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Abstract

Exemplar-based models of language propose that human language production and understanding operate 
with a store of concrete linguistic experiences rather than with abstract linguistic rules. While exemplar-
based models are well acknowledged in areas like phonology and morphology, common wisdom has it that 
they are intrinsically flawed for syntax where infinite generative capacity is needed. This paper shows that 
this common wisdom is wrong. It starts out by reviewing an exemplar-based syntactic model, known as 
Data-Oriented Parsing, or DOP, which operates on a corpus of phrase-structure trees. While this model is 
productive, it is inadequate from the point of grammatical productivity. We therefore extend it to the more 
sophisticated linguistic representations proposed by Lexical-Functional Grammar theory, resulting in the 
model known as LFG-DOP, which does allow for meta-linguistic judgments of acceptability. We show how 
DOP deals with first language acquisition, suggesting a unified model for language learning and language 
use, and go into a number of syntactic phenomena that can be explained by DOP but that challenge rule-
based models. We argue that if there is anything innate in language cognition it is not Universal Grammar 
but “Universal Representation”.

1.  Introduction

One of the most important challenges for exemplar-based models of language consists in 

describing the processes that deal with syntactic structure. While exemplar-based approaches are 

well acknowledged in areas like phonology and morphology, common wisdom has it that they are 

intrinsically flawed for syntax where infinite generative capacity is needed. This paper shows that 

this common wisdom is wrong. We will review a class of exemplar-based syntactic models known 

as data-oriented parsing models, showing that they allow for both productivity and meta-linguistic 

judgments.

A person who knows a language can understand and produce a virtually endless variety of 

new and unforeseen utterances. In its effort to understand the nature of this "knowledge of 

language", linguistic theory has used the artificial languages of logic and mathematics as its 

paradigm sources of inspiration. Much linguistic research proceeds on the assumption that a 

language is a well-defined formal code -- that to know a language is to know a consistent set of 
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rules, also known as a "competence grammar", which determines unequivocally which word 

sequences belong to the language, and what their pronunciations, syntactic analyses and semantic 

interpretations are. 

The rules of a competence grammar are chosen and organized not just in order to make 

this determination, however. They also carry a burden of scientific explanation. Thus a rule set is 

typically evaluated according to how simple the individual rules are, how well they express 

independent linguistic generalizations, and how freely they interact to produce the set of all 

possible utterances. In writing a grammar, a linguist is in effect searching for the smallest, non-

redundant, orthogonal basis for the whole set of utterances. 

The empirical challenge for such a pursuit is that many constructions of natural language 

have dependencies (e.g. special meanings or statistical privileges of occurrence) that cannot be 

accounted for by the free interaction of smallest independent rules. Idioms and other fixed 

constructions are the typically recognized examples, but proponents of usage-based linguistics and 

construction grammar observe that constructions and multi-word units are extremely frequent, if 

not ubiquitous, in natural language (Fillmore et al. 1998; Goldberg 1995; Erman and Warren 

2000; Barlow and Kemmer 2000; Bybee 2006).

The rule formalisms of most linguistic theories embody the smallest/independent bias so 

strongly that they make it difficult to characterize these larger units of language. More than that, 

since larger constructions are usually made up of smaller ones, it is conceptually difficult to decide 

where to draw the boundaries around a particular set of dependencies. This has led usage-based 

linguists to conjecture that every token of language use encountered by a speaker/hearer must be 

registered in memory, and that language understanding and production operates on a store of 

"exemplars" (e.g. Bybee 2006; Verhagen 2005; Goldberg 2006). While this massive linguistic 

memorization has been controversial for quite some time, there is nowadays a large amount of 

psycholinguistic evidence indicating that language users store virtually every linguistic token they 

encounter (see Tomasello 2003; Jurafsky 2003 for overviews). In fact, without massive storage of 

exemplars, frequencies can never accumulate, and conventional ways of speaking cannot be 

learned.

To dispel dogmatic slumbers from the start it is good to realize that there is no stable 

definition of “exemplar”. The notion of exemplar has been appealed to in psychological 

investigations of categorization (Nosofsky 1988), phonology (Pierrehumbert 2001), case-based 

reasoning (Nickles 2003) and even in philosophy of science (Kuhn 1970; Giere 1988). Exemplars 

can be categories, linguistic representations, problem-solutions or full-fledged scientific 

explanations. Despite these differences of what an exemplar is and what it does there is also an 

important convergence, namely that an exemplar should not be identified with the token it 

represents. Instead, an exemplar is a categorization, classification or analysis of a token. It is this 

distinction I will also maintain in my paper: while a token is an instance of use, an exemplar is a 
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representation of a token. Thus an exemplar in syntax can be a tree structure of an utterance, a 

feature structure or whatever syntactic representation one wishes to use to convey the syntactic 

analysis of a particular utterance. It should be kept in mind that multiple tokens of identical 

instances are represented by multiple (identical) exemplars, so that frequencies are maintained.

But how can we obtain productivity from exemplars? It should be clear that while we may 

store every previous language token as an exemplar, we cannot store all possible exemplars in 

advance. And neither can we freely combine partial exemplars into new word sequences, as most 

of such sequences would be unacceptable. We thus rephrase the main challenge for an exemplar-

based model of syntax as: how can we obtain grammatical productivity from exemplars?

One of the first exemplar-based models that addressed this problem is known as Data-

Oriented Parsing or DOP (Scha 1990; Bod 1992, 1998). This model keeps a store of 

representations of all previous language experiences. It operates by decomposing the given 

exemplars into fragments and recomposing those pieces to analyze new utterances. For example, if 

we choose phrase-structure trees as representations, DOP combines subtrees from the given trees 

into new trees by means of label substitution subject to a category matching condition.

Although a DOP model uses a “theory of linguistic representation” for its exemplars, it 

stands in sharp contrast to the majority of current approaches in syntax. A DOP model that 

incorporates the representations of a given linguistic theory does not incorporate the particular 

grammatical rules and derivational mechanisms of that theory. And most importantly, it is not at all 

biased in the direction of smallest/independent specification. A DOP model does not even require 

the identification of a specific collection of larger constructions; it allows for utterance-analyses to 

be created from corpus structures of arbitrary size and complexity, even from structures that are 

actually substructures of other ones. The frequencies of the various structures and substructures 

are used to determine the most appropriate analysis of an utterance.

