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Abstract

In the early seventies, the bio-mathematician George Price developed a simple
and concise mathematical description of evolutionary processes that abstracts away
from the specific properties of biological evolution. In the article it is argued that
Price’s framework is well-suited to model various aspects of the cultural evolution
of language. The first part of the paper describes Price’s approach in some detail.
In the second part, two case studies about its application to language evolution are
presented.

1 Language evolution

Ever since the development of the evolutionary model in biology in the mid-nineteenth
century, people have noted a certain affinity of the evolutionary logic and the development
of natural languages. The following well-known citation from Darwin’s The descent of man
perfectly captures this intuition:

“The formation of different languages and of distinct species, and the proofs
that both have been developed through a gradual process, are curiously parallel.
. . . Max Müller has well remarked: ‘A struggle for life is constantly going on
amongst the words and grammatical forms in each language. The better, the
shorter, the easier forms are constantly gaining the upper hand, and they owe
their success to their inherent virtue.’ To these important causes of the survival
of certain words, mere novelty and fashion may be added; for there is in the
mind of man a strong love for slight changes in all things. The survival or
preservation of certain favoured words in the struggle for existence is natural
selection.” (Darwin 1871:465f.)
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During the twentieth century, the theory of evolution in biology underwent a stunning
development. The insights of genetics into the mechanism of heredity clarified the nature
of the replication process, leading to the so-called “modern synthesis” of Darwinism with
Mendelian genetics (or “Neo-Darwinism”, as it is sometimes called). Mathematical frame-
works like population genetics or evolutionary game theory led to very exact quantitative
models that can be tested empirically with high precision.

In stark contrast to these developments in biology, the evolutionary perspective on nat-
ural languages largely remained a metaphor in linguistics during most of the last century.
This is undoubtedly due to the fact that the predominant structuralist paradigm focuses
on synchronic descriptions of languages rather than on their diachronic development. Also,
generative grammar and related frameworks employ mathematical techniques from alge-
bra and formal language theory, which are non-quantitative. As a consequence, languages
appear to be discrete objects, while evolution requires a conceptualization of the domain
of interest in terms of gradual differences and continuous change.

Nonetheless, the idea of language evolution has attracted a good deal of attention within
the last ten years or so. There are at least three independent intellectual developments
that led to this renaissance:

• Practical experience has shown that quantitative, statistical models of linguistic phe-
nomena are by far more successful in computational linguistics then the more tradi-
tional approaches using discrete mathematics. As a result, quantitative models are
taken seriously again in theoretical linguistics. These approaches lends themselves
more readily for evolutionary modelling than the traditional algebraic framework (see
for instance the work of Kirby 1999 or Wedel 2004).

• Evolutionary techniques are firmly established by now in neighbouring disciplines
like artificial intelligence or artificial life. This serves as a source of inspiration for
linguists with a background in computer science (like the work of Luc Steels and his
co-workers, see for instance Steels 1996).

• Thanks to the work of popularizers like Richard Dawkins (Dawkins 1976) or Daniel
Dennett (Dennett 1995), the idea of applying the Darwinian logic to cultural phe-
nomena has gained some currency in the humanities in general. Various researchers
from historical linguistics have taken up this approach (see for instance Croft 2000
or Ritt 2004).

Partially in parallel, there is also a revived interest in investigating the biological evo-
lution of the human language faculty, as witnessed by publications like Pinker and Bloom
(1990), Nowak et al. (2002), or Hauser et al. (2002).

So while there is a strong interest now in evolutionary approaches to linguistic issues,
there is little consensus so far about how exactly language evolution should be conceptual-
ized. The main topic of debate, as far as I can see, is the issue what are the replicators in
language evolution. The term “replicator” (in the sense of a unit of evolution) was coined
by Richard Dawkins in his 1976 book The Selfish Gene. According to Dawkins’ view, the
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basic unit of evolution in biology is the gene, the physical carrier of heritable information.
Dawkins also argues that any evolutionary process must be based on a population of repli-
cators, i.e. counterparts of genes. He actually invents a new term, “meme”, as a unit of
replication in cultural evolution.

If this logic is valid, the first step in developing a theory of language evolution is to
identify the linguistic units of replication. This proves to be a surprisingly difficult task.
There are essentially three modes of replication that play a role in the acquisition and
usage of natural language:

1. the biological inheritance of the human language faculty,

2. first language acquisition, which amounts to a vertical replication of language com-
petence from parents (or, more generally, teachers) to infants, and

3. imitation of certain aspects of language performance in language usage (like the
repetition of words and constructions, imitation of phonetic idiosyncrasies, priming
effects etc.)

