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1 Introduction

Game theory is a branch of applied mathematics that deals with the analysis of strategic
interaction. A game, in the sense of game theory, is characterized by the following proper-
ties: 1. There are at least two players. 2. The players interact, and the interaction results
in a certain outcome. 3. Each player has a choice between various courses of action, their
strategies. 4. The outcome of the interaction depends on the choice of strategy of each
player. 5. Each player has a preference ordering over outcomes.

Preferences are usually encoded as numerical values, so-called utilities or payoffs, that
are assigned to possible outcomes.

One of the objectives of game theory is to derive insights how rational players ought
to behave in a strategic situation. A rational player is a player that holds some (possibly
probabilistic) consistent beliefs about the structure of the game and the strategies of the
other players, and that will choose their strategy in such a way that their expected utility
is maximized. This entails, inter alia, that rational players do not have altruistic or spiteful
motives. Also, rational players are assumed to be logically omniscient (they take all logical
consequences of their beliefs into account in their decisions). In the standard interpretation
of game theory, it is actually common knowledge among the players that all players are
rational in this sense.

In many applications of game theory, communication between the players may affect
the outcome of the game. Also, communication itself can be analyzed as a game. Therefore
the game theoretic analysis of communication has attracted a good deal of attention in the
literature.

As pointed out for instance by Stalnaker (2005), there is actually a strong affinity
between rationalistic game theory and the kind of reasoning that is used in Gricean prag-
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matics (both in the sense of Grice’s 1957 notion of non-natural meaning, and in the sense
of Grice’s 1975 concept of conversational implicatures). Stalnaker writes:

“As many people have noticed, Gricean ideas naturally suggest a game theoretic
treatment. The patterns of iterated knowledge and belief that are characteris-
tic of game theoretic reasoning are prominent in Grice’s discussions of speaker
meaning, and the pattern of strategic reasoning that Grice discussed in the
derivation of conversational implicatures are patterns that game theory is de-
signed to clarify. ... [G]ame theory provides some sharp tools for formulating
some of Grice’s ideas[.] ... And I think Gricean ideas will throw some light
on the problems game theorists face when they try to model communicative
success.”

This quotation succinctly summarizes the purpose of the present article. In the next
section, I will briefly recapitulate some basic ideas about rational communication from
the game theoretic literature. I will modify this model by incorporating some concepts
from Gricean pragmatics informally in section 3, and I will present a formal framework
for computing pragmatic interpretation from the literal meaning of expressions and the
preferences and beliefs of the language users in section 4. Section 5 contains a series of
examples that serve to illustrate the empirical predictions of this model and to compare
it to other neo-Gricean theories like bidirectional Optimality Theory. Sections 6 and 7
contain pointers to related work and concluding remarks.

2 Signaling games

Let us consider a very elementary example for a situation where communication may make
a difference. Suppose Sally pays Robin a visit, and Robin wants to offer his guest something
to drink, either tea or coffee. Sally is either a tea drinker or a coffee drinker, and Robin
prefers the outcome where Sally receives her favorite drink over the other outcome, but he
does not know Sally’s preferences.

We may formalize this scenario as follows: There are two possible worlds, w1 and w2.
In w1, Sally prefers tea; in w2 she prefers coffee. Robin has a choice between two actions.
Offering tea would be action a1, and offering coffee is action a2. Sally knows which world
they are in, but Robin does not know it. Let us assume that Robin assigns both worlds an
a priori probability of 50%. So the scenario can be represented by table 1. Rows represent
possible worlds and columns represent Robin’s actions. The first number in each cell gives
Sally’s payoff for this configuration, and the second number Robin’s payoff.

Without any further coordination between the players, Robin will receive an expected
payoff of 0.5 for either action, and hence Sally will also receive, on average, a payoff of 0.5.
They can do better though if they communicate. Suppose it Robin expects that Sally says
“tea” in w1 and “coffee” in w2. Then the rational course of action for Robin is to perform
a1 if he hears “tea”, and to perform a2 upon hearing “coffee”. If Sally knows that Robin
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a1 a2

w1 1; 1 0; 0
w2 0; 0 1; 1

Table 1: A simple coordination scenario

will react to these signals in this way, it is in fact rational for her to say “tea” in w1 and
“coffee” in w2.

So adding the option for communication may improve the payoff of both players. Tech-
nically, the original scenario (which is not really a game but a decision problem because
Sally has no choice between actions) is transformed into a signaling game. Here the sender
(Sally in the example) can send signals, and she can condition the choice of signals on the
actual world. So a strategy for the sender is a function from possible worlds to signals.
The receiver (Robin in the example) can condition his action on the signal received. So
a strategy for the receiver is a function from signals to actions. (Analogous scenario’s are
studied extensively by Lewis 1969.)

The above example suggests that rational players will benefit from the option of com-
munication. Things are not that simple though. If Sally says “I want tea” in w1 and “I
want coffee” in w2, and Robin interprets “I want tea” as a1 and “I want coffee” as a2, both
players benefit. Let us call this mapping from world to signals to actions L1. They would
receive the same benefit though if Sally said “I want coffee” in w1 and “I want tea” in w2,
and Robin interprets “I want coffee” as a1 and “I want tea” as a2, which I will call L2.1

Pure reason does not provide a clue to decide between these two ways to coordinate. It
is thus consistent with rationality that Sally assumes Robin to use L2 and thus to signal
according to L2, while Robin assumes Sally to use L1, and thus will interpret her signals
according to L1. In this situation, Robin will perform a2 in w1 and a1 in w2. Both players
would receive the worst possible expected payoff of 0 here.

These considerations ignore the fact that the two signals do have a conventional meaning
which is known to both players. L1 is a priori much more plausible than L2 because in
L1 Sally always says the truth, and Robin always believes the literal meaning of Sally’s
message.

Rational players cannot always rely on the honesty/credulity of the other player though.
Consider the scenario from table 2 (unless otherwise indicated, I will always assume a
uniform probability distribution over possible worlds):

Here the interests of Sally and Robin are strictly opposed; everybody can only win as
much as the other one looses. Here too, there are two signals that Sally can send. We
call them f1 and f2. They both have a conventional literal meaning: [[ f1 ]] = {w1} and
[[ f2 ]] = {w2}. If Robin is credulous, he will react to f1 with a2 and to f2 with a1. If Sally
believes this and is rational, she will be dishonest and send f1 in w2 and f2 in w1. If Robin

1In the game-theoretic terminology, both L1 and L2 constitute strict Nash equilibria.
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a1 a2

w1 1;−1 −1; 1
w2 −1; 1 1;−1

Table 2: A simple zero sum scenario

is not quite so credulous, he may anticipate this and switch his strategy accordingly, etc.
In fact, it turns out that with or without communication, any strategy is rationalizable
in this game.2 The lesson here is that communication might help in situations where the
interests of the players are aligned, but it does not make a difference if these interests are
opposed.

