tion task were recruited from the Indiana University Bloomington com-
munity. Each subject received $8 per 1-hr session and participated in five
sessions. A $15 bonus was promised to the 3 subjects with the best overall
performance in the experiment. All subjects had normal or corrected-to-
normal vision, and all claimed to have normal color vision. None of the
subjects was aware of the issues under investigation in the experiment.
Following the main experiment, an additional group of 39 subjects, re-
cruited from the same population, participated in a similarity-scaling
experiment.

Stimuli. The 12 color stimuli were created by scanning a set of Munsell
color chips into a computer. According to the Munsell color system, the
stimuli were of a constant red hue (7.5R) and varied in saturation and
brightness. The saturation–brightness coordinates were as illustrated in
Figure 4. Each of the colors was presented as a 2-in. (5.08-cm) square on
a black background. The colors were displayed on 15-in. (38.10-cm)
monitors.

Procedure. The colors were divided into two categories, as illustrated
in Figure 4. Colors 4, 5, 8, and 9 were defined as the critical stimuli. In
Condition 4/8, Colors 4 and 8 received probabilistic feedback—that is, they
received feedback consistent with their assigned category with probability
.75 and the opposite feedback with probability .25. In Condition 5/9,
Colors 5 and 9 received the probabilistic feedback. All other colors
received deterministic feedback.

Because the central question in this research focused on the results for
the critical stimuli, to increase statistical power, we presented the individ-
ual critical stimuli with higher probability than the individual remaining
stimuli. On each trial, with probability .50, 1 of the 4 critical stimuli was
displayed, with its associated feedback determined randomly in accordance
with the constraints described above. Likewise, on each trial, with proba-
bility .50, 1 of the 8 remaining stimuli was displayed. Note that the
increased absolute frequency of the critical stimuli does nothing to change
the form or placement of the optimal decision boundary. Also, because the
deterministic and probabilistic critical stimuli were presented with the
same absolute frequency, this factor was held constant for these stimulus
pairs.

On each trial, a fixation point flashed on the center of the computer
screen for 500 ms. After the fixation point disappeared, a color appeared
immediately, centered on the location of the fixation. The observer made a
response by pressing one of two appropriately labeled buttons on the
computer keyboard (F for Category A and J for Category B). The response
was followed by 1 s of feedback in which the word CORRECT or
INCORRECT was displayed on the screen. The color remained on the
screen for the full duration of the feedback. There was a 500-ms intertrial
interval. Subjects were instructed to rest their index fingers on the appro-
priate response buttons throughout the testing session and to respond as
quickly as possible while keeping errors to a minimum. The subjects were
informed that the monetary bonus was based on a combination of short RTs
and high accuracy. The instructions informed subjects that this is a difficult
task, and in some conditions it may not be possible to achieve perfect
accuracy. Other than this statement, the instructions provided no informa-
tion that probabilistic feedback was assigned to some of the stimuli.

There were 850 trials per session, and each subject completed five
sessions, one session per day. Thus, each subject contributed a total of
4,250 trials; across all subjects, a total of 68,000 responses were collected.
The subjects were given the opportunity to take a short break after com-
pleting each fourth of an experimental session. Half of the subjects par-
ticipated in Condition 4/8, and the other half participated in Condition 5/9.

In the similarity-scaling experiment, the independent group of 39 sub-
jects provided similarity ratings for all pairs of the colors. Each subject
participated in a single session consisting of 10 blocks of all 66 unique
color pairs. The order of presentation of the pairs was randomized within
each block. The subjects judged the similarity between each pair of colors
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by using a 9-point scale ranging from 1 (least similar) to 9 (most similar).
The subjects were instructed to use the full range of the scale.

Results

Similarity-scaling experiment. The main purpose of collecting
the similarity judgments was to verify that the scanned colors
maintained the same basic psychological structure as assumed in
the Munsell scaling solution. We analyzed the mean similarity
judgments by using the simple euclidean model of the ALSCAL
statistical package. The resulting 2-D solution, illustrated in Figure
5, yielded a stress of .036 and accounted for 99.2% of the variance
in the mean similarity ratings. Although the MDS solution derived
from the similarity ratings was noisy, it displayed the same basic
structure as found in the Munsell scaling. An important result
revealed by the MDS solution, however, is that Pair 5/9 was
somewhat more discriminable than was Pair 4/8. Indeed, the mean
similarity rating for Pair 4/8 (7.83) was significantly greater than
that for Pair 5/9 (7.45), t(38) � 2.26, p � .05. This stimulus-
specific difference between Critical Pairs 4/8 and 5/9 needs to be
considered in interpreting the results from the speeded classifica-
tion experiment.

In our subsequent theoretical analyses, we used both the Mun-
sell scaling and the present MDS solution in fitting the formal
models to the speeded classification data. For all of the models, the
Munsell scaling yielded better fits. Also, the relative performance
of the models remained the same, regardless of the scaling solution
that was used. Because none of our conclusions were changed, we
report only the results that made use of the standard Munsell
scaling.

Speeded classification. The first day of classification testing
was considered practice, and these data were not included in the
analyses. Any RT, as well as its associated response, that was
shorter than 100 ms or was more than 3 standard deviations above
or below the mean for that item type was omitted from further
analyses. This procedure led to the omission of less than 2% of the

experimental trials. The ensuing statistical analyses that we report
were all conducted on the raw choice probability and mean RT
data. Analyses of transformed data (i.e., an arcsine transform of the
probability data and a logarithmic transform of the mean RT data)
led to the same conclusions.

The choice probability data for each color for each individual
subject are reported in Appendix C. The mean RT data, computed
across both correct and incorrect responses, are reported in Ap-
pendix D.

The overall trends are reported in Tables 1 and 2. Note that for
the probabilistic pairs, a response was defined as correct if the
subject classified the color in accordance with the strategy of an
ideal observer. For example, in Condition 4/8, regardless of the
feedback provided on a given trial, a correct response was defined
to occur if the subject classified Color 4 into Category A. Inspec-
tion of Table 1 reveals that subjects classified the deterministic
critical pairs with higher accuracy (M � .892) than they did the
probabilistic critical pairs (M � .855).

We analyzed the data for the critical pairs by using a 2 � 2
mixed-model analysis of variance (ANOVA) in which condition
(4/8 vs. 5/9) was the between-subjects factor and type of feedback
(probabilistic vs. deterministic) was the within-subject factor.
There was a main effect of feedback, F(1, 14) � 4.95, MSE �
0.002, p � .043; but there was no main effect of condition, F(1,
14) � 0.17, MSE � 0.005, p � .688, and no Condition �
Feedback interaction, F(1, 14) � 1.46, MSE � 0.002, p � .247.
The main effect of feedback confirms our observation that the
deterministic pairs were classified more accurately than were the
probabilistic pairs. In addition, 13 of the 16 subjects showed more
accurate responding for the deterministic pairs than for the prob-
abilistic pairs. These results are in accord with the prior qualitative
predictions from the exemplar-RW model, and they challenge the
predictions from the linear decision-boundary and prototype-RW
models.

As is also shown in Table 1, the far stimuli were classified much
more accurately (M � .976) than were the deterministic critical
pairs, t(15) � 7.06, p � .001. This result is as predicted by all three
models. The edge stimuli were classified less accurately (M �
.854) than were the deterministic critical pairs, t(15) � �3.36, p �
.01. As we show below, although the three models correctly
predict this direction of results, they differ in their predictions of
the magnitude of the effect. We consider these results more fully
in the Theoretical Analysis section.

Regarding the RTs, inspection of Table 2 reveals that subjects
classified the deterministic critical pairs more quickly (M � 602.6
ms) than they did the probabilistic critical pairs (M � 618.1 ms),
although the effect was not a large one. A 2 � 2 mixed-model
ANOVA of the RT data revealed a marginal main effect of
feedback, F(1, 14) � 1.75, MSE � 1,091.2, p � .10 (one-tailed);
a marginal Condition � Feedback interaction, F(1, 14) � 2.46,
MSE � 1,091.2, p � .07 (one-tailed); and no main effect of
condition, F(1, 14) � 0.11, MSE � 31,520.8, p � .74. Although
the effect of feedback did not reach conventional levels of statis-
tical significance, it went in the same direction as that observed for
the accuracy data (i.e., showing an advantage for the deterministic
over the probabilistic critical pairs). If the accuracy and RT data
sets are treated independently, then the joint probability of observ-
ing F statistics this extreme (in the predicted direction) if there
were truly no effect is only .003. We believe that a reasonable
conclusion is that the results comparing performance on the prob-

Figure 5. 2-D scaling solution for the colors derived from the similarity
ratings in Experiment 1.
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abilistic and deterministic critical pairs support the qualitative
predictions from the exemplar-RW model. However, the marginal
statistical results involving the RTs cast some doubt on the pre-
dictions from this model as well, and we pursued this issue in
Experiment 2.

Note that the statistical interaction between condition and feed-
back reflects a stimulus-specific effect in which, overall, Pair 5/9
tended to be classified more rapidly than Pair 4/8. This result is
unsurprising given the results of the similarity-scaling experiment,
which indicated that Pair 5/9 was more discriminable than was Pair
4/8.