Thus DOP employs a distinctive statistical methodology: since we do not know beforehand 

which structures may be important, we should not constrain or predefine the productive units but 

take all, arbitrarily large fragments of previous utterance-analyses and let the statistics decide

(Bod 1992, 1998). The use of probability theory is a straightforward step as it models the notion 

of frequency in a mathematically precise way. Results from psycholinguistics support the idea that 

the frequency of occurrence of a structure is an important factor in language comprehension and 

production. Jurafsky (2003) reviews evidence showing that in language learning, frequencies 

determine segmentation and generalization. In syntax, frequencies play a role in the gradience of 

categories and well-formedness judgments (Manning 2003). And in semantics, frequencies affect 

disambiguation and interpretation. Gahl and Garnsey (2004) even argue that “knowledge of 

grammar includes knowledge of probabilities of syntactic structures”.

Yet, the frequency of occurrence of a structure is not the only factor in language 

processing; the recency of occurrence of a structure seems to be equally important. Short-term 
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recency effects (priming) are well documented in the psycholinguistic literature (e.g. Bock and 

Loebell 1990). But there are also long-term effects. How can these two effects be combined? In 

Bod (1998: 109-111) I argued that recency should be treated not as a separate component but as 

part of the probability model. This may be supported by Bock (1995) who showed that the recent 

perception or production of a particular structure increases its probability of being used relative to 

other structures. This finding indeed suggests that recency may be described by a function which 

adjusts the frequencies of more recently produced and perceived structures upwards while the 

frequencies of less recently produced and perceived structures are adjusted downwards, possibly 

down to zero. Thus although DOP assumes that all linguistic experiences are stored, it does not 

assume that they are always remembered: structures may be forgotten if they are never invoked 

again. The various quantitative treatments of recency, and their interaction with discourse 

structure, go beyond the scope of this paper (see Bod 1998), but it is important to keep in mind 

that factors such as recency can be modeled by probabilities.

This brings me to the following definition of the general DOP framework. The first step in 

creating a DOP model for a language consists in specifying settings for the following four 

parameters: 

• a definition of a well-formed representation for utterance analyses,

• a set of decomposition operations that divide a given utterance analysis into a set of 

fragments,

• a set of composition operations by which such fragments may be recombined to derive an 

analysis of a new utterance, and

• a probability model that indicates how the probability of a new utterance and its meaning is 

computed on the basis of the frequencies of its fragments.

The second step is to acquire a corpus each of whose utterances is annotated with a well-formed 

and linguistically most appropriate representation. The third step is to generate the fragments for 

the given corpus by systematically applying the decomposition operations to each of the corpus 

representations. A new utterance analysis can then be derived by applying the composition 

operations to a sequence of the resulting fragments. Language comprehension corresponds to 

computing the most probable meaning given an utterance, while language production consists of 

computing the most probable utterance given a meaning. The resulting utterance-analysis is added 

to the corpus, bringing it into a new "state". Thus the DOP approach is congenial to the usage-

based or constructionist approach to language but extends it in an important way by providing a 

formal model that computes new utterances out of previous utterances.

It should be kept in mind that a corpus of annotated utterances is usually not acquired by 

means of a (competence) grammar but by human annotators who are only given an annotation 
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guideline with some example-representations. The annotators are asked to construct for each 

sentence in the corpus an analysis that seemed most appropriate in the context in which the 

sentence was uttered. One could claim that the human annotators use an internalized grammar to 

annotate the sentences, but in this paper I shall argue that a contrasting position is just as viable: 

humans understand and produce new sentences by combining partial structures from a set of 

exemplars, without making recourse to a competence grammar. The only rules that are needed 

are the rules for decomposing exemplars into fragments and for recomposing these fragments 

into representations of new sentences.

But where does the initial set of exemplars come from? For methodological reasons we 

may separate the problem of acquiring a corpus from the use of an already acquired corpus, but 

any linguistic theory must have a story about first language acquisition. While the generativist 

approach assumes that language acquisition is guided by a notion of Universal Grammar, there is 

an increasing body of evidence, both from psycholinguistics (Abbot-Smith and Tomasello, this 

issue) and computational linguistics (Klein and Manning 2005), that linguistic structure is learned 

entirely in a statistical, item-based way.

The key idea in statistical models of language acquisition is that word sequences 

surrounded by equal or similar contexts are likely to form the same constituent. The probability 

that a certain substring of a sentence constitutes a certain constituent is computed from the 

substring’s frequency and the frequencies of its contexts (Van Zaanen 2001; Klein and Manning 

2005). Van Zaanen (2001) shows that higher-level constituents can be learned in this way, 

including recursive structures. However, these bootstrapping approaches restrict the lexical 

relations that are taken into account in learning constituents. For example, the model by Klein and 

Manning (2005) takes into account only statistics of contiguous substrings of sentences while it is 

well known that many lexical dependencies are non-contiguous or structural (i.e. they can be 

separated by other words or constituents). The only model which takes into account all

(contiguous and non-contiguous) substrings of sentences and lets the statistics decide is the model 

by Bod (2005, 2006). This model initially assigns all possible binary trees to a set of sentences and 

next uses all subtrees, regardless of size or lexicalization, to compute the most probable parse 

trees for a set of new sentences (there exists an efficient way to do this -- see Goodman 2003). 

Note that such an approach to language acquisition is just another application of the DOP idea: 

rather than parsing with already learned (sub)trees, we start out to parse with arbitrarily assigned 

(sub)trees which are next selected on their usefulness in parsing new input.