The most interesting scenarios, of course, are those where the interests of the players
are partially, but not completely aligned. In a very influential paper, Crawford and Sobel
(1982) showed that in such intermediate scenarios communication can be beneficial to both
players. I will just discuss a simplified example here for illustration.

Suppose there are ten possible worlds, w1, · · · , w10, and there are ten possible actions,
a1, · · · , a10. Sally prefers outcomes where the action index is one unit higher than the world
index. More precisely, Sally’s utility function uS (as a function from worlds and actions to
real numbers) can be given by

uS(wi, aj) = −(i+ 1− j)2

Robin, on the other hand, prefers scenarios where world index and action index are iden-
tical:

uR(wi, aj) = −(i− j)2

So Sally has an incentive to exaggerate the world index, but not too much. You can
imagine that Sally is a job applicant, Robin is a potential employer, the world index
represents Sally’s level of skill, and the action index represents the kind of job that Robin
is willing to give to Sally (with high indices representing highly demanding and well-paid
jobs, and vice versa). Sally would prefer a situation where Robin slightly overestimates
her skill level so that she gets a higher wage, but if she exaggerates too much, she might
get a job that is much too demanding for her. Robin, on the other hand, prefers to hire
Sally exactly according to her skill level.

It would seem that here, communication is not possible if both players are rational.
Suppose Sally is in world w2. Then she wants Robin to believe she is in w3, and she
will thus say f3.3 However, Robin will anticipate this and map f3 to a2. So Sally should
actually say f4 to induce a3, but Robin might anticipate this as well, etc. After some more

2A strategy s is rationalizable if there is a consistent set of beliefs such that s maximizes the expected
payoff of the player, given these beliefs and the assumption that rationality of all players is common
knowledge.

3From now on, I will assume that [[ fi ]] = {wi} for all indices i unless otherwise stated.
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rounds of reasoning, it will turn out that Sally will always say f10, and Robin will ignore
this and always choose a5 or a6 — the actions that maximizes his expected payoff in the
absence of more specific information.

This reasoning crucially relies on the presence of signals f1, · · · , f10 with a highly spe-
cific meaning. Suppose there are actually only two possible signals, f1−3 (with [[ f1−3 ]] =
{w1, w2, w3}), and f4−10 (with [[ f4−10 ]] = {w4, · · · , w10}). Then it is actually rationalizable
for Robin to believe the literal meaning of both messages, and to map f1−3 to a2, and f4−10

to a7. Also, it is rationalizable for Sally to use each of the two signals if and only if it
is true. This pair of strategies — the honest sender strategy and the credulous receiver
strategy — actually form a Nash equilibrium. This means that no player would have an
incentive to change their strategy if they knew the other player’s strategy.

This example illustrates two important insights: (a) it can be rational for both players
to use communication even if their interests are not completely aligned,4 and (b) whether
or not it is rational to be honest/credulous may depend on the space of available messages.
If Sally could use signals with a very specific meaning, this might tempt her into trying
to deceive Robin, which, if anticipated, would lead to a breakdown of communication. If
only sufficiently vague messages are available, this temptation does not arise here.

Table 3 represents another example that may illustrate this point. It is taken from
Rabin (1990).

a1 a2 a3

w1 10; 10 0; 0 0; 0
w2 0; 0 10; 10 5; 7
w3 0; 0 10; 0 5; 7

Table 3: Partially aligned interests

In w1, Sally’s and Robin’s interests are identical; they both want Robin to take action
a1. So if Sally sends f1, Robin has no reason to doubt it, and he will react to it by
performing a1. Prima facie, it might seem that the same holds for w2. Here, both players
would prefer Robin to take action a2. However, in w3 Sally also prefers Robin to take
action a2, while Robin would prefer a3 if he knew that w3 is the case. So in w3 the interests
of the players diverge, and Sally might be tempted to send the signal f2 both in w2 and
w3. Robin is thus well-advised not to believe f2 in its literal meaning. If he does not know
whether he is in w2 or in w3, his rational action is to hedge his bets and to perform a3 after
all, which guarantees him an expected payoff of 7 (against an expected payoff of 5 for a2).

After performing these reasoning steps, Sally will perhaps convince herself that she has
no chance to manipulate Robin into performing a2. The best thing she can do both in w2

4Without communication, the best thing Robin can do is choose either a5 or a6, which guarantees him a
payoff of -8.5, while Sally would get a payoff of either −10.5 (for a5) or −8.5 (for a6). With communication
in the described way, Robin’s expected payoff rises to −4, and Sally’s to −3.
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and in w3 is to prevent him from performing a1. It is thus rational for Sally to say f23

(where [[ f23 ]] = {w2, w3}) both in w2 and w3. So the situation that is most beneficial for
both players is the one where only the signals f1 and f23 are used, Sally uses each signal if
and only if it is true, and Robin believes her and acts accordingly. In Rabin’s terminology,
f1 is credible in this scenario, while f2 would not be credible. Simplifying somewhat, a
message f is credible (according to Rabin 1990) if it is rational for the sender to use it
whenever it is true provided she can expect it to be believed, and if it is rational for the
receiver to act as if she believed it provided the sender uses it whenever it is true.

Incidentally, f23 would not come out as credible in Rabin’s model. The reason is that
in w2 or w3, Sally might try to convince Robin that they are in w2 and thus to induce
action a2. This is not possible via credible communication, but Sally might believe that
she is capable to outsmart Robin by taking some other action.5

As was argued in the beginning, rationality alone is insufficient to coordinate players in
such a way that signals receive a stable interpretation. This is even the case if signals do
have a conventionalized meaning that is known to all players (as is the case for expressions
from some natural language if both players know that language). Rabin proposes that,
beyond being rational, reasonable sender will always send a true credible message if this
is possible, and reasonable receivers will always believe any credible message.6 In many
cases, this reduces the space of rationalizable strategies significantly and thus ensures a
certain amount of information transmission that is in the interest of both players.

3 Gricean reasoning

The kind of reasoning that was informally employed in the last section is reminiscent
to pragmatic reasoning in the tradition of Grice (1975). First, information can only be
exchanged between rational agents if it is in the good interest of both agents that this
information transfer takes place. This intuition, which Grice captured in his Cooperative
Principle, is implicit in the notion of credibility. Also, Rabin adopts a default assumption
that messages are used according to their conventional meaning, unless overarching ra-
tionality considerations dictate otherwise. This corresponds to Grice’s Maxim of Quality.
Furthermore, the first part of the Maxim of Quantity — “make your contribution as infor-
mative as is required (for the current purpose of the exchange)” — is implicit in the notion
of rationality. For instance, suppose Sally is in world w1 in the scenario described in table
3. Then rationality requires her to transmit the information {w1} if there is a reliable way
of doing so. If she would send a message which Robin would interpret as {w1, w2}, this
would leave Robin in a state where he does not know whether a1 or a2 is the appropriate
action. So sending an under-informative message would be irrational for Sally.