Finally, as shown in Table 2, the mean RTs for the far stimuli
(531.8 ms) were clearly shorter than those for the deterministic
critical pairs, t(15) � 6.60, p � .001. The edge stimuli were
classified more slowly on average (631.6 ms) than were the de-
terministic critical pairs, t(15) � 1.88, p � .04 (one-tailed).

In a further analysis, we broke down the data according to
whether they were collected during Sessions 2 and 3 or Sessions 4
and 5. Note that given the nature of the design, an ideal observer
would perform best by ignoring the probabilistic feedback and
assuming instead that the correct feedback is that provided for each
stimulus on the majority of the trials. Thus, we hypothesized that
the effects of the probabilistic feedback might grow weaker during
the later sessions of testing. Analysis of the data, however, showed
little effect of session (except for an overall speeding of all
responses due to generalized practice effects). If anything, the
effects of the probabilistic feedback grew stronger during the later
sessions, although the results did not approach statistical
significance.

Theoretical Analysis

As a source of converging evidence, we conducted tests of the
models’ ability to quantitatively fit the individual-subject choice
probability and mean RT data. Although the qualitative contrasts
described in the previous section favored the predictions from the
exemplar-RW model, our view is that quantitative comparisons are
also of fundamental importance. For example, suppose that the
exemplar-RW model were to predict a quantitative performance
advantage for the deterministic pairs relative to the probabilistic
pairs that was far greater in magnitude than the observed advan-
tage. Such a result would be reflected in a poor overall quantitative
fit, thereby casting doubt on the modeling ideas. Likewise, the
quantitative tests consider the ability of the models to capture the
complete constellation of results in the data, not solely the single

qualitative contrast that was the focus of the design. Thus, if the
exemplar-RW model captures only the single qualitative contrast
involving the deterministic and probabilistic pairs but fails badly to
fit other aspects of the data, this would cast doubt on the model as
well.

Recall that each model had six free parameters.3 Each individual
subject’s data set had 24 freely varying data entries, 12 choice
probabilities, and 12 mean RTs. We fitted the three models to the
individual-subject choice probability and mean RT data by search-
ing for the values of the free parameters that minimized a weighted
sum-of-squared-deviations (WSSD) statistic. Each squared devia-
tion (between predicted and observed data values) was weighted
by the inverse of the squared standard error of that data value.4

Thus, highly variable data values contribute less to the WSSD than
do less variable data values. An important advantage of using the
WSSD statistic is that it basically places the choice probability and
RT data on the same scale, with both contributing roughly equally
to the overall goodness-of-fit evaluation. Although an improved fit
statistic might involve the use of a maximum-likelihood criterion,
we found the derivation of a joint likelihood statistic for the choice
probability and RT data to be intractable. Finally, to guard against
local minima, we used multiple starting configurations in the
parameter searches. The predicted choice probabilities and mean
RTs for each color and each individual subject are reported along
with the observed data in Appendixes C and D.

The WSSD results from the three models are reported for each
individual subject in Table 3. We compared the fits of the
exemplar-RW and decision-boundary models by using a 2 � 2
ANOVA with condition (4/8 vs. 5/9) as a between-subjects factor
and model as a within-subject factor. Although the mean fit value
for the exemplar-RW model (174.9) was better than that for the

3 For all three models, the lower limit of the mean residual-time param-
eter � was set at 100 ms. Following previous work, for the exemplar-RW
and prototype-RW models, the decision criteria �A and �B were allowed
to be real-valued in application of the analytic prediction equations. With
regard to predicting choice probabilities and mean RTs, this procedure
provides a close approximation to assuming that there is a probabilistic
mixture of integer-valued decision-criterion settings across trials.

4 To implement the WSSD statistic, observed choice probabilities equal
to 0 were set equal to 1⁄2N instead, where N is the number of observations
on which the choice probability is based. Likewise, observed choice
probabilities equal to 1 were set equal to (2N � 1)/2N instead. Otherwise,
the inverse of the squared standard error would be equal to infinity and the
WSSD statistic undefined.

Table 1
Proportions of Correct Classifications for the Main Stimulus
Types in Each Condition of Experiment 1

Stimulus type

Condition

Average4/8 5/9

Prob .850 .859 .855
Det .907 .876 .892
Edge .854 .854 .854
Far .983 .969 .976

Note. Prob � probabilistic critical pair; Det � deterministic critical pair;
Edge � edge stimuli; Far � far stimuli.

Table 2
Mean Response Times (in Milliseconds) for the Main Stimulus
Types in Each Condition of Experiment 1

Stimulus type

Condition

Average4/8 5/9

Prob 616.6 619.5 618.1
Det 582.8 622.4 602.6
Edge 620.8 642.4 631.6
Far 525.5 538.1 531.8

Note. Prob � probabilistic critical pair; Det � deterministic critical pair;
Edge � edge stimuli; Far � far stimuli.
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decision-boundary model (212.1), this difference was not statisti-
cally significant, F(1, 14) � 2.27, MSE � 4,882.1, p � .154. The
Condition � Model interaction also failed to reach statistical
significance, F(1, 14) � 2.18, MSE � 10,658.0, p � .162. The
trend, however, was that the exemplar-RW model had an advan-
tage in fitting the Condition 4/8 data, whereas the decision-
boundary model fitted the Condition 5/9 data somewhat better. As
we show below, the main reason for this pattern is that the
exemplar-RW model predicts a performance advantage for the
deterministic critical pairs over the probabilistic critical pairs. This
predicted advantage was observed in Condition 4/8, but there was
little difference between the two types of pairs in Condition 5/9.
The reason, as noted above, is that beyond the effect of the
probabilistic feedback assignments, there was also a stimulus-
specific effect in which Pair 5/9 was processed more efficiently
overall than was Pair 4/8. Again, this result seems reasonable
given the results of our similarity-scaling experiment.5

Finally, as is also shown in Table 3, the exemplar-RW model
provided a far better fit to the individual-subject data (M � 305.9)
than did the prototype-RW model. A 2 � 2 ANOVA with condi-
tion and model as factors revealed a significant main effect of
model, F(1, 14) � 17.04, MSE � 8,061.6, p � .001. The Condi-
tion � Model interaction did not approach statistical significance.
The advantage in fit for the exemplar-RW model was observed for
14 of the 16 subjects.

To provide some sense of the reason for these fit differences, in
Table 4 we report collapsed predictions from the models for the
four main types of stimuli. (Although the models were fitted to the
individual-subject data, the aggregated predictions in the table
were obtained by averaging across the results from the individual
subjects.)

As can be seen in Table 4, the linear decision-boundary model
predicts nearly identical choice probabilities and mean RTs for the

probabilistic and deterministic critical pairs. By contrast, the ob-
served data show an overall advantage for the deterministic pairs.
Recall that if subjects adopted the optimal boundary illustrated in
Figure 4, the predicted choice probabilities and mean RTs would
be identical. By allowing the slope and y-intercept of the linear
boundary to be free parameters, the model can deviate slightly
from this strong prediction, but the amount of adjustment is insuf-
ficient to account for the observed data. The prototype-RW model
has the same limitation as does the linear decision-boundary model
with respect to the critical pairs. It predicts essentially identical
choice probabilities and mean RTs for the probabilistic and deter-
ministic critical pairs, thereby failing to account for the observed
differences in the data. In addition, the prototype-RW model
predicts a performance advantage for the deterministic critical
pairs over the edge stimuli that is much too large, especially in the
choice probability data. The reason that the prototype-RW model
predicts this advantage is that the critical-pair stimuli lie much
closer to their category prototypes than do the edge stimuli.

The exemplar-RW model comes closer overall to predicting the
main trends in the data than do the alternative models. First, it
predicts well the magnitude of the accuracy advantage for the
deterministic pairs over the probabilistic pairs. Second, it makes
the correct qualitative prediction of an RT advantage for the
deterministic pairs over the probabilistic pairs, although it overes-

5 We had hoped that when used in combination with the derived MDS
solution for the colors, the exemplar-RW model could capture this joint
influence of the probabilistic feedback and differing stimulus-pair discrim-
inabilities. However, as noted earlier, all models yielded better fits to the
data when used in combination with the Munsell scaling rather than with
the MDS solution derived from the similarity ratings. Our interpretation is
that the overall MDS solution is too noisy, relative to the Munsell scaling
solution, to yield improved quantitative fits to the complete sets of choice
probability and mean RT data.

Table 4
Collapsed Predictions From the Formal Models of the Main
Trends in the Mean Accuracy and Response Time Data in
Experiment 1

Stimulus
type Obs.

Model

Exemplar-RW
Decision

bound Prototype-RW

Mean proportions correct

Prob .855 .868 .884 .931
Det .892 .913 .881 .928
Edge .854 .865 .877 .808
Far .976 .984 .998 .984

Mean response times (ms)

Prob 618.1 618.2 606.7 584.2
Det 602.6 592.1 607.7 584.0
Edge 631.6 614.8 609.6 633.7
Far 531.8 528.7 527.9 534.6

Note. Obs. � observed data; Exemplar-RW � exemplar-based random-
walk model; decision bound � linear decision-boundary model; Prototype-
RW � prototype-based random-walk model; Prob � probabilistic critical
stimuli; Det � deterministic critical stimuli; Edge � edge stimuli; Far �
far stimuli.