However, any approach to language acquisition hinges on a definition of linguistic 

representation -- which in the previous paragraph was assumed to be a simple phrase-structure 

tree. Without a definition of linguistic representation, there is no learning goal and nothing is 

learned. In Bod (1998) I therefore argued that if there is anything innate in the human language 

faculty it must be not Universal Grammar but Universal Representation. I will come back to this 
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in the last section of this paper. The main goal of this paper is, however, not to describe how DOP 

deals with first language acquisition, but to show how such an exemplar-based approach allows 

for grammatical productivity. We should nevertheless keep in mind that these two goals are 

strongly interrelated: DOP proposes the same model for language acquisition and language 

processing. It models acquisition by assigning arbitrary trees to initial sentences and by letting the 

frequencies decide which subtrees are “most useful” in understanding new input. It models 

processing by storing these most useful subtrees (such that they do not have to be learned again) 

and by recombining them in perceiving and producing new utterances.

In the following section, we will start out by explaining how DOP works with surface 

constituent trees. Although such a model is productive, it will turn out that it is inadequate from 

the point of grammatical productivity. In section 3 we propose a simple extension of this DOP 

model to the more sophisticated linguistic representations used in Lexical-Functional Grammar 

theory (Kaplan and Bresnan 1982), resulting in a model known as LFG-DOP, which does allow 

for meta-linguistic judgments of grammaticality. Finally, in section 4 we discuss a number of 

linguistic phenomena that can be explained by the DOP approach but that challenge rule-based 

approaches. 

2.  A First Data-Oriented Parsing Model: Tree-DOP
The first and arguably simplest DOP model in the literature is known as Tree-DOP (Bod 1992, 

1998). On this model each sentence in the corpus is provided with a constituent tree that describes 

the syntactic surface structure of that sentence. For the sake of simplicity we illustrate Tree-DOP 

with a corpus of only two trees given in figure 1, keeping in mind that currently available corpora 

typically contain hundreds of thousands of trees (cf. Marcus et al. 1994; Abeillé 2003). We have 

left out some lexical categories in the trees to keep the example simple.

 S

NP

she

VP

VP

 V NP

PP

 P NP

 S

NP VP

 V

wanted

NP

NP PP

NP P

she

the dress

the rackon

the dog thesaw with telescope

Figure 1. Example corpus of two trees.
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Given the corpus in figure 1, a new sentence can be derived by combining subtrees from the trees 

in the corpus. Tree-DOP employs only one operation for combining subtrees, called "label 

substitution", indicated as °. The substitution-operation identifies the leftmost nonterminal leaf 

node of one subtree with the root node of a second subtree, i.e., the second subtree is substituted 

on the leftmost nonterminal leaf node of the first subtree provided their categories match. Starting 

out with the corpus of figure 1 above, for instance, the sentence She saw the dress with the 

telescope may be generated as shown in figure 2. 

NP

the dress

° =  S

NP

she

VP

VP

 V NP

PP

 P NP

the thesaw with telescopedress

 S

NP

she

VP

VP

 V NP

PP

 P NP

thesaw with telescope

Figure 2. Derivation and parse tree for She saw the dress with the telescope

The sentence She saw the dress with the telescope is ambiguous; by combining other subtrees, a 

different parse tree may be derived, which is analogous to the first rather than to the second 

corpus sentence, as shown in figure 3. 

 S

NP VP

 V NP

NP PP

she

the dress

 V

saw

PP

 P NP

thewith telescope

=  S

NP VP

 V NP

NP PP

she

the dress

saw

 P NP

thewith telescope

° °

 

Figure 3. Another derivation and parse tree for She saw the dress with the telescope
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Thus subtrees can be of arbitrary size: they can range from just one categorized word to entire 

sentence-analyses. The smallest subtrees, such as the second subtree in figure 3, cover only one 

level of constituent structure and are analogous to "context-free rewrite rules". But in the 

exemplar-based approach, such a minimal subtree, like other, larger subtrees, are viewed not as 

rules but as representations of a particular word, phrase or construction. Although minimal 

subtrees may be mathematically isomorphic to a context-free rewrite rule, they do not correspond 

to the notion of a rule in language as being an “independent linguistic generalization”. For 
example, the subtree V[saw] is the annotation of the verb saw in the context of the sentence She 

saw the dress with the telescope. There may be other annotations of saw but in the example above 

it corresponds to (a representation of) one instance of language use. It may take some effort to 

"see" subtrees as representations of concrete language tokens rather than as bunches of rules, 

possibly involving a Gestalt switch.

Note that Tree-DOP can generate an unlimited number of other sentences on the basis of 

the corpus in figure 1, such as She saw the dress on the rack with the telescope and She saw the 

dress with the dog on the rack with the telescope, etc. Thus we can indeed get infinite productivity 

from a finite corpus of exemplars (whether this productivity also corresponds to grammatical 

productivity will be discussed later). Note also that these sentences are highly ambiguous: several 

syntactic structures can be assigned to each of them by Tree-DOP. It is the role of Tree-DOP's 

probability model to select the most probable structure for a certain sentence, or in case of 

language production, to select the most probable sentence for a certain meaning to be conveyed.

 How can we compute the probability of a sentence and its analysis from the frequencies of 

the corpus subtrees? By having defined a method for combining subtrees from a corpus into new 

trees, we effectively established a way to view a corpus as a tree generation process. This process 

becomes a stochastic process if we take the frequency distributions of the subtrees into account. 

For every tree and every sentence we can compute the probability that it is generated by this 

stochastic process. Before we go into the details of this computation, let us illustrate the stochastic 

generation process by means of an even simpler corpus than in figure 1. Suppose that our example 

corpus consists of two tokens, John likes Mary and Peter hates Susan, that are represented by 

their surface constituent trees in figure 4 (remember that a tree may occur more than once in a 

corpus; in this simple example corpus each tree occurs only once, while some subtrees occur more 

than once).
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NP VP

S

NP

Mary

V

likes

John

NP VP

S

NPVPeter

hates Susan

Figure 4. A corpus of two trees

To compute the frequencies of the subtrees in this corpus, we need to define the bag of subtrees 

that can be extracted from the corpus trees. To this end, we explicitly define Tree-DOP's 

decomposition operations that divide a corpus of trees into its subtrees:

(1) Root: the Root operation selects any node of a tree to be the root of the new subtree and 

erases all nodes except the selected node and the nodes it dominates.