5Thanks to Michael Franke for pointing this out to me.
6In many scenarios, the intuitions about what constitutes a credible message is somewhat less clear

than in the ones presented here. This has led to a lively debate about how credibility should be precisely
defined. The interested reader is referred to Rabin (1992); Farrell (1993); Farrell and Rabin (1996); Zapater
(1997); Stalnaker (2005) and the literature cited therein.
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Despite these similarities, there are some crucial differences between Rabin’s model
and Gricean reasoning. To illustrate this, let us consider a schematic example of a scalar
implicature. The utility structure is given in table 4. Suppose, as before, that there

a1 a2 a3

w1 10, 10 0, 0 9, 9
w2 0, 0 10, 10 9, 9

Table 4: context c1: scalar implicature

are three messages, f1, f2 and f12, with the conventionalized meanings {w1}, {w2}, and
{w1, w2} respectively. However, we now assume that sending a message may incur some
costs for the sender, and that different messages incur different costs. In the specific
example, we assume that c(f1) = c(f12) = 0, and c(f2) = 2, where c(f) is the cost that
the sender has to pay for sending message f . So the sender’s utility is now a three-place
function uS that depends on the actual world, the message sent, and the action that the
receiver takes. If vS(w, a) is the distribution of sender payoffs that is given in table 4 above,
the sender’s overall utility is

uS(w, f, a) = vS(w, a)− c(f)

You can imagine that Robin wants to know who was at the party last night, and Sally
knows the answer. In w1, all girls were at the party, and in w2 some but not all girls were
there. f1 is the message “All girls were at the party”, f2 is “Some but not all girls were at
the party”, and f12 is “Some girls were at the party.” Obviously f2 is more complex than
the other two messages, which are approximately equally complex. This is covered by the
assignment of costs.

According to Gricean pragmatics, Sally would reason roughly as follows: If I am in w1,
I want Robin to perform a1 because this gives me a utility of 10. a1 is what he would do
if he believed that he is in w1. I can try to convince him of this fact by saying f1. It is
not advisable to say f2, because if Robin believed it, he would perform a2, which gives me
a utility of a mere −2. Also saying f12 is not optimal because if Robin believes it, he will
perform a3, leading to a utility of 9. So it seems reasonable to send f1 in w1.

If we are in w2, it might seem reasonable to say f2 because if Robin believes it, he will
perform a2, which is my favorite outcome. However, I will have to pay the costs of 2, so
my net utility is only 8. If I say f12 and Robin believes it, he will perform a3. As f12 is
costless for me, my net utility is 9, which is better than 8. So in w2 I will send f12.

Robin in turn will anticipate that Sally will reason this way. If he is confronted with
the message f1, he will infer that he is in w1, and he will perform a1. If he hears f12, he
will infer that w2 is the case, and he will perform a2 after all.

Sally, being aware of this fact, will reason: This taken into consideration, it is even
more beneficial for me to send f12 if I am in w2 because this will give me the maximal
payoff of 10. So I have no reason to change the plan of sending f1 in w1 and f12 in w2.
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This reasoning leads to a sender strategy where f12 is sent if and only if {w2} is true.
Following Lewis (1969), we will call the set of worlds where a certain message is sent its
indicative meaning (as opposed to its imperative meaning, which is the set of actions that
the receiver might perform upon receiving that message). In our example, the indicative
meaning of f12 thus turns out to be {w2}, which is a proper subset of its literal meaning
{w1, w2}. The information that w1 is not the case is a scalar implicature — “some” is
pragmatically interpreted as “some but not all.”

As in the examples discussed in the previous section, the inferences that are used
here start with a default assumption that messages are used according to their literal
interpretation, but this is only a provisional assumption that is adopted if this is not in
contradiction with rationality. Nevertheless, there are crucial differences. In the ultimate
outcome that is inferred, f12 would not count as credible in the sense of Rabin, because in
w1 it is literally true, but Sally would nevertheless not send it. Likewise, f2 is not credible
in the technical sense because it is not rational for Sally to send it, even if it is true and if
Robin would believe it.

The reasoning pattern that is used here makes implicit use of the notion of the best
response of a player to a certain probabilistic belief. A best response (that need not be
unique) to a belief state is a strategy that maximizes the expected payoff of the player as
compared to all strategies at their disposal, given this belief state. Rational players will
always play some best response to their beliefs.

Suppose an external observer (that might be Robin, Sally who tries to figure out Robin’s
expectations, Robin who tries to figure out Sally’s expectations about his intentions etc.,
or we as modelers) has some partial knowledge about Sally’s belief state. There is some
set of receiver strategies R, and the observer knows that Sally expects Robin to play some
strategy of R, and that Sally cannot exclude any element of R for sure. The observer
does not know which probability Sally assigns to the elements of R. Then any probability
distribution of R (that only assigns positive probabilities to elements of R, to be precise)
is a possible belief state of Sally’s, as far as the observer’s knowledge is concerned. Hence
any best response of Sally’s to such a belief state is a potential best response for Sally
against R. All the observer can predict with certainty if he assumes Sally to be rational
is that she will play some potential best response against R. (Since Sally holds a specific
private belief, she will actually only consider a subset of the potential best responses, but
the observer does not know which one.)

The iterative inference process that was used in the computation of the implicature
above can be informally described as follows:

• Sally provisionally assumes that Robin is entirely credulous, and that he conditions
his actions only on the literal interpretation of the message received. Let us call the
set7 of credulous strategies R0. In the first round of reasoning, Sally might ponder
any strategy that is a potential best response against R0. Let us call this set of
strategies S0.

7There might be more than one credulous strategy because several actions may yield the same maximal
payoff for Robin in certain situations.
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• In the next round, Robin might ponder all strategies that are potential best responses
against S0. The set of these strategies is R1.

• ...

• Sn (Rn+1) is the set of strategies that are potential best responses against Rn (Sn).

• If a certain strategy S (R) cannot be excluded by this kind of reasoning (i.e. if there
are infinitely many indices i such that S ∈ Si (R ∈ Ri)), then S (R) is a pragmatically
rationalizable strategy.