Table 3
Summary Weighted Sum-of-Squared-Deviations Fits of Each
Model to the Individual-Subject Data From Experiment 1

Subject

Model

Exemplar-RW Decision bound Prototype-RW

1 34.8 34.9 180.8
2 277.4 363.0 250.9
3 92.0 95.4 157.9
4 122.0 285.1 570.7
5 78.6 87.9 291.2
6 490.9 839.9 551.1
7 202.3 175.0 226.4
8 128.4 134.8 233.1
9 264.9 324.2 370.5

10 171.5 216.7 147.8
11 166.5 160.1 411.1
12 150.3 239.3 186.4
13 143.5 79.5 406.9
14 112.1 84.3 271.3
15 95.0 73.9 174.1
16 268.2 199.6 464.5

M 174.9 212.1 305.9

Note. Subjects 1–8 participated in Condition 4/8; Subjects 9–16 partic-
ipated in Condition 5/9. Exemplar-RW � exemplar-based random-walk
model; Decision bound � linear decision-boundary model; Prototype-
RW � prototype-based random-walk model.
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timates the magnitude of the observed difference. (We pursue the
latter issue in Experiment 2.) Third, the exemplar-RW model
predicts well the magnitude of the performance advantage for the
deterministic critical pairs over the edge stimuli. The reason for
this prediction is that the deterministic critical pairs are centrally
located in the similarity space, and they are presented with higher
absolute frequency than the edge stimuli. Thus, the deterministic
critical pairs give rise to somewhat higher summed-activation
values than do the edge stimuli, and this accounts for their pre-
dicted performance advantage. The exemplar-RW model also
yields good quantitative predictions of the accuracy and mean RT
associated with the far stimuli.

Discussion

The first main result of importance is that subjects classified the
deterministic critical pairs with higher accuracy than they did the
probabilistic critical pairs. This result is in accord with the predic-
tions from the exemplar-RW model, and it challenges the predic-
tions from the linear decision-boundary and prototype-RW mod-
els. The mean RTs for the deterministic critical pairs were also
shorter than those for the probabilistic critical pairs, although this
result did not reach conventional levels of statistical significance.
Taken together, however, the choice probability and RT data favor
the predictions from the exemplar-retrieval model. Likewise, the
quantitative model-fitting results support the predictions of the
exemplar-RW model over those of the linear decision-boundary
and prototype-RW models. However, the fit differences between
the linear decision-boundary and exemplar-RW models again did
not reach conventional levels of statistical significance. The main
reason seems to be that the magnitude of the RT difference
between the probabilistic and deterministic pairs was not as large
as that predicted by the exemplar-RW model. Because the initial
motivation of our research was to investigate an effect of the
probabilistic exemplar assignments on classification RTs, and be-
cause the RT results from Experiment 1 were marginal, we decided
to pursue this issue further in Experiment 2.

Experiment 2

The main purpose of Experiment 2 was to test further whether
probabilistic assignments of exemplars to categories might indeed
affect the time course of classification decision making. The key
idea in the experiment was to induce subjects to place greater
emphasis on accuracy than they had in Experiment 1 while main-
taining the general context of a speeded classification situation.
There are a couple of ways in which an increased emphasis on
accuracy might affect the random-walk decision process. First, it
might lead subjects to use stricter decision criteria (i.e., to increase
the magnitude of the criteria �A and �B in the random walk).
According to the exemplar-RW model, if the decision criteria are
moved outward, it should take a greater number of steps, on
average, to complete the random walk. Thus, according to theory,
any true differences in classification RTs among the stimulus types
would be magnified relative to what was observed in Experiment
1. A second possibility is that subjects would work harder to
extract more fine-grained perceptual information from the stimulus
displays (which would be reflected in an increase of the value of
the overall sensitivity parameter c). Presumably, this increased
processing effort would be reflected in an increase in the time

required to take each individual step in the random walk. Again,
according to theory, any true differences in classification RTs
between the different stimulus types would thereby be magnified.

A possible drawback of inducing longer RTs is that there might
be more noise in the observed RT data. In addition, the accuracy
data might approach a ceiling, thereby removing an important
source of information for distinguishing among the models. Nev-
ertheless, because the motivating theme of our initial investigation
had focused on classification RTs, the idea seemed like a reason-
able one to pursue.

In Experiment 1, our instructions placed emphasis on both speed
and accuracy. In Experiment 2, to give greater emphasis to accu-
racy and to possibly magnify RT differences, we paid subjects
monetary bonuses for making correct responses. However, to
maintain the general context of a speeded classification situation,
each trial had an RT deadline of 5 s. Failure to meet the deadline
was counted as an incorrect response in calculating the bonus. Our
intent was to choose a deadline sufficiently long that no real time
pressure was exerted, yet the general context of a speeded classi-
fication situation was maintained. In all respects except for the
instructions, Experiment 2 was the same as Experiment 1.

Method

Subjects. There were 10 new subjects recruited from the Indiana Uni-
versity Bloomington community. Half participated in Condition 4/8, and
the other half participated in Condition 5/9. Each subject received $8 per
1-hr session, plus monetary bonuses for good performance (described
below). All subjects had normal or corrected-to-normal vision, and all
claimed to have normal color vision. None of the subjects was aware of the
issues under investigation in the experiment.

Stimuli. The stimuli were the same as in Experiment 1.
Procedure. All aspects of the procedure were the same as in Experi-

ment 1 except for the instructions regarding the monetary bonuses. Sub-
jects were informed that each time they made a correct response, $0.01
would be added to their monetary bonus, whereas incorrect responses
would lead to $0.01 reductions. In addition, failure to meet a 5-s RT
deadline would also result in a $0.01 reduction in the bonus, regardless of
whether the response was correct. The accumulated bonus on each trial was
displayed on the bottom of the computer screen during the period in which
feedback was provided.

Results

As was the case in Experiment 1, the first day of classification
testing was considered practice, and these data were not included
in the analyses. Also, any RT, as well as its associated response,
that was shorter than 100 ms or was more than 3 standard devia-
tions above or below the mean for that item type was omitted from
further analyses. This procedure led to the omission of less than
2% of the experimental trials.

As a manipulation check on the instructions, we examined the
mean accuracy and RT data and compared them with the results
observed in Experiment 1. Averaged across all stimuli, and using
subjects as the unit of analysis, mean accuracy was significantly
higher in Experiment 2 (.951) than in Experiment 1 (.901), t(24) �
3.02, p � .01. In addition, mean RTs were significantly longer in
Experiment 2 (712.8 ms) than in Experiment 1 (591.2 ms), t(24) �
2.36, p � .05. Thus, our modified instructions had the desired
general effect of increasing accuracy and slowing down overall
response speed.
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The individual-subject data from Experiment 2 are reported in
Appendixes E and F. The overall trends are reported in Tables 5
and 6 for the accuracy and mean RT data, respectively. The
patterns of the data are identical to those observed in Experiment
1. The main difference is that the magnitude of the RT differences
between the critical stimulus types is greater than it was in Exper-
iment 1.

As can be seen in Table 5, mean accuracy was once again
greater for the deterministic critical pairs (.948) than it was for the
probabilistic critical pairs (.891). There was also a stimulus-
specific effect in which overall accuracy for Pair 5/9 (M � .945)
was greater than overall accuracy for Pair 4/8 (M � .894). We
conducted a 2 � 2 ANOVA using condition (4/8 vs. 5/9) and type
of feedback (probabilistic vs. deterministic) as factors. The anal-
ysis revealed a main effect of feedback, F(1, 8) � 19.10, MSE �
0.001, p � .002, reflecting the superiority of the deterministic pairs
over the probabilistic pairs, and a significant Condition � Feed-
back interaction, F(1, 8) � 15.30, MSE � 0.001, p � .004,
reflecting the stimulus-specific advantage of Pair 5/9 over Pair 4/8.
There was no main effect of condition, F(1, 8) � 1.14, MSE �
0.003, p � .317.

We also conducted a 2 � 2 ANOVA of the mean RT data. The
most important result, shown in Table 6, was that mean RT was
significantly shorter for the deterministic critical pairs (731.2 ms)
than it was for the probabilistic critical pairs (799.7 ms), F(1, 8) �
7.49, MSE � 3,136.5, p � .026. The analysis also revealed a
significant Condition � Feedback interaction, F(1, 8) � 8.71,
MSE � 3,136.5, p � .018, reflecting the stimulus-specific RT
advantage of Pair 5/9 over Pair 4/8. There was no main effect of
condition, F(1, 8) � 0.60, MSE � 40,342.7, p � .46. The effects
of the probabilistic exemplar assignments on both the accuracy and
RT data are in strong agreement with the qualitative predictions
from the exemplar-RW model.