(2) Frontier: the Frontier operation then chooses a set (possibly empty) of nodes in the new 

subtree different from its root and erases all subtrees dominated by the chosen nodes.

As an example let's focus on the left tree in figure 4 for the sentence John likes Mary. The result 

of applying the Root operation to the VP-labeled node in this tree is the subtree in figure 5.

VP

NP

Mary

V

likes

Figure 5. A subtree of the left tree in figure 4

Applying the Frontier operation to, respectively, the node sets {NP} and {V, NP} gives the 

respective subtrees in figure 6.
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VP

NPV

likes

VP

NPV

Figure 6. Two subtrees derived from figure 5

Note that the decomposition operations exclude fragments such as (a)-(c) in figure 7.

NP VP

S

John NP

Mary

NP

NP VP

S

John

Mary

V

likes

(a) (b)     (c)  

Figure 7. Example of non-valid fragments

Subtree (a) is not produced because Frontier cannot choose a subtree's root node, and the 

disconnected structure in (b) is not produced because Frontier erases complete subtrees. Finally, 

(c) is excluded because Frontier erases all subtrees dominated by a chosen node. 

On the basis of these two decomposition operations, the total bag of subtrees that can be 

extracted from the corpus in figure 4 is given in figure 8. Notice that some subtrees occur twice (a 

subtree may be extracted from different trees and even several times from a single tree if the same 

node configuration appears at different positions). 
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NP VP

S

NP

Mary

V

likes

John

NP VP

S

NP

Mary

V

likes

NP VP

S

NP

Mary

VJohn

NP VP

S

NPV

likes

John

NP VP

S

NPV

likes

NP VP

S

NPVJohn

NP VP

S

NP

Mary

V

NP VP

S

NPV

NP VP

S

John

NP VP

S

NP VP

S

NPV

NP VP

S

NPV

NP VP

S

NPV

NP VP

S

NPV

NP VP

S

NPV

NP VP

S

NPV

NP VP

S

NPV

NP VP

S

NPV

NP VP

S

NP VP

S

Peter

Peter

Peter

Peter

Peter

hates

hates

hates

hates

Susan

Susan

Susan

Susan

VP

NP

Mary

V

likes

VP

NP

Mary

V

VP

NPV

likes

VP

NPV

VP

NPV

hates Susan

VP

NPV

Susan

VP

NPV

hates

VP

NPV

NP

John

NP

Mary

NP

Peter

NP

Susan

V

likes

V

hates

Figure 8. The bag of subtrees derived from the trees in figure 4

As explained above, by means of the composition operation, new sentence-analyses can be 

constructed by means of this subtree collection. For instance, an analysis for the sentence Mary 

likes Susan can be generated by combining the three subtrees in figure 9 from the bag in 8.
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NP VP

S

NPV

likes

NP

Mary

NP

Susan NP VP

S

NPMary V

likes Susan

=° °

 
Figure 9. Analyzing Mary likes Susan by combining subtrees

For the following it is important to distinguish between a derivation and an analysis of a sentence. 

By a derivation of a sentence we mean a sequence of subtrees the first of which is labeled with S 

and for which the iterative application of the substitution operation produces the particular 

sentence. By an analysis of a sentence we mean the resulting parse tree of a derivation of the 

sentence. Then the probability of the derivation in figure 9 is the joint probability of 3 stochastic 

events (see Bod 2003a for a linguistic introduction to elementary probability theory): 

(1) selecting the subtree S[NP VP[V[likes] NP]] among the subtrees with root label S,

(2) selecting the subtree NP[Mary] among the subtrees with root label NP,

(3) selecting the subtree NP[Susan] among the subtrees with root label NP.

The probability of each event can be computed from the frequencies of the occurrences of the 

subtrees in the corpus. For instance, the probability of event (1) is computed by dividing the 
number of occurrences of the subtree S[NP VP[V[likes] NP]] by the total number of occurrences 

of subtrees with root label S: 1/20.

In general, let | t | be the number of times subtree t occurs in the bag and r(t) be the root 

node category of t, then the probability assigned to t is

P(t)  =
| t |

Σ t': r(t')= r(t)  | t' |

Since in our stochastic generation process each subtree selection is independent of the previous 

selections, the probability of a derivation is the product of the probabilities of the subtrees it 

involves. Thus, the probability of the derivation in figure 9 is: 1/20 × 1/4 × 1/4 = 1/320. In general, 

the probability of a derivation t1 ° ...° tn is given by

P(t1 ° ...° tn)  =  Π i P(ti)
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It should be stressed that the probability of a parse tree is not equal to the probability of a 

derivation producing it. There can be many different derivations resulting in the same parse tree. 

This “spurious ambiguity” may seem redundant from a linguistic point of view (and should not be 

confused with the “structural” ambiguity of a sentence). But from a statistical point of view, all 

derivations resulting in a certain parse tree contribute to the probability of that tree. 

For instance, the parse tree for Mary likes Susan derived in figure 9 may also be derived as 

in figure 10 or figure 11.

NP VP

S

NPV

NP

Mary NP VP

S

NPMary V

likes Susan

=

Susan

V

likes

° °

 

Figure 10. A different derivation, yielding the same parse for Mary likes Susan

NP VP

S NP

Mary NP VP

S

NPMary V

likes Susan

=VP

NPV

likes

NP

Susan

° ° °

 

Figure 11. One more derivation yielding the same parse for Mary likes Susan

Thus, a parse tree can be generated by a large number of different derivations that involve different 

subtrees from the corpus. Each of these derivations has its own probability of being generated. For 

example, the following shows the probabilities of the three example derivations given above.