In the example, the scalar implicature arises because the difference between vS(w2, a2)
and vS(w2, a3) is smaller than the costs of sending f2. Suppose the utilities would be as in
table 5, rather than as in table 4. Then the pragmatically rationalizable outcome would be
that Sally uses f2 in w2, while f12 would never be used. Informally speaking, the reasoning
here relies on a tension between the Maxim of Quantity and the Maxim of Manner. The
implicature only arises if the utilities are such that Manner wins over Quantity.

a1 a2 a3

w1 10, 10 0, 0 6, 6
w2 0, 0 10, 10 6, 6

Table 5: context c2: no scalar implicature

In a more realistic scenario, Robin might actually not know for sure what Sally’s precise
preferences are. If we call the utility matrix in table 4 context c1

8, and the utilities in table
5 context c2, Robin might hold some probabilistic belief about whether Sally is in c1 or in
c2. Likewise, Sally need not know for sure which context Robin is in. Now in each round
of the iterative reasoning process, the players will ponder each strategy that is a potential
best response to any probability distribution over contexts and strategies in the previous
round.9

Sally’s reasoning will now start as follows: In w1, I will definitely send f1, no matter
which context I am in. If I am in context c1, it is better to send f12 if I am in w2 because
the costs of sending the more explicit message f2 exceed the potential benefits. If I am in
c2 and w2, however, it is advisable to use f2.

Robin, in turn, will reason: If I hear f1, we are definitely in w1, and the best thing I
can do is to perform a1, no matter which context we are in. If I hear f2, we are in c2/w2,
and I will perform a2. If I hear f12, we are in c1/w2, and I will also play a2.

8I use the term “context” in such a way here that the preferences of the players may vary between
contexts (as well as between worlds), while the literal meaning of messages is invariant between contexts.
So this notion of context has nothing to do with the knowledge state of the discourse participants or the
interpretation of indexical expressions.

9Epistemically speaking, this means that I do not assume any common belief about which context the
players are in, even though they might hold private beliefs.
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So in S1 Sally will infer: f1 will induce a1, and both f2 and f12 will induce a2, no matter
which context Robin is in. Since f12 is less costly than f2, I will always use f1 in w1 and
f12 in w2, regardless of the context I am in. Robin, in R1, will thus conclude that his best
response to f1 is always a1, and his best response to f12 is a2. Nothing will change in later
iterations. So here, the scalar implicature from “some” to “some but not all” will arise in
all contexts, even though context c2 by itself would not license it.

One might argue that this is not quite what happens in natural language use. Here
we predict that f2 would never be used. A more realistic outcome would be that f2 is
still interpreted as {w2}, and that by using it, Sally conveys the message that it is very
important to her that w1 is in fact excluded.

What I believe is going on here is that there are also contexts where Sally does not know
for sure which world she is in. In this case f12 might be sent in w1 after all. Whether or
not Robin derives the implicature in question would depend then on how much probability
he assigns to this option.

To keep things simple, I will confine the technical model to be derived in this article
to scenarios where the sender has complete factual knowledge, i.e. where she knows the
identity of the actual world. A generalization to games where both players have incomplete
information is certainly possible though.

4 The formal model

In this section I will develop a formal model that captures the intuitive reasoning from the
last section.

A semantic game is a game between two players, the sender S and the receiver R. It
is characterized by a set of contexts C, a set of worlds W , a set of signals F , a set of
actions A, a probability distribution p∗, an interpretation function [[ · ]], and a pair of utility
functions uS and uR. In the context of this paper, I will confine the discussion to games
where C, W , F , and A are all finite. p∗ is a probability distribution over W . Intuitively,
p∗(w) is the a priori probability that the actual world is w. We assume that p∗(w) > 0 for
all w ∈ W .

uS ∈ C × W × F × A 7→ R is the sender’s utility function. There is some function
vS ∈ C ×W ×A 7→ R and some function c ∈ F 7→ R such that

uS(c, w, f, a) = vS(c, w, a)− c(f).

uR ∈ C ×W × A 7→ R is the receiver’s utility function. [[ · ]] ∈ F 7→ ℘(W ) is the semantic
interpretation function that maps signals to propositions.

The space of pure sender strategies S = C × W 7→ F is the set of functions from
context/world pairs to signals. The space of pure receiver strategies R = C × F 7→ A is
the set of functions from context/signals pairs to actions.

The structure of the game is common knowledge between the players.
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Some auxiliary notations: If M is a finite and non-empty set, ∆(M) is defined as

∆(M) = {q ∈M 7→ [0, 1]|
∑
x∈M

q(x) = 1}.

This is the set of probability distributions over M . A related notion is:

int(∆(M)) = {q ∈M 7→ (0, 1]|
∑
x∈M

q(x) = 1}.

This is the set of probability distributions over M where each element of M receives a
positive probability. The difference is subtle but important. Both ∆(·) and int(∆(·)) can
be used to model probabilistic beliefs. If we say that a player holds a belief from ∆(C),
say, this means that they may exclude some contexts with absolute certainty. On the other
hand, if Sally believes that Robin plays his strategy according to int(∆(R)) for some set
R ⊆ R, then Sally may have certain guesses, but she is not able to exclude any strategy
from R with certainty. We will use this to capture the intuition that the players may have
biases, but they do not have other sources of established beliefs about the intentions of the
other players beyond the assumption that pragmatic rationality is common knowledge.

Definition 1 Let φ ⊆ W be a proposition and p ∈ int(∆(W)) be a probability distribution
over worlds.

A∗(c, φ, p)
.
= {a∗ ∈ A|a∗ ∈ arga∈Amax

∑
w∈φ

p(w)uR(c, w, a)}

A∗(c, φ)
.
= A∗(c, φ, p∗)

So A∗(c, φ, p) is the set of actions that might be optimal for the receiver if he is in context
c, his (probabilistic) prior belief about the possible worlds is p, and this prior belief is
updated with the information that he is in φ. A∗(c, φ) is the set of actions that the receiver
believes to be optimal in c if he updates the prior belief p∗ with φ.

The central step in the iterative process described above is the computation of the
set of strategies that maximize the expected payoff of a player against some probability
distribution over contexts and strategies of the other player. The notion of a best response
captures this.

Definition 2

• Let r∗ ∈ R be a receiver strategy, σ ∈ ∆(S) a probability distribution over S, and
q ∈ ∆(C) a probability over contexts. (σ, q) represent a belief of the receiver.

r∗ ∈ BR(σ, q)

(r∗ is a best response of the receiver to (σ, q)) iff

∀c ∈ C : r∗ ∈ argr∈Rmax
∑
s∈S

σ(s)
∑
c′∈C

q(c′)
∑
w∈W

p∗(w)uR(c, w, r(c, s(c′, w)))
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• Let s∗ ∈ S a sender strategy, ρ ∈ ∆(R) a probability distribution over R, and
q ∈ ∆(C) a probability over contexts. (ρ, q) represent a belief of the sender.

s∗ ∈ BR(ρ, q)

(s∗ is a best response of the sender to (ρ, q)) iff

∀c ∈ C∀w ∈ W : s∗ ∈ args∈S max
∑
r∈R

ρ(r)
∑
c′∈C

q(c′)uS(c, w, s(c, w), r(c′, s(c, w)))

The set of potential best responses against some set P of strategies of the opposing
player is the set of strategies that are best responses to some belief state that assigns
positive probability exactly to the elements of P .