As was the case in Experiment 1, mean accuracy for the far
stimuli (.995) was significantly greater than that for the determin-
istic critical pairs, t(9) � 6.27, p � .001; and mean RT for the far
stimuli (624.6 ms) was significantly shorter than that for the
deterministic critical pairs, t(9) � 8.72, p � .001. Thus, a strong
distance-from-boundary effect was again clearly present in the
data. Although the edge stimuli had slightly lower accuracies (M �
.942) and longer RTs (M � 748.4 ms) than did the deterministic
critical pairs, these differences were not statistically significant for
the accuracy, t(9) � 0.68, p 	 .10, or the RT data, t(9) � 0.83, p 	
.10.

Further analysis revealed that the same patterns of accuracy and
RT data held across both Sessions 2 and 3 and Sessions 4 and 5 of

testing. Thus, although an ideal observer would respond more
accurately and more rapidly by ignoring the probabilistic feedback,
the manipulation continued to exert an influence, even after 5 days
of testing.

Theoretical Analysis

Fits of models. We fitted the models to the individual-subject
classification data in Experiment 2 by using the same procedure as
in Experiment 1. The individual-subject predictions are reported
along with the observed data in Appendixes E and F.

In Table 7, we report the individual-subject fit values achieved
by each of the models. The exemplar-RW model again provided
the best overall fit to the individual-subject data. Furthermore, a
2 � 2 ANOVA revealed that the mean WSSD yielded by the
exemplar-RW model (205.7) was significantly smaller than the
one yielded by the decision-boundary model (270.7), F(1, 8) �
8.25, MSE � 2,558.4, p � .021. The Condition � Model interac-
tion was also significant, F(1, 8) � 14.12, MSE � 2,558.4, p �
.006. The interaction reflects the stimulus-specific effect involving
Pairs 4/8 and 5/9: The fit of the exemplar-RW model was sub-
stantially better than that of the decision-boundary model in Con-
dition 4/8, whereas it fared slightly worse in Condition 5/9. Over-
all, the exemplar-RW model yielded a better fit than did the
decision-boundary model for 7 of the 10 subjects.

The exemplar-RW model provided substantially better fits to the
individual-subject data than did the prototype-RW model (M �
520.1), F(1, 8) � 70.17, MSE � 7,042.4, p � .001. In this case, the
Condition � Model interaction did not approach statistical signif-
icance. Indeed, the exemplar-RW model outperformed the
prototype-RW model for all 10 subjects.

To provide some sense of the reason for these model-fit results,
in Table 8 we report the collapsed predictions from the models for
the four main stimulus types. The patterns of predictions are the
same as those seen in Experiment 1. Both the linear decision-
boundary model and the prototype-RW model predict virtually
identical accuracies and mean RTs for the probabilistic and deter-
ministic critical pairs. By contrast, the exemplar-RW model cor-
rectly predicts the performance advantage, in both accuracy and
mean RT, observed for the deterministic pairs. It does a good job
of predicting performance for the edge and far stimuli as well.

Distributional analyses of extended decision-boundary hypoth-
eses. In this section, we consider various extended versions of
the decision-boundary model that might allow this approach to
account for the effect of the probabilistic exemplar assignments.

Table 5
Proportions of Correct Classifications for the Main Stimulus
Types in Each Condition of Experiment 2

Stimulus type

Condition

Average4/8 5/9

Prob .852 .929 .891
Det .961 .935 .948
Edge .935 .949 .942
Far .995 .995 .995

Note. Prob � probabilistic critical pair; Det � deterministic critical pair;
Edge � edge stimuli; Far � far stimuli.

Table 6
Mean Response Times (in Milliseconds) for the Main Stimulus
Types in Each Condition of Experiment 2

Stimulus type

Condition

Average4/8 5/9

Prob 801.9 797.6 799.7
Det 659.4 803.0 731.2
Edge 716.3 780.5 748.4
Far 583.6 665.7 624.6

Note. Prob � probabilistic critical pair; Det � deterministic critical pair;
Edge � edge stimuli; Far � far stimuli.
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One possibility is that the probabilistic exemplar assignments
might give rise to uncertainty effects in subjects’ perceptions of the
stimuli.6 In past work, Ashby and Maddox (1994) proposed to
model uncertainty effects in terms of increased variances of the
perceptual distributions associated with each stimulus. Suppose
that the perceptual distributions associated with the probabilistic
pairs had greater variances than those associated with the deter-
ministic pairs. One consequence is that there would be reduced
accuracy for the probabilistic pairs, because a greater proportion of
their perceptual distributions would overflow into the incorrect
category-response region. A second consequence is that mean RT
would be lengthened for the probabilistic pairs. The reason is that
compared with the deterministic pairs, a greater proportion of the
percepts associated with the probabilistic pairs would lie close to
the decision boundary. It is critical to note that the increase in
variance would also result in an increased proportion of the per-
cepts being located farther from the boundary. However, because
RT is an exponentially decreasing function of distance from the
boundary, mean RT would still tend to be longer when averaged
across all percepts.

This increased-variance hypothesis makes another strong pre-
diction, however. Specifically, because some of the percepts are
even farther from the boundary, the very shortest RTs associated
with the probabilistic pairs should be shorter than the very shortest
RTs associated with the deterministic pairs (for a similar argument
in a related context, see Nosofsky & Palmeri, 1997a, pp. 1032–
1033). Thus, the uncertainty hypothesis can be tested by conduct-
ing analyses on the fine-grained RT distribution data. We consid-
ered all subjects who did indeed display longer mean RTs for the
probabilistic pairs than for the deterministic pairs. (We focused on
only these subjects because the goal was to test the perceptual-
variance explanation of slowed responding on the probabilistic
pairs.) We then extracted only the shortest 5% of the RTs from the
complete RT distributions associated with these stimuli. In Exper-
iment 1, among those subjects who were slower overall on the
probabilistic pairs, the mean of the shortest 5% of RTs was 378.6
ms for the probabilistic pairs and 368.5 ms for the deterministic
pairs. In Experiment 2, the means were 455.5 ms and 450.7 ms,

respectively. This pattern is in the opposite direction of what is
predicted by the uncertainty hypothesis. Furthermore, across both
experiments, there were only 2 subjects for whom the shortest RTs
associated with the probabilistic pairs were shorter than those
associated with the deterministic pairs, and the differences here
were small. Therefore, the distributional analysis provides little
support for the idea that the effects of the probabilistic assignments
can be explained in terms of increased perceptual variance.

Another possibility that we considered is that the location of the
decision boundary might be altered systematically because of the
probabilistic exemplar assignments. For example, because of the
inconsistent feedback, perhaps a decision boundary would be
developed with a suboptimal slope such that it was located midway
between the deterministic stimuli but very close to one of the
probabilistic stimuli (and so, very far from the other probabilistic
stimulus). Once again, however, such a model predicts that the
very shortest RTs would be associated with the probabilistic stim-
uli, not the deterministic ones, and our distributional analysis
provides no evidence in favor of this prediction. In addition, our
quantitative model-fitting analysis allowed the slope and the
y-intercept of the linear boundary to be free parameters, but the
model tended to fare worse than did the exemplar-RW model in
fitting the individual-subject data.

6 In past work (Ashby & Maddox, 1994), uncertainty effects in the
perceptual representation were theorized to occur because of the probabil-
ity with which individual stimuli were presented. It is unclear whether such
uncertainty effects in perception would also be expected to occur on the
basis of response feedback that is received. Nevertheless, we make allow-
ance for this possibility in considering the predictions from decision-
boundary theory.

Table 7
Weighted Sum-of-Squared-Deviations Fits of Each Model to the
Individual-Subject Data From Experiment 2

Subject

Model

Exemplar-RW Decision bound Prototype-RW

1 154.6 381.8 676.0
2 165.3 322.3 554.9
3 91.2 140.0 462.6
4 133.9 219.2 349.1
5 167.1 398.7 450.0
6 81.9 92.6 188.4
7 327.0 270.4 760.8
8 401.0 468.2 619.6
9 341.2 262.6 626.9

10 194.0 151.2 512.7
M 205.7 270.7 520.1

Note. Subjects 1–5 participated in Condition 4/8; Subjects 6–10 partic-
ipated in Condition 5/9. Exemplar-RW � exemplar-based random-walk
model; Decision bound � linear decision-boundary model; Prototype-
RW � prototype-based random-walk model.

Table 8
Collapsed Predictions From the Formal Models of the Main
Trends in the Mean Accuracy and Response Time Data in
Experiment 2

Stimulus
type Obs.

Model

Exemplar-RW
Decision

bound Prototype-RW

Mean proportions correct

Prob .891 .926 .952 .986
Det .948 .975 .956 .986
Edge .942 .958 .952 .928
Far .994 .996 1.000 .998

Mean response times (ms)

Prob 799.7 786.1 740.4 693.8
Det 731.2 711.1 740.0 693.6
Edge 748.4 742.4 740.9 771.9
Far 624.7 623.3 620.6 640.7

Note. Obs. � observed data; Exemplar-RW � exemplar-based random-
walk model; decision bound � linear decision-boundary model; Prototype-
RW � prototype-based random-walk model; Prob � probabilistic critical
stimuli; Det � deterministic critical stimuli; Edge � edge stimuli; Far �
far stimuli.
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General Discussion

Three of the major approaches to modeling the nature of cate-
gory representation and decision processes in perceptual classifi-
cation are exemplar-retrieval, prototype, and decision-boundary
models. In our view, there is already much evidence that severely
challenges the predictions from prototype models (e.g., Ashby &
Maddox, 1992; Medin & Schaffer, 1978; Nosofsky, 1987; Nosof-
sky & Zaki, 2002), and the present results add to that body of
evidence. By contrast, despite their vast conceptual differences,
exemplar and decision-boundary models make surprisingly similar
predictions in a wide variety of paradigms. We focus this General
Discussion, therefore, on a review of recent comparisons between
decision-boundary and exemplar-retrieval models. In particular, in
our view, evidence is beginning to mount that challenges strong
versions of decision-boundary theory as well. The results from the
current experiments provide important converging evidence along
these lines.