P(figure 9) =   1/20 × 1/4 × 1/4 = 1/320

P(figure 10) =   1/20 × 1/4 × 1/2 = 1/160

P(figure 11) =   2/20 × 1/4 × 1/8 × 1/4 = 1/1280

Table 1. Probabilities of the derivations in figures 9, 10 and 11



14

The probability of a parse tree is the probability that it is produced by any of its derivations, also 

called the disjoint probability. That is, the probability of a parse tree T is the sum of the 

probabilities of its distinct derivations D:

P(T)  =  ΣD derives T P(D)

This step in the calculation does usually not occur when a probabilistically enhanced grammar is 

used. Such a grammar aims at identifying exactly one derivation for each syntactic analysis. This 

makes computations simpler, but restricts the statistical dependencies beforehand. It should be said 

though that there is no psycholinguistic evidence that humans take into account multiple 

derivations in determining the best parse tree for a sentence. Yet, the use of multiple derivations 

directly follows from the assumption that frequencies of arbitrary lexical relations may be 

important in syntactic processing. And as shown in the introduction, there is quite some evidence 

for this assumption.

Analogous to the probability of a parse tree, the probability of an utterance is the 

probability that it is yielded by any of its parse trees. This means that the probability of a word 

string W is the sum of the probabilities of its distinct parse trees T:

P(W)  =  ΣT yields W P(T)

For the task of language comprehension, we are interested in the most probable parse tree given 

an utterance -- or its most probable meaning if we use a corpus in which the trees are enriched 

with logical forms (and for the task of language production we are interested in the most probable 

utterance given a certain meaning or logical form). The probability of a parse tree T given that it 

yields a word string W is computed by dividing the probability of T by the sum of the probabilities 

of all parses that yield W (i.e. the probability of W):

P(T | T yields )  =  
P(T)  

Σ T' yields P(T')W

W

Since the sentence Mary likes Susan is unambiguous with respect to the corpus, the conditional 

probability of its parse tree is simply 1, by a vacuous application of the formula above. Of course a 

larger corpus might contain subtrees by which many different representations can be derived for a 

single sentence, and in that case the above formula for the conditional probability would provide a 

probabilistic ordering for them. For instance, suppose an example corpus contains the following 

trees given in figure 12.
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NP VP

S

VMary

hates

VP

V

visiting

NP

relatives

NP VP

S

V

V NP

John

likes

buzzing bees

NP

Figure 12. Two corpus trees for Mary hates visiting relatives and John likes buzzing bees

Two different parse trees can then be derived for the sentence John hates buzzing bees, given in 

figure 13.

NP VP

S

V

V NP

John

hates

bees

NP

buzzing

NP VP

S

V

V NP

John

bees

VP

hates

buzzing

(a) (b)

Figure 13. Parse trees for John hates buzzing bees

The Tree-DOP model will assign a lower probability to the tree 13 (a) since the sub-analysis 14 (a) 

of 13 (a) is not a corpus subtree and hence must be assembled from several smaller pieces (leading 

to a lower probability than when the sub-analysis was a corpus-subtree, since the probabilities of 

the pieces must be multiplied -- remember that probabilities are numbers between 0 and 1). The 

sub-analysis 14 (b) of 13 (b) can also be assembled from smaller pieces, but it also appears as a 

corpus fragment. This means that 13 (b) has several more derivations than 13 (a), resulting in a 

higher total probability (as the probability of a tree is the sum of the probabilities of its 

derivations).



16

NP VP

S

V

V NP

John

bees

NP

buzzing

NP VP

S

V

V NP

John

bees

VP

buzzing

(a) (b)

Figure 14. Two sub-analyses

In general, there tends to be a preference in Tree-DOP for the parse tree that can be generated by 

the largest number of derivations. Since a parse tree which can (also) be generated by relatively 

large fragments has more derivations than a parse tree which can only be generated by relatively 

small fragments, there is also a preference for the parse tree that can be constructed out of the 

largest possible corpus fragments, and thus for the parse tree which is most similar to previously 

seen utterance-analyses. The same kind of reasoning can be made for the probability of an 

utterance: i.e. there is a preference for the utterance (given a certain meaning or intention) that can 

be constructed out of the largest possible corpus fragments, thus being most similar to previously 

seen utterances. This will be particularly important for the reuse of constructions and prefabricated 

word combinations (see section 4). 

The notion of probability may be viewed as a measure for the average similarity between a 

sentence and the exemplars in the corpus: it correlates with the number of corpus trees that share 

fragments with the sentence, and also with the size of these shared fragments. Tree-DOP is thus 

congenial to analogical approaches to language that also interpret new input analogous to previous 

linguistic data, such as Skousen (1992) and Daelemans and van den Bosch (2005). DOP differs 

from analogical approaches in its use of recursive structures. Although analogical approaches have 

been successful in phonology, morphology and “shallow” parsing, they are intrinsically constrained 

by their limited generative capacity.

The probability model for Tree-DOP given above is just one of the many possible ways 

frequencies of previously perceived structures can be taken into account. Other probability models 

have extended Tree-DOP to recency, semantics and discourse context (Bod 1998, 1999), or use 

more sophisticated estimation techniques (Zollmann and Sima’an 2005) or even use different 

definitions of the best parse tree (Bod 2002; Bod et al. 2003a). However, the simple probability 

model described in this section is still the most successful one if tested on benchmarks like the 

Wall Street Journal treebank (see Bod 2003b for the computational details).
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3.  Towards a Linguistically Adequate DOP Model: LFG-DOP
While we have shown how to obtain syntactic productivity from exemplars, resulting in a 

probability model that computes the most similar utterance(-analysis) based on previous utterance-

representations, we have not yet shown that we can also get grammatical productivity from a 

corpus of exemplars. In fact, the Tree-DOP model in section 2 allows for many sentences that 

would be considered unacceptable to natural language users. This is because our annotations 

contain only simple syntactic categories with no grammatical functions and no agreement features. 

As a consequence, Tree-DOP severely overgenerates, producing ill-formed sentences such as 

Relatives likes Susan and She visiting John. While this particular overgeneration might be 

overcome by using more fine-grained subcategorizations, it is well known that the number of 

categories explode if no agreement features are used (cf. Gazdar et al. 1985).