Definition 3

• Let S ⊆ S be a set of sender strategies. The set of potential best responses to S is
defined as

PBR(S) =
⋃

σ∈int(∆(S))

⋃
q∈∆(C)

r ∈ BR(σ, q)

• Let R ⊆ R be a set of receiver strategies. The set of potential best responses to R
is defined as

PBR(R) =
⋃

ρ∈int(∆(R))

⋃
q∈∆(C)

BR(ρ, q)

Suppose we know that Sally knows which context and world she is in, she believes for
sure that Robin will play a strategy from R, and there is no more specific information that
she believes to know for sure. We do not know which strategy from R Sally expects Robin
to play with which likelihood, and which context Sally believes to be in. Under these
conditions, all we can predict for sure is that Sally will play some strategy from PBR(R)
if she is rational.

The same seems to hold if we only know that Robin expects Sally to play some strategy
from S. Then we can infer that Robin, if he is rational, will certainly play a strategy
from PBR(S). However, we may restrict his space of reasonable strategies even further.
Suppose none of the strategies in S ever make use of the signal f . (Formally put, f ∈
F −

⋃
s∈S range(s).) Then it does not make a difference how Robin would react to f ,

but he has to decide about the imperative meaning of f nevertheless (because receiver
strategies are total functions from context/form pairs to actions). It seems reasonable to
demand (and it leads to reasonable predictions, as we will see below) that Robin should,
in the absence of evidence to the contrary, still assume that f is true. For instance, if
Sally speaks English to Robin, and she suddenly throws in a sentence in Latin (that Robin
happens to understand), Robin will probably assume that the Latin sentence is true, even
if he did not expect her to use Latin.
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If Robin encounters such an unexpected signal, he will have to revise his beliefs. In the
previous paragraph I argued that this belief revision should result in an epistemic state
where f is true. However, no further restrictions on Robin’s belief revision policy will be
stated. In particular, we will not demand that Robin will fall back to p(·|[[ f ]]), i.e. to the
result of updating his prior belief with the literal interpretation of f . Robin will have to
figure out an explanation why Sally used f despite his expectations to the contrary, and
this explanation can bias his prior beliefs in any conceivable way. We have to assume
though that the result of this believe revision is a consistent belief state, and that Robin
will act rationally according to his new beliefs.

We can now proceed to define the iterative reasoning procedure that was informally
described in the previous section.

Definition 4

R0
.
= {r ∈ R|∀c ∈ C∀f ∈ F : r(c, f) ∈ A∗(c, [[ f ]])}

Sn
.
= PBR(Rn)

Rn+1
.
= {r ∈ PBR(Sn)|
∀f ∈ F −

⋃
s∈Sn

range(s)∀c ∈ C∃p ∈ int(∆(W)) : r(c, f) ∈ A∗(c, [[ f ]], p)}

R0 is the set of credulous strategies of the receiver. Sn is the set of potential best
responses of the sender against Rn. Likewise, Rn+1 is the set of potential best responses
of the receiver if he assumes that the sender plays a strategy from Sn in which he always
tries to make sense of unexpected messages under the assumption that they are literally
true.

The sets of pragmatically rationalizable strategies (PRS) are the set of sender strategies
and receiver strategies that cannot be excluded for sure by the iterative reasoning process,
no matter how deeply the reasoning goes.

Definition 5 (S,R) ∈ ℘(S) × ℘(R), the sets of pragmatically rationalizable strategies,
are defined as follows:

S
.
= {s ∈ S|∀n ∈ N∃m > n : s ∈ Sm}

R
.
= {r ∈ R|∀n ∈ N∃m > n : s ∈ Rm}

Note that there are only finitely many strategies in S and R (because we are only
considering pure strategies). Therefore there are only finitely many subsets thereof. The
step from (Sn, Rn) to (Sn+1, Rn+1) is always deterministic. It follows that the iterative
procedure will enter a cycle at some point, i.e. there are n∗ and i∗ such that for all m > n∗

and for all k: (Sm, Rm) = (Sm+k·i∗ , Rm+k·i∗). This ensures that (S,R) is always defined.
As was mentioned above, a strategy is called rationalizable iff a rational player might

use it, provided it is common knowledge that all players are rational. The following for-
mal definition (adapted from Osborne 2003:383) is provably equivalent to this informal
characterization:

13



Definition 6 The strategy pair (s∗, r∗) ∈ S×R is rationalizable iff there exist sets S ⊆ S
and R ⊆ R such that

• S ⊆
⋃
ρ∈∆(R)

⋃
q∈∆(C) BR(ρ, q)

• R ⊆
⋃
σ∈∆(S)

⋃
q∈∆(C) BR(σ, q)

• (s∗, r∗) ∈ S ×R

In words, s∗ and r∗ are rationalizable iff they are elements of some sets S and R such
that every element of S is a best response to some belief of the sender that only considers
strategies in R possible, and every element of R is a best response to some belief of the
receiver that only considers strategies in S possible.

The set of pragmatically rationalizable strategies are in fact rationalizable:

Theorem 1 For all (s∗, r∗) ∈ S×R: (s∗, r∗) is rationalizable.

Proof: As there are only finitely many subsets of S and R and (Sn+1, Rn+1) is a
function of (Sn, Rn) for all n, there must be some m∗ ≥ 0, i∗ > 0 such that for all k, l ≥
0 : (Sm∗+k·i∗+l, Rm∗+k·i∗+l) = (Sm∗ , Rm∗). Let s ∈ S. Then there must be some l∗ such
that s ∈ Sm∗+l∗ = PBR(Rm∗+l∗) and Rm∗+l∗ ⊆ R. So there are ρ ∈ int(∆(Rm∗+l∗)) and
q ∈ ∆(C) such that s ∈ BR(ρ, q). Trivially, ρ can be extended to some ρ′ ∈ ∆(R) by
assigning zero probability to all elements of R − Rm∗+l∗ such that BR(ρ, q) = BR(ρ′, q).
So s ∈

⋃
ρ∈∆(R)

⋃
q∈∆(C) BR(ρ, q).

In a similar way, suppose r ∈ R. Then there must be some l∗ sucht that r ∈ Rm∗+l∗ =
Rm∗+i∗+l∗ ⊆ PBR(Sm∗+i∗+l∗−1) and Sm∗+i∗+l∗−1 ⊆ S. By an argument analogous to the
previous case, it follows that r ∈

⋃
σ∈∆(S)

⋃
q∈∆(C) BR(σ, q). Hence

S ⊆
⋃

ρ∈∆(R)

⋃
q∈∆(C)

BR(ρ, q)

and
R ⊆

⋃
σ∈∆(S)

⋃
q∈∆(C)

BR(σ, q).

So any element of S×R is rationalizable. a

5 Examples

In the light of this formal definition, let us consider some of the previous examples again,
which are repeated here for convenience.
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a1 a2

w1 1; 1 0; 0
w2 0; 0 1; 1

Table 6: Example 1

Example 1 Completely aligned interests: We assume that for all signals f : c(f) = 0.
There is only one context; vS and uR are given in table 6.