Exemplar-Retrieval and Decision-Boundary Models

One source of evidence involves classification performance in
situations that test complex category structures. Strong versions of
decision-boundary theory posit that people use either linear or
quadratic boundaries for partitioning a perceptual space into re-
sponse regions. The main motivation for this hypothesis is the
assumption that numerous categories in the natural world are
multivariate normally distributed. It is well known that the optimal
boundary for partitioning two multivariate normal categories is
always linear or quadratic in form (see Ashby & Gott, 1988). It is
linear when the two categories have the same variance–covariance
structure (i.e., when the two category distributions have the same
size and shape); otherwise, the optimal boundary is quadratic.
Because a central assumption in early versions of the theory was
that people will adopt decision boundaries with an optimal form,
and that the category-learning system assumes normal distribu-
tions, most early work focused on tests of linear and quadratic
decision-boundary models. Indeed, such models fared very well in
situations in which subjects in fact learned to classify members of
bivariate normal category distributions (Ashby & Maddox, 1992;
Maddox & Ashby, 1993).

Two studies, however, provided important challenges to this
strong version of decision-boundary theory. First, McKinley and
Nosofsky (1995) tested subjects in designs in which the category
structures were based on mixtures of normal distributions. In these
designs, the optimal boundary for partitioning the space into re-
sponse regions was highly nonquadratic; instead, it was more
complex in form (see McKinley & Nosofsky, 1995, Figure 3).
Furthermore, according to exemplar models, subjects should learn
to classify stimuli in rough accordance with the use of these
complex boundaries. McKinley and Nosofsky’s experiments pro-
vided clear evidence that the vast majority of subjects performed in
the manner predicted by the exemplar model and not according to
the predictions of the linear or quadratic decision-boundary
models.

Likewise, Ashby and Waldron (1999) tested subjects in designs
involving category structures that used transformed normal distri-
butions. In one experiment, if subjects assumed normal distribu-
tions, then the adopted decision boundary would be linear in form;
however, the optimal boundary for partitioning the transformed

categories was quadratic. In a second experiment, if subjects
assumed normal distributions, the adopted decision boundary
would be quadratic in form; by contrast, the optimal boundary for
partitioning the transformed categories was linear. Ashby and
Waldron obtained overwhelming evidence that subjects behaved
as if they were using the optimal boundary for the transformed
distributions (i.e., they were not assuming normal distributions
when classifying the objects).

The results from McKinley and Nosofsky (1995) and Ashby and
Waldron (1999) thereby provided strong challenges to versions of
decision-boundary theory based on the assumption of normal
distributions. They did not, however, rule out the more general
idea that complex decision boundaries could be learned “online”
and be approximately optimal for each individual category struc-
ture tested. Therefore, it was important to seek alternative sources
of evidence for contrasting exemplar-retrieval and decision-
boundary models.

As noted in the introduction, one approach was to contrast the
models’ predictions in speeded classification situations in which
the absolute frequency of individual exemplars was manipulated
(Nosofsky & Palmeri, 1997b, Experiment 2; Verguts et al., 2003).
A key feature of these designs was that the distance of the objects
from the optimal decision boundary was not affected by these
absolute-frequency manipulations. The general result from these
studies was that exemplars presented with high frequency were
classified more rapidly than were low-frequency exemplars, in
accordance with the predictions from exemplar-retrieval models.
Again, such results pose a challenge to versions of decision-
boundary theory that assume that RT is based solely on the
distance of an object from the category boundary. Nevertheless, it
is possible to attribute such familiarity effects to psychological
factors not associated with classification decision making (e.g.,
encoding or surprise effects).

Another recent study that has provided a challenge to decision-
boundary theory is the set of experiments reported by Rouder and
Ratcliff (2004). As described above, in various designs, Rouder
and Ratcliff tested subjects on unidimensional category structures
in which individual exemplars were assigned probabilistically to
the alternative categories. In general, the designs pitted distance-
from-boundary and stimulus probability against one another such
that stimuli farther from the boundary sometimes received target-
category feedback with low probability. As a result, the designs
placed severe constraints on the predictions from the competing
models: The decision-boundary models predicted increasing cate-
gorization probabilities as a function of distance-from-the-
boundary, whereas the exemplar model tended to predict that
categorization responses would track the feedback probabilities.
The general pattern of results from Rouder and Ratcliff’s experi-
ments was that in situations in which highly confusable stimuli
were used, performance was more in accord with the predictions
from decision-boundary theory than those from exemplar-retrieval
theory. However, in situations involving more discriminable stim-
uli, the results were more in accord with the predictions from the
exemplar model.

The key manipulation in our present experiments was similar in
theme to the one used by Rouder and Ratcliff (2004), but it
differed in important respects as well. The idea in our experiments
was to manipulate stimulus probability as an experimental factor
while holding the variable of distance-from-boundary constant. As
a result, we achieved a fundamental qualitative contrast between
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the predictions from the models that was not present in Rouder and
Ratcliff’s designs. The results of our experiments converge
strongly with the evidence from Rouder and Ratcliff by demon-
strating that at least in situations involving fairly discriminable
stimuli, exemplar-retrieval models provide a better account of
perceptual classification performance than do decision-boundary
models. In particular, probabilistic feedback assignments exert a
strong influence on classification performance that is in accord
with the predictions from exemplar-retrieval models but that is not
predicted by decision-boundary models. Furthermore, our results
generalize Rouder and Ratcliff’s findings by showing that proba-
bilistic feedback exerts an influence in multidimensional classifi-
cation domains instead of only in unidimensional ones. Finally,
our results show a systematic effect of the probabilistic feedback
assignments on the time course of classification decision making,
not solely on choice probabilities. This approach is important
because RTs often provide a window into psychological process-
ing that is not available from consideration of choice probabilities
alone.

In our view, this systematic evidence that probabilistic exemplar
assignments exert a powerful influence on classification behavior
is highly intriguing. In particular, the evidence points to a stubborn
form of suboptimality in human performance. Given the nature of
our design, subjects would have performed optimally by simply
ignoring the probabilistic feedback and classifying each object into
the category that received its given feedback on the majority of
trials. Indeed, such a strategy could have been implemented by
forming an exceedingly simple linear boundary through the per-
ceptual space and classifying objects in accordance with the use of
this boundary. Nevertheless, despite being provided with monetary
payoffs for correct responses, and even after 5 days of experience
with the task, subjects’ behavior departed systematically from such
an optimal strategy in a manner that was well predicted by the
exemplar-retrieval model.

Limitations and Future Research Directions

An important limitation of the present experiments (and those of
Rouder & Ratcliff, 2004) is that in all cases, a relatively small
number of exemplars defined each of the categories. The main
reason for the use of a small number of exemplars was that these
studies had the ambitious goal of quantitatively modeling perfor-
mance at the individual-stimulus level, and adequate sample sizes
are needed to achieve such tests. It is important to point out that
decision-boundary theorists have often conducted and/or modeled
classification experiments with the same or even fewer numbers of
category exemplars (e.g., Ashby & Maddox, 1994; Maddox &
Ashby, 1993, pp. 60–67; Maddox & Ashby, 1996; Maddox,
Ashby, & Gottlob, 1998; Thomas, 1996) and have interpreted the
results within the framework of decision-boundary theory. Thus,
our experiments do not seem to go outside the scope for which this
theory was intended. Nevertheless, a reasonable concern is that
exemplar-retrieval processes may dominate in classification only
in situations in which category sizes are small. Therefore, a critical
next step in this research will be to examine the role of probabi-
listic exemplar assignments on speeded classification in situations
involving large-size category distributions.

Another aim of future research should be to test the models’ RT
predictions at a more fine-grained level. In the present work, we
chose to analyze and model the overall mean RTs for the individ-

ual stimuli as a function of experimental condition. In the present
paradigm, the models made strongly contrasting predictions of the
overall mean RTs, so this level of analysis was a reasonable one to
pursue. Nevertheless, more rigorous tests would also involve con-
sideration of the complete distribution of RTs as well as any
differences between correct and error RTs. In past work, the
exemplar-RW model has been shown to capture well the overall
form of speeded classification RT distributions (e.g., Nosofsky,
1997; Nosofsky & Palmeri, 1997a). It would be interesting, how-
ever, to test for effects of the probabilistic exemplar assignments
on this more detailed aspect of performance.