All modern linguistic theories propose more articulated representations in order to 

characterize such grammatical relations (cf. Bresnan 2000; Sag et al. 2003). To give an example of 

how we can construct a linguistically adequate DOP model that not only obtains productivity but 

also grammatical productivity, we will show how the Tree-DOP model can be extended to the 

representations proposed by a modern linguistic theory, i.e. Lexical-Functional Grammar or LFG 

(Kaplan and Bresnan 1982). The resulting DOP model is known as LFG-DOP (Bod and Kaplan 

1998).

3.1 Representations in LFG-DOP

The notion of representation we will use is directly taken from LFG theory (see Kaplan 1989), that 

is, every utterance is annotated with a c-structure, an f-structure and a mapping φ between them. 

The c-structure is a tree that describes the surface constituent structure of an utterance; the f-

structure is an attribute-value matrix marking such grammatical relations as subject, predicate and 

object, as well as providing agreement features and semantic forms; and φ is a correspondence 

function that maps nodes of the c-structure into units of the f-structure. The following figure 

shows a representation for the utterance Kim eats. (We leave out some features to keep the 

example simple.)
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S

NP VP

Kim eats

PRED   'Kim'

NUM     SG
SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

Figure 15. An LFG representation for Kim eats

Note that the φ correspondence function gives an explicit characterization of the relation between 

the superficial and underlying syntactic properties of an utterance, indicating how certain parts of 

the string carry information about particular units of underlying structure. As such, it will play a 

crucial role in our definition for the decomposition and composition operations of LFG-DOP. In 

figure 15 we see for instance that the NP node maps to the subject f-structure, and the S and VP 

nodes map to the outermost f-structure.

It is generally the case that the nodes in a subtree carry information only about the f-

structure units that the subtree's root gives access to. The notion of accessibility is made precise in 

the following definition:

An f-structure unit f is φ-accessible from a node n if and only if either n is φ-linked to f (that is, f

= φ(n)) or f is contained within φ(n) (that is, there is a chain of attributes that leads from φ(n) to 

f).

All the f-structure units in figure 15 are φ-accessible from for instance the S node and the VP 

node, but the TENSE and top-level PRED are not φ-accessible from the NP node.

According to LFG theory, c-structures and f-structures must satisfy certain formal well-

formedness conditions. A c-structure/f-structure pair is a valid LFG representation only if it 

satisfies the Nonbranching Dominance, Uniqueness, Coherence and Completeness conditions. 

Nonbranching Dominance demands that no c-structure category appears twice in a nonbranching 

dominance chain; Uniqueness asserts that there can be at most one value for any attribute in the f-

structure; Coherence prohibits the appearance of grammatical functions that are not governed by 

the lexical predicate; and Completeness requires that all the functions that a predicate governs 

appear as attributes in the local f-structure.

3.2 Decomposition operations and Fragments

We can create a DOP model for LFG-analyses by extending the operations of Tree-DOP to take 

correspondences and f-structure features into account. The decomposition operations for this 
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model will produce fragments of the composite LFG representations. These will consist of 

connected subtrees whose nodes are in φ-correspondence with sub-units of f-structures. We 

extend the Root and Frontier decomposition operations of Tree-DOP so that they also apply to 

the nodes of the c-structure while respecting the principles of c-structure/f-structure 

correspondence.

When a node is selected by the Root operation, all nodes outside of that node's subtree are 

erased, just as in Tree-DOP. Further, for LFG-DOP, all φ links leaving the erased nodes are 

removed and all f-structure units that are not φ-accessible from the remaining nodes are erased. 

Root thus maintains the intuitive correlation between nodes and the information in their 

corresponding f-structures. For example, if Root selects the NP in figure 15, then the f-structure 

corresponding to the S node is erased, giving figure 16 as a possible fragment:

NP

Kim

PRED   'Kim'

NUM     SG

Figure 16. A fragment obtained by the Root operation

In addition the Root operation deletes from the remaining f-structure all semantic forms that 

correspond to erased c-structure nodes, and it thereby also maintains the fundamental two-way 

connection between words and meanings. Thus, if Root selects the VP node so that the NP is 

erased, the subject semantic form "Kim" is also deleted (figure 17).

VP

eats

NUM     SGSUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

Figure 17. Another Root-generated fragment

As with Tree-DOP, the Frontier operation then selects a set of frontier nodes and deletes all 

subtrees they dominate. Like Root, it also removes the φ links of the deleted nodes and erases any 

semantic form that corresponds to any of those nodes. Frontier does not delete any other f-

structure features. This reflects the fact that all features are φ-accessible from the fragment's root 

even when nodes below the frontier are erased. For instance, if the VP in figure 15 is selected as a 

frontier node, Frontier erases the predicate "eat(SUBJ)" from the fragment:
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S

NP VP

Kim

PRED   'Kim'

NUM     SG
SUBJ

TENSE      PRES

Figure 18. A fragment obtained by the Frontier operation

Note that the Root and Frontier operations retain the subject's NUM feature in the VP-rooted 

fragment of figure 17, even though the subject NP is not present. This reflects the fact, usually 

encoded in particular grammar rules or lexical entries, that verbs of English carry agreement 

features for their subjects. On the other hand, the fragment in figure 18 retains the predicate's 

TENSE feature, reflecting the possibility that English subjects might also carry information about 

their predicate's tense. Subject-tense agreement as encoded in figure 18 is a pattern seen in some 

languages (e.g. the split-ergativity pattern of languages like Hindi, Urdu and Georgian) and thus 

there is no universal principle by which fragments such as in figure 18 can be ruled out. But in 

order to represent directly the possibility that subject-tense agreement is not a dependency of 

English, we also allow an S fragment in which the TENSE feature is deleted, as in figure 19. The 

fragment in figure 19 is produced by a third decomposition operation, Discard, defined to 

construct generalizations of the fragments supplied by Root and Frontier. Discard acts to delete 

combinations of attribute-value pairs subject to the following restriction: Discard does not delete 

pairs whose values φ-correspond to remaining c-structure nodes.