Here is the sequence of iterated computation of potential best responses, starting with
the set R0 of credulous strategies. The representation should be self-explanatory; every
function that pairs one of the arguments in the left column with one of the arguments in
the right column is part of the strategy set in question.

R = R0 =

 f1 → a1

f2 → a2

f12 → a1/a2


S = S0 =

[
w1 → f1

w2 → f2

]
Example 2 Completely opposing interests: We still assume “cheap talk”, i.e. all messages
are costless. The utilities are repeated in table 7

a1 a2

w1 1;−1 −1; 1
w2 −1; 1 1;−1

Table 7: Example 2

Here the iterative procedure enters a never-ending cycle:
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R0 =

 f1 → a2

f2 → a1

f12 → a1/a2


S0 =

[
w1 → f2

w2 → f1

]

R1 =

 f1 → a1

f2 → a2

f12 → a1/a2


S1 =

[
w1 → f1

w2 → f2

]
R2 = R0

S2 = S0
...

R =
[
f1/f2 → a1/a2

]
S =

[
w1/w2 → f1/f2/f12

]
So if the interests of the players are completely opposed, no communication will ensue.

Example 3 Rabin’s example with partially aligned interests; the utilities are as in table
8 and all signals are costless.

a1 a2 a3

w1 10; 10 0; 0 0; 0
w2 0; 0 10; 10 5; 7
w3 0; 0 10; 0 5; 7

Table 8: Example 3
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R0 =


f1/f13 → a1

f2 → a2

f3/f23/f123 → a3

f12 → a1/a2


S0 =

[
w1 → f1/f13

w2/w3 → f2

]

R1 =


f1/f13 → a1

f2/f3 → a3

f12 → a1/a2

f23 → a2/a3

f123 → a1/a2/a3


S1 =

[
w1 → f1/f13

w2/w3 → f12/f23/f123

]

R2 =


f1/f13 → a1

f2 → a2

f3 → a3

f12/f23/f123 → a2/a3


¬(R2(f12) = R2(f23) = R2(f123) = a2)

S2 = S0

R3 = R1
...

R = R1 ∪R2

S = S0 ∪ S1

Note that no stable communication will emerge here in w2 and w3. Starting in S0,
Sally has the same set of options in w2 and w3. She may or may not choose to differentiate
between w2 and w3; there are some potential best responses against R1 that do and some
that do not. Depending on Robin’s private belief, he may expect to be able to differentiate
between w2 and w3 on the basis of Sally’s signal (and thus react to some signals with a2),
or he may prefer to play safe and choose a3.

The situation changes drastically if the set of signals is confined to f1 and f23. Then
we have
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R = R0 =

[
f1 → a1

f23 → a3

]

S = S0 =

[
w1 → f1

w2/w3 → f23

]
.

Example 4 Next we will reconsider the example of the scalar implicature discussed
above. Now we have two contexts, c1 and c2. The utilities are given in table 9.

c1 :
a1 a2 a3

w1 10; 10 0; 0 6; 6
w2 0; 0 10; 10 6; 6

c2 :
a1 a2 a3

w1 10; 10 0; 0 9; 9
w2 0; 0 10; 10 9; 9

Table 9: Example 4

The signaling costs are as follows: c(f1) = c(f12) = 0 and c(f2) = 2.

R0 =

 (c1, f1)/(c2, f1) → a1

(c1, f2)/(c2, f2) → a2

(c1, f12)/(c2, f12) → a3


S0 =

 (c1, w1)/(c2, w1) → f1

(c1, w2) → f2

(c2, w2) → f12


R = R1 =

[
(c1, f1)/(c2, f1) → a1

(c1, f2)/(c2, f2)/(c1, f12)/(c2, f12) → a2

]

S = S1 =

[
(c1, w1)/(c2, w1) → f1

(c1, w2)/(c2, w2) → f12

]

The previous example illustrated how pragmatic rationalizability formalizes the intu-
ition behind Levinson’s (2000) Q-Heuristics “What isn’t said, isn’t.” This heuristics
accounts, inter alia for scalar and clausal implicatures like the following:

(1) a. Some boys came in.  Not all boys came in.

b. Three boys came in.  Exactly three boys came in.
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(2) a. If John comes, I will leave.  It is open whether John comes.

b. John tried to reach the summit.  John did not reach the summit.

The essential pattern here is as in the schematic example above: There are two expres-
sions A and B of comparable complexity such that the literal meaning of A entails the
literal meaning of B. There is no simple expression for the concept “B but not A”. In this
scenario, a usage of “B” will implicate that A is false.

Example 5 Levinson assumes two further pragmatic principles that, together with the
Q-principle, are supposed to replace Grice’s maxims in the derivation of generalized conver-
sational implicatures. The second heuristics, called I-Heuristics, says: “What is simply
described is stereotypically exemplified.” It accounts for phenomena of pragmatic strength-
ening, as illustrated in the following examples:

(3) a. John’s book is good.  The book that John is reading or that he has written
is good.

b. a secretary  a female secretary

c. road  hard-surfaced road

The notion of “stereotypically exemplification” is somewhat vague and difficult to trans-
late into the language of game theory. I will assume that propositions with a high prior
probability are stereotypical. Also, I take it that “simple description” can be translated
into “low signaling costs.” So the principle amounts to “Likely propositions are expressed
by cheap forms.”

Let us construct a schematic example of such a scenario. Suppose there are two possible
worlds (which may also stand for objects, like a hard surfaced vs. soft-surfaced road) w1 and
w2, such that w1 is a priori much more likely than w2. Let us say that p(w1)/p(w2) = 3.
There are three possible actions for Robin; he may choose a1 if he expects w1 to be correct,
a2 if he expects w2, and a3 if he finds it too risky to choose.

There are again three signals, f1, f2 and f12. This time the more general expression f12

(corresponding for instance to “road”) is cheap, while the two specific expressions f1 and
f2 (“hard-surfaced road” and “soft-surfaced road”) are more expensive: c(f1) = c(f2) = 5,
and c(f12) = 0.