Still another avenue to pursue would involve a detailed consid-
eration of sequential effects in speeded classification data. Given
the natural assumption that more recently presented exemplars
have greater memory strengths than do exemplars presented in the
distant past, the exemplar model predicts interesting sequence
effects of probabilistic feedback. For example, the model predicts
that if a Category-A stimulus received Category-B feedback on its
most recent past presentation, on the current trial there should be
reduced accuracy and slowed responding for that stimulus. Indeed,
an analysis of the sequence effects in our data revealed precisely
this predicted pattern of results. For each individual subject, we
partitioned the data for the probabilistic stimuli according to
whether they received correct or incorrect feedback on their most
recently presented trial. In Experiment 1, for 15 of the 16 subjects,
responding was more accurate and faster when the probabilistic
stimuli had received correct rather than incorrect feedback on their
most recent presentation. In Experiment 2, all 10 of the subjects
displayed this pattern of results. It remains an open question
whether sequence-sensitive versions of the exemplar model can
account in quantitative detail for these effects. Such results pose an
interesting challenge to the decision-boundary and prototype mod-
els as well.

Finally, as noted in the introduction, some of the major recent
theories in the field of perceptual classification posit that multiple
cognitive systems underlie the representation of categories. For
example, according to Ashby et al.’s (1998) COVIS (competition
between verbal and implicit systems) model, there are separate
explicit (verbal, rule-based) and implicit (procedural) systems. The
implicit system dominates in situations in which no salient verbal
rule is available for classification, such as the present experiments.
As suggested by Ashby and Waldron (1999), a striatal pattern
classifier might underlie the implicit procedural-learning system.
The general idea in this neuropsychological model is that individ-
ual stimuli are represented in a perceptual space in high-level
visual areas. However, a low-resolution map of this perceptual
space is then represented among striatal units. The striatal units
learn to associate category labels with different regions of percep-
tual space.

In its current form, the striatal-classifier model of Ashby and
Waldron (1999) cannot be tested because a specific learning algo-
rithm has not been proposed. Nevertheless, the data reported in this
article should provide useful constraints for the further develop-
ment of this model. For example, the category structure tested in
this study could be learned by using a single striatal unit (or
prototype) for each category. Such a single-unit model is formally
equivalent to a linear decision-boundary model (Ashby & Wal-
dron, 1999, pp. 374–375). As already seen, however, such a model
would fail to account for the effects of the probabilistic exemplar
assignments observed in the present research. Accordingly, the
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resolution of the striatal map would need to be more finely grained.
It remains to be seen if some intermediate-resolution map—more
finely grained than a single-category prototype but coarser than
individual-exemplar representations—would provide important
benefits in accounting for the present speeded classification data.
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Appendix A

Random-Walk Version of the Linear Decision-Boundary Model

In this model, the perceptual representation and decision boundaries are
the same as in the standard version of decision-boundary theory. As is the
case in the exemplar-based random-walk (exemplar-RW) model, there is a
random-walk counter with initial value 0 and decision criteria set at �A
and �B. Assume that stimulus i is presented. On each step of the random
walk, a percept is sampled from the perceptual distribution associated with
stimulus i. If the percept falls in Region A of the space, then the random
walk takes a step in the direction of Boundary �A; otherwise, it takes a
step in the direction of Boundary �B. The perceptual-sampling process
continues until either Boundary �A or �B is reached. The probability that

a stimulus gives rise to a percept that falls in Region A, pi, is computed by
using the same method as assumed in the standard version of decision-
boundary theory. The prediction equations of choice probability and mean
RT are then the same as already described by Nosofsky and Palmeri
(1997b, Equations 14–21) for the exemplar-RW model, except with the
alternative definition of pi described above. The free parameters in this
random-walk version of the linear decision-boundary model are the slope
(m) and y-intercept (b) of the linear boundary, a perceptual variance
parameter �p

2, the decision criteria �A and �B, the residual time param-
eter �, and the time-scaling constant k.

Appendix B

Description of the Version of the Exemplar Model Used to Generate Figure 3

We start by reviewing the manner in which one version of the standard
generalized context model was applied by Rouder and Ratcliff (2004) to
their experimental paradigm. The distance between stimuli i and j is given
by dij � |i � j|. The similarity between i and j is an exponential function
of this distance, sij � exp(�c � dij), where c is the overall sensitivity
parameter. And the probability that stimulus i is classified in Category A
is given by P(A|i) � bA � SiA

�/[bA � SiA
� � (1 � bA) � SiB

�], where bA (0 �

bA � 1) is the response bias for Category A, � is the response-scaling
parameter, and SiA denotes the summed activation of stimulus i to the
Category-A exemplars. This summed activation is computed in the same
manner as described in the Overview of the Formal Models section of the
introduction.

The version of the exemplar model used to generate Figure 3 is the same
as that just described, except that assumptions are introduced about the role
of sensory and memory noise. Specifically, it is assumed that across trials,

each exemplar gives rise to a distribution of sensory effects. The stimulus-i
distribution is normally distributed with mean i and variance �s

2. Likewise,
the memory representation for exemplar i is also normally distributed with
mean i and variance �m

2. The summed activations are computed in the
same manner as for the standard model, except that instead of summing the
similarity of stimulus i to single-point exemplar representations, one sums
the similarity of the individual stimulus-i sensory effects to each entire
exemplar-based memory distribution. A predicted response probability is
obtained for each sensory effect to which stimulus i gives rise. The overall
predictions for stimulus i are found by integrating across the response
probabilities associated with the individual sensory effects (see Nosofsky,
1997, for an application of a similar version of such a model in the domain
of unidimensional absolute identification). The parameter values used to
generate Figure 3 were c � 4.459, bA � .700, � � 4.788, �s � 1.500, and
�m � .413.

(Appendixes follow)

625SPEEDED CLASSIFICATION



Appendix C

Observed and Predicted Category-A Choice Probabilities for Each Individual Subject and Each Stimulus in Experiment 1

Subject and model

Stimulus

1 2 3 4 5 6 7 8 9 10 11 12

Obs (1) .98 1.00 .92 .92 .94 .94 .12 .09 .10 .08 .01 .01
Exemplar-RW 1.00 1.00 .93 .93 .96 .94 .13 .13 .07 .11 .01 .01
Decision bound 1.00 1.00 .93 .93 .93 .93 .10 .10 .10 .09 .00 .00
Prototype-RW 1.00 1.00 .90 .98 .98 .89 .19 .05 .05 .18 .01 .01

Obs (2) .97 .98 .74 .74 .92 .74 .13 .14 .09 .20 .02 .03
Exemplar-RW .97 .98 .76 .83 .89 .86 .14 .14 .13 .22 .02 .02
Decision bound 1.00 1.00 .83 .86 .88 .90 .12 .14 .16 .18 .00 .00
Prototype-RW .97 .97 .70 .88 .90 .79 .20 .09 .12 .29 .02 .02

Obs (3) .95 .91 .93 .80 .76 .56 .24 .17 .10 .10 .03 .05
Exemplar-RW .96 .95 .86 .83 .79 .61 .32 .20 .09 .08 .03 .02
Decision bound 1.00 .99 .90 .83 .73 .62 .28 .18 .11 .06 .00 .00
Prototype-RW .95 .95 .82 .89 .79 .54 .40 .16 .08 .14 .03 .03

Obs (4) 1.00 1.00 .95 .87 .97 .97 .09 .12 .02 .07 .01 .00
Exemplar-RW 1.00 1.00 .95 .89 .97 .98 .04 .12 .04 .05 .01 .00
Decision bound 1.00 1.00 .97 .97 .97 .97 .05 .05 .05 .05 .00 .00
Prototype-RW 1.00 1.00 .95 1.00 1.00 .95 .12 .02 .02 .13 .00 .00

Obs (5) .99 .99 .98 .94 .95 .91 .17 .07 .05 .07 .00 .00
Exemplar-RW 1.00 1.00 .95 .93 .96 .91 .11 .09 .03 .03 .00 .00
Decision bound 1.00 1.00 .97 .96 .94 .91 .11 .08 .06 .04 .00 .00
Prototype-RW 1.00 1.00 .93 .99 .98 .83 .20 .03 .02 .08 .00 .00

Obs (6) 1.00 1.00 .93 .77 .97 .83 .16 .20 .04 .06 .00 .00
Exemplar-RW .99 1.00 .92 .91 .95 .92 .10 .10 .05 .06 .01 .00
Decision bound 1.00 1.00 .96 .95 .93 .92 .12 .10 .08 .06 .00 .00
Prototype-RW 1.00 1.00 .89 .97 .97 .83 .17 .03 .03 .11 .00 .00

Obs (7) .99 .98 .86 .91 .85 .85 .19 .27 .29 .61 .05 .07
Exemplar-RW .98 .99 .81 .88 .92 .91 .27 .26 .26 .38 .08 .08
Decision bound 1.00 1.00 .83 .87 .90 .92 .25 .30 .35 .41 .02 .02
Prototype-RW .98 .98 .77 .91 .93 .85 .33 .20 .25 .44 .09 .09

Obs (8) 1.00 .98 .90 .77 .91 .80 .13 .06 .07 .06 .00 .00
Exemplar-RW .99 .99 .87 .88 .92 .86 .11 .09 .05 .07 .01 .00
Decision bound 1.00 1.00 .88 .87 .86 .85 .08 .07 .07 .06 .00 .00
Prototype-RW .99 .99 .83 .94 .93 .76 .19 .05 .04 .12 .00 .00