S

NP VP

Kim

PRED   'Kim'

NUM     SG
SUBJ

Figure 19. A fragment obtained by the Discard operation

This condition maintains the essential correspondences of LFG representations: if a c-structure and 

an f-structure are paired in one fragment provided by Root and Frontier, then Discard also pairs 

that c-structure with all generalizations of that fragment's f-structure. For convenience, we will 

sometimes use the term generalized fragment to indicate a fragment generated by one or more 

applications of the Discard operation. The fragment in figure 19 results from applying Discard to 
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the TENSE feature in figure 18. Discard also produces fragments such as figure 20, where the 

subject's number in figure 17 has been deleted.

VP

eats

SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

Figure 20. Another fragment obtained by the Discard operation

Again, since we have no language-specific knowledge apart from the corpus, we have no basis for 

ruling out fragments like figure 20. Indeed, it is quite intuitive to omit the subject's number in 

fragments derived from sentences with past-tense verbs or modals.

3.3 The composition operation

In LFG-DOP the operation for combining fragments, again indicated by °, is carried out in two 

steps. First the c-structures are combined by leftmost label substitution subject to the category-

matching condition, just as in Tree-DOP. This is followed by the recursive unification of the f-

structures corresponding to the matching nodes. The result retains the φ correspondences of the 

fragments being combined. A derivation for an LFG-DOP representation R is a sequence of 

fragments the first of which is labeled with S and for which the iterative application of the 

composition operation produces R.

We illustrate the two-stage composition operation by means of a simple example. For this 

purpose we assume a corpus containing the representation in figure 15 for the sentence Kim eats

and the representation in figure 21 for the sentence John fell.

S

NP VP

PRED 'John'

NUM    SG
SUBJ

TENSE      PAST

PRED      'fall(SUBJ)'John fell

Figure 21. A representation for John fell

Figure 22 shows the effect of the LFG-DOP composition operation using two fragments from this 

corpus. The NP-rooted fragment is substituted for the NP in the first fragment, and the second f-
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structure unifies with the first f-structure, resulting in a representation for the new sentence Kim 

fell.

S

NP VP

NUM    SGSUBJ

TENSE      PAST

PRED      'fall(SUBJ)'fell

° =
NP

Kim

PRED   'Kim'

NUM     SG

S

NP VP

PRED 'Kim'

NUM    SG
SUBJ

TENSE      PAST

PRED      'fall( SUBJ)'Kim fell

Figure 22. Illustration of the LFG-DOP composition operation

This representation satisfies the well-formedness conditions and is therefore valid. Note that in 

LFG-DOP, as in the tree-based DOP models, the same representation may be produced by several 

distinct derivations involving different fragments. 

While the example sentence Kim fell is clearly grammatical, LFG-DOP can also produce 

representations for sentences that are intuitively ungrammatical. To show this, we extend our 

example corpus with the representation in figure 23 for the sentence People ate.

S

NP VP

ate

PRED 'people'

NUM    PL
SUBJ

TENSE      PAST

PRED      'eat(SUBJ)'people

Figure 23. A representation for People ate

Then the following derivation produces a valid representation for the intuitively ungrammatical 

sentence People eats (where the second fragment is produced by discarding the number feature of 

eats):
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S

NP VP

PRED 'people'

NUM    PL
SUBJ

people

VP

eats

SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

° =

S

NP VP

SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'people eats

PRED 'people'

NUM    PL

Figure 24. A valid representation for an intuitively ungrammatical sentence

Thus this representation assigns a plural interpretation to the sentence People eats. Note that 

LFG-DOP can also produce a (valid) representation which assigns a singular interpretation to 

People eats, if the number feature of people rather than eats is discarded. Finally, LFG-DOP 

produces a (valid) representation with an unmarked number value if the number features of both 

people and eats are discarded. (It is left to the probability model which of these representations is 

ranked highest.)

This system of fragments and composition operation thus provides a representational basis 

for a robust model of language comprehension in that it assigns at least some representations to 

many strings that would generally be regarded as ill-formed. A correlate of this advantage, 

however, is the fact it does not offer a direct formal account of meta-linguistic judgments of 

grammaticality. Nevertheless, we can reconstruct the notion of grammaticality by means of the 

following definition:

A sentence is grammatical with respect to a corpus if and only if it has at least one 

valid representation with at least one derivation without generalized fragments.

Thus the system is robust in that it assigns three representations (singular, plural, and unmarked as 

the subject's number) to the string People eats, based on fragments for which the number feature 

of people, eats, or both has been discarded. But unless the corpus contains non-plural instances of 

people or non-singular instances of eats, there will be no Discard-free derivation and the string 

will be classified as ungrammatical (with respect to the corpus).
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For reasons of space we will not go into the probability model of LFG-DOP, which is a 

relatively straightforward extension of Tree-DOP's probability model laid out in section 2 -- see 

Bod and Kaplan (1998, 2003).

4. Discussion: the DOP Hypothesis and Universal Representation 
We have developed an exemplar-based model of syntax that is robust in that it can parse 

ungrammatical input, and that offers a formal account of meta-linguistic judgments at the same 

time. It also allows for modeling gradient judgments of acceptability by a probability function, 

both for grammatical and ungrammatical sentences. Thus while LFG-DOP distinguishes between 

grammaticality and ungrammaticality, it also acknowledges that at both sides there is a 

probabilistic continuum of acceptability, suggesting that the end points of least ungrammatical and 

least grammatical may touch.

Although there have been previous stochastic approaches to modeling acceptability 

judgments (see Crocker and Keller 2005 for an overview), DOP distinguishes itself from these 

approaches by taking into account exemplars of arbitrary size. This allows the DOP approach to 

capture prefabs wherever they occur in the corpus (see Manning and Schütze 1999: 446). For 

example, suppose that we want to produce a sentence corresponding to a meaning of asking 

someone's age. There may be several sentences with such a meaning, like How old are you?, What 

age do you have? or even How many years do you have? Yet the first sentence is more acceptable 

than the other ones in that it corresponds to the conventional way of asking someone's age in 

English. This difference in acceptability is reflected by the different probabilities of these sentences 

in a representative corpus of English. While the probability of e.g. What age do you have? is likely 

to be small, since it will most likely not appear as a prefabricated unit in the corpus and has to be 

constructed out of smaller parts, the probability of How old are you? is likely to be high since it 

can also be constructed by one large unit. As we showed at the end of section 2, DOP's probability 

model prefers sentences that can be constructed out of the largest possible parts from the corpus. 