The interests of Sally and Robin are completely aligned, except for the signaling costs
which only matter for Sally. There are three contexts. In c1 and c2, it is safest for Robin to
choose a3 if he decides on the basis of the prior probability. In c3 it makes sense to choose
either a1 if he only knows the prior probabilities because the payoff of a3 is rather low (but
still higher than making the wrong choice between a1 and a2). In c1, but not in c2 it would
be rational for Sally to use a costly message if this is the only way to make Robin perform
a1 rather than a3. The precise utilities are given in table 10.
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c1 :
a1 a2 a3

w1 28; 28 0; 0 22; 22
w2 0; 0 28; 28 22; 22

c2 :
a1 a2 a3

w1 28; 28 0; 0 25; 25
w2 0; 0 28; 28 25; 25

c3 :
a1 a2 a3

w1 28; 28 0; 0 10; 10
w2 0; 0 28; 28 10; 10

Table 10: Example 5

R0 =

 (c1, f1)/(c2, f1)/(c3, f1)/(c3, f12) → a1

(c1, f2)/(c2, f2)/(c3, f2) → a2

(c1, f12)/(c2, f12) → a3



S = S0 =


(c1, w1)/(c3, w1) → f1/f12

(c1, w2)/(c3, w2) → f2

(c2, w1) → f12

(c2, w2) → f2/f12


R = R1 =

 (c1, f1)/(c2, f1)/(c3, f1)/(c3, f12) → a1

(c1, f2)/(c2, f2)/(c3, f2) → a2

(c1, f12)/(c2, f12) → a1/a3



Here both f1 and f2 retain its literal meaning under pragmatic rationalizability. The
unspecific f12 also retains its literal meaning in c2. In c1 and c3, though, its meaning is
pragmatically strengthened to {w1}. Another way of putting is to say that f12 is prag-
matically ambiguous here. Even though it has an unambiguous semantic meaning, its
pragmatic interpretation varies between contexts. It is noteworthy here that f12 can never
be strengthened to mean {w2}. Applying it to the example, this means that a simple
non-specific expression like “road” can either retain its unspecific meaning, or it can be
pragmatically strengthened to its stereotypical instantiation (like hard-surfaced road here).
It can never be strengthened to a non-stereotypical meaning though.
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Example 6 Levinson’s third heuristics is the M-heuristics: “What is said in an abnor-
mal way isn’t normal.” It is also known, after Horn (1984), as division of pragmatic
labor. A typical example is the following:

(4) a. John stopped the car.

b. John made the car stop.

The two sentences are arguably semantically synonymous. Nevertheless they carry different
pragmatic meanings if uttered in a neutral context. (4a) is preferably interpreted as John
stopped the car in a regular way, like using the foot brake. This would be another example
for the I-heuristics. (4b), however, is also pragmatically strengthened. It means something
like John stopped the car in an abnormal way, like driving it against a wall, making a sharp
u-turn, driving up a steep mountain, etc.

This can be modeled quite straightforwardly. Suppose there are again two worlds, w1

and w2, such that w1 is likely and w2 is unlikely (like using the foot brake versus driving
against a wall). Let us say that p(w1)/p(w2) = 3 again. There are two actions, a1 and
a2, which are best responses in w1 and w2 respectively. There is only one context. The
utilities are given in table 11.

a1 a2

w1 5; 5 0; 0
w2 0; 0 5; 5

Table 11: Example 6

Unlike in the previous example, we assume that there are only two expressions, f and
f ′, which are both unspecific: [[ f ]] = [[ f ′ ]] = {w1, w2}. (Or, alternatively, we might assume
that f1 and f2 are prohibitively expensive.) f ′ is slightly more expensive than f , like
c(f) = 0 and c(f ′) = 1.
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R0 =
[
f/f ′ → a1

]
S0 =

[
w1/w2 → f

]
R1 =

[
f → a1

f ′ → a1/a2

]

S1 =

[
w1 → f
w2 → f/f ′

]

R = R2 =

[
f → a1

f ′ → a2

]

S = S2 =

[
w1 → f
w2 → f ′

]
The crucial point here is that in S0, the signal f ′ remains unused. Therefore any

rationalizable interpretation of f ′ which is compatible with its literal meaning is licit in
R1, including the one where f ′ is associated with w2 (which triggers the reaction a2).
Robin’s reasoning at this stage can be paraphrased as: If Sally uses f , this could mean
either w1 or w2. Since w1 is a priori more likely, I will choose a1. There is apparently no
good reason for Sally to use f ′. If she uses it nevertheless, she must have something in
mind which I hadn’t thought of. Perhaps she wants to convey that she is actually in w2.

Sally in turn reasons: If I say f , Robin will take action a1. If I use f ′, he may take
either action. In w1 I will thus use f . In w2 I can play it safe and use f , but I can also
take my chances and try f ′.

Robin in turn will calculate in R2: If I hear f , we are in w1 with a confidence between
75% and 100%. In any event, I should use a1. The only world where Sally would even
consider using f ′ is w2. So if I hear f ′, the posterior probability of w2 is 100%, and I can
safely choose a2.

If Robin reasons this way, it is absolutely safe for Sally to use f ′ in w2.

Example 7 M-implicatures have been used as motivating example for bidirectional
Optimality Theory (see for instance Blutner 2001) as a framework for formal pragmatics.
It has been shown in Jäger (2002) that the set of (weakly) bidirectionally optimal form-
meaning pairs can be computed by an iterative procedure that has some similarity to
the one given in definition 4. It is thus an interesting questions how the two frameworks
relate.10

10See also Dekker and van Rooy (2000) and Franke (2007) for discussions on how bidirectional OT and
game theory relate.
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Weak bidirectionality predicts that simple forms are paired with stereotypical meanings
and complex forms with atypical meanings. The prediction is even strong though: if the
set of forms in question can be ordered according to complexity in a linear way, like
c(f1) < c(f2) < · · · < c(fn), and the set of meanings has the same cardinality and can also
be ordered in a linear fashion (like p(w1) > p(w2) > · · · > p(wn), then the bidirectionally
optimal pairs are all pairs (fi, wi).

Let us see what pragmatic rationalizability predicts. Suppose there are three worlds
with p(w1) > p(w2) > p(w3). Also, there are three forms with c(f) < c(f ′) < c(f ′) which
are semantically synonymous, namely [[ f ]] = [[ f ′ ]] = [[ f ′′ ]] = {w1, w2, w3}. There are three
actions such that exactly one action is optimal for each world for both players. There is
only one context; the utilities are as in table 12.

a1 a2 a3

w1 5; 5 0; 0 0; 0
w2 0; 0 5; 5 0; 0
w3 0; 0 0; 0 5; 5

Table 12: Example 7

Here is the iterative reasoning sequence:

R0 =
[
f/f ′/f ′′ → a1

]
S0 =

[
w1/w2/w3 → f

]
R1 =

[
f → a1

f ′/f ′′ → a1/a2/a3

]

S = S1 =

[
w1 → f
w2/w3 → f/f ′/f ′′

]

R = R2 =

[
f → a1

f ′/f ′′ → a2/a3

]
Pragmatic rationalizability makes significantly weaker predictions than bidirectional

OT. We do predict a division of pragmatic labor in the sense that the cheapest form, f , is
specialized to the most probable interpretation w1 (and the corresponding best action a1),
while the more complex forms f ′ and f ′′ are specialized to the non-stereotypical meanings.
However, no further specialization between f ′ and f ′′ is predicted.

This seems to be in line with the facts. Next to the two expressions in (4), there is a
third alternative, which is still more complex than (4b).
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(5) John brought the car to a stop.