Obs (9) .96 .88 .97 .88 .71 .83 .44 .16 .07 .31 .02 .05
Exemplar-RW .99 .98 .96 .93 .79 .71 .34 .16 .15 .08 .03 .02
Decision bound 1.00 1.00 .95 .91 .84 .74 .32 .21 .12 .06 .00 .00
Prototype-RW .99 .99 .91 .96 .91 .69 .46 .18 .10 .18 .04 .03

Obs (10) .90 .83 .69 .79 .81 .78 .25 .29 .14 .25 .03 .05
Exemplar-RW .95 .95 .77 .83 .80 .77 .25 .19 .23 .28 .06 .06
Decision bound .99 .99 .78 .78 .79 .79 .24 .24 .25 .25 .01 .02
Prototype-RW .94 .94 .71 .84 .84 .72 .32 .18 .19 .32 .07 .07

Obs (11) .98 .97 .90 .94 .70 .94 .13 .15 .16 .07 .01 .02
Exemplar-RW .99 .98 .92 .92 .82 .87 .13 .09 .18 .11 .02 .02
Decision bound 1.00 1.00 .92 .91 .90 .88 .16 .14 .12 .11 .00 .00
Prototype-RW .99 .99 .85 .96 .95 .83 .20 .06 .06 .18 .01 .01

Obs (12) .97 .97 .85 .92 .86 .93 .15 .08 .11 .31 .01 .03
Exemplar-RW .99 .99 .86 .92 .89 .89 .12 .09 .14 .18 .01 .02
Decision bound 1.00 1.00 .87 .89 .91 .93 .10 .11 .14 .16 .00 .00
Prototype-RW .99 .99 .78 .93 .95 .86 .19 .07 .10 .27 .02 .02

Obs (13) 1.00 1.00 .98 .98 .98 .93 .04 .04 .07 .01 .00 .00
Exemplar-RW 1.00 1.00 .99 1.00 .98 .98 .04 .02 .03 .04 .00 .00
Decision bound 1.00 1.00 .99 .99 .98 .98 .04 .04 .04 .03 .00 .00
Prototype-RW 1.00 1.00 .99 1.00 1.00 .97 .06 .00 .00 .04 .00 .00

Obs (14) .99 .98 .95 .96 .94 .85 .20 .14 .16 .04 .02 .01
Exemplar-RW 1.00 1.00 .98 .98 .91 .85 .24 .10 .11 .07 .01 .01
Decision bound 1.00 1.00 .97 .95 .92 .88 .22 .15 .10 .06 .00 .00
Prototype-RW 1.00 1.00 .94 .98 .96 .76 .32 .07 .04 .10 .01 .01

Obs (15) 1.00 .98 .92 .95 .92 .85 .19 .18 .15 .11 .03 .01
Exemplar-RW .99 .99 .93 .95 .89 .81 .22 .11 .11 .11 .01 .01
Decision bound 1.00 1.00 .96 .93 .90 .85 .22 .16 .11 .07 .00 .00
Prototype-RW .99 .99 .88 .96 .93 .75 .29 .09 .06 .15 .01 .01

Obs (16) .99 .94 .94 .88 .88 .80 .11 .24 .19 .17 .00 .04
Exemplar-RW .99 .98 .88 .91 .86 .86 .13 .10 .16 .15 .02 .02
Decision bound 1.00 1.00 .88 .88 .88 .88 .18 .18 .17 .17 .00 .00
Prototype-RW .99 .99 .82 .93 .92 .77 .24 .08 .07 .19 .01 .01

Note. Subjects 1–8 participated in Condition 4/8; Subjects 9–16 participated in Condition 5/9. Obs (n) � observed data for Subject n, Exemplar-RW �
exemplar-based random-walk model, Decision bound � linear decision-boundary model, Prototype-RW � prototype-based random-walk model.
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Appendix D

Observed and Predicted Mean Response Times (in Milliseconds) for Each Individual Subject and Each Stimulus in Experiment 1

Subject and model

Stimulus

1 2 3 4 5 6 7 8 9 10 11 12

Obs (1) 336 336 362 369 364 364 380 384 380 376 351 352
Exemplar-RW 339 337 372 372 361 368 383 383 372 379 348 346
Decision bound 340 340 365 365 366 366 382 381 380 379 340 340
Prototype-RW 342 342 375 355 356 376 387 370 369 386 355 355

Obs (2) 425 433 474 480 449 549 475 463 481 545 423 431
Exemplar-RW 430 425 496 484 468 476 477 475 473 492 425 426
Decision bound 428 428 492 476 464 455 461 472 486 505 428 428
Prototype-RW 429 428 508 475 466 495 493 463 472 506 426 426

Obs (3) 576 618 611 625 667 685 645 664 651 662 560 586
Exemplar-RW 596 602 637 645 653 674 668 650 620 615 586 575
Decision bound 582 592 634 647 661 676 662 648 635 623 583 574
Prototype-RW 596 598 647 627 653 678 676 642 614 636 585 583

Obs (4) 558 549 586 656 592 557 647 637 608 620 548 549
Exemplar-RW 550 541 609 643 586 585 607 648 600 612 559 555
Decision bound 551 551 597 598 598 598 623 622 622 621 551 551
Prototype-RW 558 558 609 577 577 607 629 595 596 630 570 570

Obs (5) 609 616 661 727 693 701 744 734 675 703 577 572
Exemplar-RW 594 594 691 714 686 735 744 732 667 671 596 584
Decision bound 589 591 673 687 702 720 733 714 697 682 592 590
Prototype-RW 601 602 703 646 664 752 761 674 656 713 609 608

Obs (6) 586 594 817 817 627 934 854 784 656 780 578 568
Exemplar-RW 578 571 749 764 706 751 772 774 700 727 581 568
Decision bound 581 581 680 694 709 727 764 742 723 706 583 582
Prototype-RW 578 579 800 678 696 844 844 696 678 800 579 579

Obs (7) 588 601 604 642 661 682 661 672 650 723 596 627
Exemplar-RW 597 594 650 639 626 631 661 660 660 669 627 628
Decision bound 597 594 647 642 637 632 657 663 669 676 611 615
Prototype-RW 600 599 654 630 623 642 664 651 657 669 629 629

Obs (8) 528 528 582 630 581 649 625 581 591 609 506 515
Exemplar-RW 529 527 617 612 596 622 611 598 573 590 514 510
Decision bound 521 523 604 606 609 611 595 593 591 589 515 513
Prototype-RW 530 530 629 580 590 647 634 573 564 613 517 516

Obs (9) 406 443 402 443 485 460 482 473 464 491 425 422
Exemplar-RW 408 420 433 443 475 486 489 467 465 448 428 422
Decision bound 418 420 442 452 464 479 488 470 457 446 422 419
Prototype-RW 414 415 449 433 449 479 486 467 452 467 433 432

Obs (10) 525 540 651 565 577 590 623 615 594 640 555 565
Exemplar-RW 537 539 605 591 598 605 608 596 605 612 545 547
Decision bound 543 543 597 597 597 597 601 602 602 602 546 546
Prototype-RW 538 538 618 587 586 617 622 595 595 623 547 548

Obs (11) 453 467 518 514 494 514 528 531 527 492 458 449
Exemplar-RW 456 463 495 494 521 511 510 501 522 506 464 467
Decision bound 457 457 497 502 507 513 532 524 517 510 457 457
Prototype-RW 463 463 521 491 493 525 531 500 498 527 469 469

Obs (12) 568 621 678 638 723 719 742 654 695 873 579 616
Exemplar-RW 581 583 705 670 688 693 697 677 709 725 590 597
Decision bound 594 591 688 682 677 671 679 685 691 697 595 597
Prototype-RW 584 584 738 663 649 711 730 671 685 754 603 604

Obs (13) 459 473 514 515 510 547 557 556 571 570 463 470
Exemplar-RW 455 458 521 504 532 544 567 536 559 563 474 476
Decision bound 465 465 517 519 521 523 565 561 558 555 465 465
Prototype-RW 469 469 540 494 498 558 589 519 514 569 481 481

Obs (14) 528 546 539 558 579 641 620 644 619 548 532 525
Exemplar-RW 511 520 545 551 594 612 633 598 601 583 544 540
Decision bound 527 527 553 564 580 604 659 619 591 571 528 528
Prototype-RW 532 533 576 553 569 614 622 582 566 590 543 542

Obs (15) 654 819 891 847 896 1,075 1,170 933 842 788 682 642
Exemplar-RW 643 662 821 800 885 953 974 880 880 879 693 687
Decision bound 666 669 785 825 877 946 1,054 959 888 833 673 669
Prototype-RW 668 670 889 781 825 975 994 855 811 916 696 693

Obs (16) 584 590 629 722 639 729 651 749 697 685 548 615
Exemplar-RW 568 574 661 644 674 671 669 651 681 678 575 581
Decision bound 571 571 654 655 655 656 685 684 684 683 574 574
Prototype-RW 580 581 673 629 637 686 688 640 633 676 584 583