(And even in case both sentences would occur in a representative corpus of English, How old are 

you? would have the highest frequency.)

Thus the DOP model prefers sentences and sentence-analyses that consist as much as 

possible of prefabs rather than “open choices”. This does not mean that What age do you have? is 

less grammatical; it only stands at a lower rank of acceptability. The same kind of reasoning can be 

applied to sentences such as What time is it? versus How late is it?. Both sentences are 

grammatical with respect to a representative corpus of English, but the first sentence has a higher 

rank of acceptability, since the construction What time is it? is more probable in English than How

late is it? for the particular meaning to be conveyed (i.e. asking the time). Interestingly, in Dutch 

and German, this is the other way round, as one says e.g. in Dutch Hoe laat is 't? rather than 
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Welke tijd is 't?. Note that prefabricated word combinations are extremely frequent: Erman and 

Warren (2000) found that prefabs constitute at least 55% of both spoken and written language. 

The advantage of LFG-DOP over Tree-DOP is that it not only takes into account 

constructions and prefabs of arbitrary size, but that it also provides a linguistic account of 

grammaticality. In Bod (2000), LFG-DOP was tested against English native speakers who had to 

decide as quickly as possible whether three-word (subject-verb-object) sentences were 

grammatical. The test sentences were selected from the British National Corpus (BNC) and 

consisted of both frequent sentences such as I like it and low-frequency sentences such as I keep 

it, as well as a number of ungrammatical pseudo-sentences. This pilot experiment showed that 

frequent sentences are recognized more easily and quickly than infrequent sentences, even after 

controlling for plausibility, word frequency, word complexity and syntactic structure. Next, a 

simple implementation of LFG-DOP was used to parse the test sentences. Each fragment f was 

assigned a response latency by its frequency freq(f) in the BNC as 1/(1 + log freq(f)) -- see Baayen 

et al. (1997). The latency of the total sentence was estimated as the sum of the latencies of the 

fragments. The resulting model matched very well with the experimentally obtained reaction times 

(up to a constant) but only if all fragments were taken into account. The match significantly 

deteriorated if two-word and three-word chunks were deleted.

The result of this experiment triggers the hypothesis that “the accuracy increases with 

increasing fragment size”. This hypothesis has been corroborated not only for three-word 

sentences, but also for the much longer sentences from the Penn Treebank. The term “accuracy” 

should be broadly interpreted here: it can refer to the accuracy of DOP’s prediction of human 

reaction times, but also to the accuracy of predicting the parse tree of an utterance as annotated by 

humans in the Penn Treebank (Bod 1998, 2001), and even to the accuracy of translating a 

sentence from one language into another (Hearne and Way 2003). For all these domains the 

hypothesis has been corroborated. This led me to conjecture in Bod (2001) that “the increase in 

accuracy with increasing fragment size” is independent of the language, referring to it as the DOP 

hypothesis. This hypothesis is a risky generalization which can be refuted by one reliable counter-

example. Yet, to-date, the DOP hypothesis has been successfully tested for several languages, 

such as English, Dutch and French (Bod 1998; Hearne and Way 2003; Cormons 1999), Hebrew 

(Sima’an et al. 2001) and Mandarin (Hearne and Way 2004). The hypothesis has also been 

corroborated for different linguistic representations, from LFG to HPSG and TAG (cf. Bod et al. 

2003a).

However, these experiments are all carried out on rather unrealistic corpora that do not 

correspond to a person’s memory of previous language experiences. The only cognitively

interesting corpus would be a collection of all language utterances ever heard and uttered in a 

language user’s experience. Not even the Childes corpus (MacWhinney 1995) comes close to this, 

as it is still based on a mix of different users (and all users are children and their caregivers). The 



26

development of cognitively realistic corpora will be one of the main future goals in exemplar-based 

syntax.

Of course we should again raise the question where the initial representations come from. 

In section 1, we argued that tree structures can be induced from distributional statistics (Bod 

2005). How can we extend such a bootstrapping approach to richer representations like functional 

categories and argument structures? It turns out that the induction of what are usually called 

“richer” representations is easier than the induction of “simple” surface constituent trees. For 

example, Gildea (2002) and Swier and Stevenson (2004) show how grammatical functions, verb-

argument structures and semantic roles can be bootstrapped using an iteratively updating 

probability model. And Bod (2006) discusses how trees can be initially enriched with all possible 

combinations of grammatical functions and argument structures using DOP’s probability model to 

decide which of these combinations are most useful in parsing new data. While the details of these 

bootstrapping models fall beyond the scope of this paper, it is important to note that they can only 

learn grammatical functions and semantic roles for new input if there is a definition of these 

functions and roles to begin with. In other words, these models rely on an a priori definition of 

what we called a well-formed representation of a linguistic utterance.

While the need for such a definition is sometimes seen as a limitation of bootstrapping 

methods, we believe it is a fundamental prerequisite for any exemplar-based model of language. In 

principle, such a definition should apply to all linguistic phenomena and all languages and may thus 

be referred to as Universal Representation. If there is anything innate in the human language 

faculty it should be this data structure by which linguistic utterances are represented. The notion of 

Universal Representation may seem similar to the notion of Universal Grammar in generativist 

linguistics, but there is one very important difference: given a definition of a well-formed 

representation, the assignment of representations to language utterances is accomplished solely on 

the basis of statistics -- both in language acquisition and adult language processing. The notion of 

grammatical rule may still appear in the scientific discourse, but is not part of a native speaker’s 

competence. The only “rules” in exemplar-based syntax are the decomposition and recomposition 

rules that construct new representations out of previous representations. On this account, 

knowledge of language is viewed not as a grammar but as a statistical ensemble of language 

experiences that slightly changes every time a new utterance is perceived or produced.
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