Also, there are various non-standard ways of making a car stop. The most probable way
besides using the foot brake is perhaps to use the hand brake, driving against a wall is
even less likely. So bidirectional OT would predict that (4b) carries the implicature that
John used the hand brake, while (5) is restricted to even more unusual ways of stopping a
car. The present framework only predicts that both (4b) and (5) convey the information
that John acted in a somehow non-stereotypical way. While intuitions are not very firm
here, it seems to me that the predictions of bidirectional OT might in fact be too strong
here.

Example 8 Here is another example that has been analyzed by means of bidirectional
OT in the literature. Krifka (2002) observes that the pragmatic interpretation of number
words follows an interesting pattern that is reminiscent of Levinson’s M-heuristics:

“RN/RI principle:

a. Short, simple numbers suggest low precision levels.

b. Long, complex numbers suggest high precision levels.”

(Krifka 2002:433)

This can be illustrated with the following contrast:

(6) a. The distance is one hundred meter.

b. The distance is one hundred and one meter.

The sentence (6b) suggests a rather precise interpretation (with a slack of at most 50
cm), while (6a) can be more vague. It may perhaps mean something between 90 and
110 meter. Actually, (6a) is pragmatically ambiguous; depending on context, it can be
rather precise or rather vague. The crucial observation here is: A shorter number term
like “one hundred” allows for a larger degree of vagueness than a more complex term like
“one hundred and one.”

Krifka also observes that the degree of vagueness of a short term can be reduced by
making it more complex — for instance by modifying it with “exactly”:

(7) The distance is exactly one hundred meter.

Krifka (2002) accounts for these facts in terms of bidirectional OT, assuming a general
preference for vague over precise interpretation. Krifka (2007) contains a revised analysis
which employs game theoretic pragmatics. Space does not permit a detailed discussion of
Krifka’s proposals; in the following I will just briefly sketch how pragmatic rationalizability
accounts for Krifka’s observations.
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Suppose there are two equiprobable worlds, w1 and w2. Suppose the distance in question
is exactly 100 meter in w1 and 101 meter in w2. There are three signals: f1 (“The distance
is one hundred meter.”, f ′1 (“The distance is exactly one hundred meter.”) and f2 (“The
distance is one hundred and one meter.”). So we have [[ f1 ]] = [[ f ′1 ]] = {w1}, and [[ f2 ]] = {w2}.
Let us assume that c(f1) = 0 and c(f ′1) = c(f2) = 4.5. There are two actions. a1 is
optimal for w1 and a2 for w2. Furthermore, there are two contexts. In c1, precision is very
important. This means that the differential costs of using an expensive message are lower
than the difference in utility between a1 and a2. In c2 it is the other way round.

Table 13 gives the numerical utilities:

c1 :
a1 a2

w1 10; 10 0; 0
w2 0; 0 10; 10

c2 :
a1 a2

w1 4; 4 0; 0
w2 0; 0 4; 4

Table 13: Example 8

Here is the iterative reasoning sequence:

R0 =


(c1, f1) → a1

(c1, f
′
1) → a1

(c1, f2) → a2

(c2, f1) → a1

(c2, f
′
1) → a1

(c2, f2) → a2


S0 =

[
(c1, w1)/(c2, w1)/(c2, w2) → f1

(c1, w2) → f2

]

R = R1 =


(c1, f1) → a1/a2

(c1, f
′
1) → a1

(c1, f2) → a2

(c2, f1) → a1/a2

(c2, f
′
1) → a1

(c2, f2) → a2



S = S1 =

 (c1, w1) → f1/f
′
1

(c1, w2) → f2

(c2, w1)/(c2, w2) → f1


The two complex expressions f2 and f ′1 are alway interpreted in a precise way un-

der the PRSs. The simple expression f1 is pragmatically ambiguous between a precise
interpretation (in c1) and a vague interpretation (in c2).
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6 Related work

The essential intuition behind the proposal laid out here is that the literal meaning of
signals constitutes their default interpretation, and that rational communicators decide
about their communicative strategies by iteratively calculating the best response to this
default strategy. Similar ideas have been proposed at various places in the literature,
sometimes implicitly, even though the precise technical implementation offered here is to
my knowledge novel.

As briefly discussed above, Rabin (1990) gives a definition when a message should count
as credible. Within the present framework, his definition could be recast as: a message f
is credible iff for each n and for each s ∈ Sn, [[ f ]] ⊆ s−1(f). This equivalence only holds
under certain side conditions pertaining to the space of available messages, but essentially
Rabin’s definition of credibility relies on an iterated calculation of potential best responses,
starting with the credulous receiver strategies.

Stalnaker (2005) proposes an informal notion of credibility that could be interpreted
as follows: f is credible iff there is some s ∈ S0 such that f ∈ range(s), and for each
s ∈ S0 : s−1(f) ⊆ [[ f ]].

Benz and van Rooij (2007) develop a pragmatic interpretation procedure that can,
in the present framework, be approximated by the rule: Sally should choose her signals
according to S0, and Robin should interpret them according to R1. They assume an
additional constraint though requiring that only honest strategies will be admitted in S0.

Both Jäger (2007) and Franke (2008) propose to calculate the pragmatically licit com-
munication strategies by starting with a strategy based on the literal interpretation of
signals and iteratively computing the best response strategy until a fixed point is reached.
So these approaches are very similar in spirit to the present one. Nevertheless the three
theories differ considerably in detail. In Jäger (2007) I assumed a cautious update rule
where Sn+1/Rn+1 are mixed strategies that differ only infinitesimally from Sn/Rn. The
reasoning process that is modeled this way is quite unlike the Gricean inference schemes
that are dealt with in the present framework.

Franke (2008) is conceptually even more similar. The main differences are that Franke
uses a particular honest sender strategy — rather than the set of all credulous receiver
strategies — as the starting point of the iteration process, and that he uses deterministic
best response calculation, rather than potential best responses, as update rule.

7 Conclusion

This article aimed at introducing readers with a background in linguistic semantics and
pragmatics to some of the issues that game theorists worry about when study the conditions
for communication between rational agents. The question whether or not it is rational to
communicate at all in a particular situation has largely been ignored in the linguistic
research tradition because a complete alignment of interests is usually assumed. The game
theoretic research has shown that communication can be rational even if the interests of
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the interlocutors are only partially aligned.
A second issue that is prominent in the game theoretic discussion is the role of conven-

tionalized meaning of messages in situations where a simple-minded assumption of honesty
and credulity is in partial conflict with rationality. This is also one of the core concerns
of Gricean pragmatics. I proposed a game theoretic formalization of Gricean reasoning
that both captures the intuitive reasoning patterns that are traditionally assumed in the
computation of implicatures, and that addresses the problem of the credibility of signals
under partially aligned interests of the interlocutors.
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