Note. Subjects 1–8 participated in Condition 4/8; Subjects 9–16 participated in Condition 5/9. Obs (n) � observed data for Subject n; Exemplar-RW �
exemplar-based random-walk model; Decision bound � linear decision-boundary model; Prototype-RW � prototype-based random-walk model.
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Appendix E

Observed and Predicted Category-A Choice Probabilities for Each Individual Subject and Each Stimulus in Experiment 2

Subject and model

Stimulus

1 2 3 4 5 6 7 8 9 10 11 12

Obs (1) .99 1.00 .94 .82 .90 .94 .09 .27 .06 .17 .03 .00
Exemplar-RW .99 .99 .95 .86 .95 .93 .10 .18 .05 .05 .01 .01
Decision bound 1.00 1.00 .93 .92 .91 .90 .14 .12 .11 .10 .00 .00
Prototype-RW 1.00 1.00 .87 .97 .97 .87 .20 .06 .06 .19 .01 .01

Obs (2) .99 1.00 .99 .95 1.00 .99 .03 .12 .01 .00 .00 .00
Exemplar-RW 1.00 1.00 .98 .96 .99 .99 .01 .02 .00 .00 .00 .00
Decision bound 1.00 1.00 .98 .99 1.00 1.00 .00 .00 .00 .00 .00 .00
Prototype-RW 1.00 1.00 .98 1.00 1.00 .98 .00 .00 .00 .01 .00 .00

Obs (3) 1.00 1.00 .83 .84 .94 .98 .06 .10 .03 .01 .01 .00
Exemplar-RW .99 1.00 .93 .88 .96 .94 .04 .08 .02 .03 .00 .00
Decision bound 1.00 1.00 .84 .89 .93 .95 .00 .01 .01 .02 .00 .00
Prototype-RW 1.00 1.00 .93 .99 .99 .94 .02 .00 .00 .03 .00 .00

Obs (4) 1.00 1.00 .90 .95 .98 .98 .01 .09 .02 .03 .00 .00
Exemplar-RW 1.00 1.00 .97 .93 .98 .97 .03 .05 .01 .01 .00 .00
Decision bound 1.00 1.00 .92 .95 .97 .99 .00 .00 .00 .00 .00 .00
Prototype-RW 1.00 1.00 .90 .99 .99 .95 .00 .00 .00 .01 .00 .00

Obs (5) .99 .98 .90 .77 .96 .83 .12 .23 .05 .06 .00 .01
Exemplar-RW .99 .99 .93 .86 .95 .93 .09 .15 .05 .06 .01 .01
Decision bound 1.00 1.00 .94 .93 .92 .90 .13 .11 .09 .07 .00 .00
Prototype-RW .99 .99 .86 .96 .95 .81 .20 .05 .04 .14 .01 .00

Obs (6) .99 1.00 .93 .94 .95 .92 .08 .03 .06 .03 .00 .01
Exemplar-RW 1.00 1.00 .96 .98 .95 .92 .08 .04 .05 .06 .00 .00
Decision bound 1.00 1.00 .96 .95 .95 .94 .06 .05 .05 .04 .00 .00
Prototype-RW 1.00 1.00 .93 .99 .98 .88 .12 .02 .01 .07 .00 .00

Obs (7) 1.00 1.00 .99 .92 .92 .94 .03 .05 .03 .17 .00 .00
Exemplar-RW 1.00 1.00 .97 .98 .95 .96 .03 .02 .06 .05 .00 .00
Decision bound 1.00 1.00 .97 .97 .97 .97 .04 .04 .05 .05 .00 .00
Prototype-RW 1.00 1.00 .96 1.00 1.00 .97 .07 .01 .01 .09 .00 .00

Obs (8) .99 .98 .98 .95 .90 .99 .05 .10 .02 .06 .01 .00
Exemplar-RW 1.00 1.00 .98 .99 .95 .96 .01 .00 .01 .01 .00 .00
Decision bound 1.00 1.00 1.00 1.00 1.00 .98 .01 .00 .00 .00 .00 .00
Prototype-RW 1.00 1.00 .98 1.00 1.00 .97 .01 .00 .00 .00 .00 .00

Obs (9) 1.00 1.00 .96 .93 .88 .98 .01 .02 .05 .01 .00 .01
Exemplar-RW 1.00 1.00 1.00 1.00 1.00 1.00 .00 .00 .00 .00 .00 .00
Decision bound 1.00 1.00 .98 .97 .97 .97 .03 .03 .02 .02 .00 .00
Prototype-RW 1.00 1.00 1.00 1.00 1.00 .99 .02 .00 .00 .01 .00 .00

Obs (10) 1.00 .96 .93 .94 .90 .95 .11 .13 .10 .05 .00 .00
Exemplar-RW 1.00 .99 .96 .97 .89 .92 .09 .06 .12 .07 .01 .01
Decision bound 1.00 1.00 .95 .94 .93 .92 .12 .11 .10 .08 .00 .00
Prototype-RW 1.00 1.00 .93 .99 .99 .90 .18 .04 .03 .13 .00 .00

Note. Subjects 1–5 participated in Condition 4/8; Subjects 6–10 participated in Condition 5/9. Obs (n) � observed data for Subject n; Exemplar-RW �
exemplar-based random-walk model; Decision bound � linear decision-boundary model; Prototype-RW � prototype-based random-walk model.
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Appendix F

Observed and Predicted Mean Response Times (in Milliseconds) for Each Individual Subject and Each Stimulus in Experiment 2

Subject and model

Stimulus

1 2 3 4 5 6 7 8 9 10 11 12

Obs (1) 599 634 693 933 735 726 856 954 713 794 631 614
Exemplar-RW 611 601 733 848 726 762 814 892 749 739 652 621
Decision bound 614 615 731 743 755 769 813 796 780 765 616 615
Prototype-RW 622 622 778 694 696 783 813 731 729 809 649 649

Obs (2) 544 522 630 656 598 596 612 686 549 611 477 482
Exemplar-RW 518 509 636 694 593 607 590 647 559 577 492 485
Decision bound 522 518 628 624 619 614 566 570 574 578 483 486
Prototype-RW 522 522 663 567 565 648 601 536 538 614 504 504

Obs (3) 607 597 668 711 668 685 660 670 657 628 578 585
Exemplar-RW 610 603 680 709 661 672 656 685 634 642 587 580
Decision bound 602 598 690 684 678 672 647 652 657 663 582 586
Prototype-RW 615 615 695 645 644 692 666 625 626 668 603 603

Obs (4) 596 603 720 673 664 679 636 748 611 613 539 573
Exemplar-RW 591 586 666 711 652 674 656 689 618 621 570 561
Decision bound 596 593 685 681 678 674 629 632 635 638 560 562
Prototype-RW 609 609 719 648 641 691 634 602 606 656 585 585

Obs (5) 600 613 916 1019 676 880 905 970 724 819 604 674
Exemplar-RW 623 604 803 897 766 797 831 910 766 777 631 604
Decision bound 614 615 753 771 792 816 857 829 804 782 616 615
Prototype-RW 628 629 877 749 770 921 923 772 752 880 631 630

Obs (6) 868 904 1,042 1,070 1,035 1,250 1,133 1,109 1,125 1,122 878 959
Exemplar-RW 892 903 1,073 1,033 1,104 1,150 1,152 1,070 1,105 1,116 912 914
Decision bound 900 902 1,085 1,090 1,095 1,101 1,101 1,095 1,090 1,085 902 900
Prototype-RW 936 937 1,131 1,018 1,035 1,184 1,185 1,036 1,019 1,133 938 937

Obs (7) 567 589 625 692 667 681 623 704 684 729 558 586
Exemplar-RW 573 578 659 640 683 671 661 643 688 677 575 581
Decision bound 572 572 666 665 665 665 671 671 672 672 574 574
Prototype-RW 589 589 668 616 614 659 681 631 633 690 599 599

Obs (8) 585 645 617 675 757 687 651 719 612 678 559 540
Exemplar-RW 594 602 670 662 727 715 641 616 654 630 562 564
Decision bound 565 588 622 649 678 709 709 678 649 621 587 564
Prototype-RW 599 600 701 635 638 721 673 610 608 657 583 583

Obs (9) 648 695 728 804 905 807 821 862 810 848 658 723
Exemplar-RW 668 677 772 756 844 852 856 791 850 821 686 688
Decision bound 676 677 819 821 823 825 823 821 819 817 676 675
Prototype-RW 691 691 799 727 731 822 887 768 763 858 713 712

Obs (10) 553 620 604 680 697 630 676 715 684 659 569 611
Exemplar-RW 567 578 633 630 687 669 679 657 697 667 590 594
Decision bound 577 577 643 650 658 666 700 688 678 669 578 578
Prototype-RW 594 594 659 621 625 671 689 644 639 678 607 607

Note. Subjects 1–5 participated in Condition 4/8; Subjects 6–10 participated in Condition 5/9. Obs (n) � observed data for Subject n; Exemplar-RW �
exemplar-based random-walk model; Decision bound � linear decision-boundary model; Prototype-RW � prototype-based random-walk model.
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