It is fairly clear what replicators are for the biological evolution of the language faculty.
Since this is just one aspect of biological evolution in general, the carriers of heritable
information are of course the genes. For the other two aspects of language evolution, the
question is not so easy to answer. What are replicators in iterated language acquisition —
entire I-languages? Single Rules? Parameters? Lexical items? The same difficulties arise
with respect to replication via language usage. Candidates for the replicator status are
phonemes, morphemes, words, constructions etc., or single instances of them (i.e. features
of utterances), or mental representations of such instances (so-called “exemplars”) etc. A
considerable amount of the recent literature on language evolution is actually devoted to
foundational questions like this one.

The main point I want to make in this paper is that this issue is actually of little
relevance in my view. For one thing, I tend to be sceptical about the usefulness of method-
ological discussions anyway. The proof of the pudding is in the eating — a certain approach
is useful if (and only if) it leads to insightful analyses of linguistic facts. If this is missing,
even the most sophisticated discussion of foundational issues will not make up for the lack
of it. But quite apart from this general issue, I will try to argue that the programme for
analysing cultural evolution that can be extracted from the work of George Price is per-
haps better suited to conceptualize language evolution than Dawkins’ memetics or related
approaches that assume a very detailed analogy between the cultural and the biological
sphere.

2 George Price’s “General Theory of Selection”

George Price was certainly one of the more remarkable figures in twentieth century science,
even though he has remained relatively obscure even in evolutionary biology, where he
made several highly significant contributions. He was a trained chemist, but he dabbled
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in many intellectual disciplines during his life, including computer science, economics,
theology and political science. In 1967, by the age of forty-five, he turned his interest
to evolutionary biology. Within the few years until his untimely death in 1975, he made
at least three breakthrough discoveries there: he contributed decisively to the advent of
evolutionary game theory (Smith and Price 1973), he developed the modern interpretation
of R.A. Fisher’s so-called “Fundamental Theorem of Natural Selection” (Price 1972b), and
he developed the Price equation, a very simple and concise mathematical framework to
describe evolution via natural selection (Price 1970, 1972a). A very recommendable short
biography of this remarkable person is given by Schwartz (2000). Price’s contributions to
evolutionary biology are described in some detail by Frank (1995).

Around 1971, Price wrote a manuscript titled “The Nature of Selection”. It was only
published posthumously in 1995 (Price 1995). There he sketched a programme for a general
theory of evolution (or “selection”, as he calls it) which includes biological evolution in the
neo-Darwinian sense but encompasses various other kinds of natural and cultural evolution
as well. The abstract of the paper starts with:

“A model that unifies all types of selection (chemical, sociological, genet-
ical, and every other kind of selection) may open the way to develop a gen-
eral ‘Mathematical Theory of Selection’ analogous to communication theory.”
(Price 1995:389)

The first paragraph of the paper deserves to be quoted in its entirety:

“Selection has been studied mainly in genetics, but of course there is much
more to selection than just genetical selection. In psychology, for example,
trial-and-error learning is simply learning by selection. In chemistry, selec-
tion operates in a recrystallisation under equilibrium conditions, with impure
and irregular crystals dissolving and pure, well-formed crystals growing. In
palaeontology and archaeology, selection especially favours stones, pottery, and
teeth, and greatly increases the frequency of mandibles among the bones of
the hominid skeleton. In linguistics, selection unceasingly shapes and reshapes
phonetics, grammar, and vocabulary. In history we see political selection in
the rise of Macedonia, Rome, and Muscovy. Similarly, economic selection in
private enterprise systems causes the rise and fall of firms and products. And
science itself is shaped in part by selection, with experimental tests and other
criteria selecting among rival hypotheses.” (Price 1995:389, emphasis added)

Even though Price did not develop a theory of selection in the sense he probably envi-
sioned it, the paper gives good arguments why the Price equation should be the cornerstone
of such a theory. In the remainder of this section, I will recapitulate the main argumen-
tation of Price’s paper. The interested reader is of course referred to the original article,
which is very readable and not overly technical.
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First a note on terminology: Price’s notion of “selection” is not completely identical
to the notion of “evolution” that the present paper deals with. Selection can be a one-
time process, starting with one state and terminating with a second state. Evolution (via
selection) (as I use the term) is necessarily an iterated process, spanning several generations.
Each generation step is one selection step in the Pricean sense. (Of course there are also
notions of “evolution” that do not involve selection at all, which are not further considered
here.)

This being said, let us turn to the main points of Price’s paper. He distinguishes two
senses of the term “selection” (which are both to be covered by a theory of selection). If you
go to the marketplace and buy a few apples, you select among all the apples on sale those
that you want to buy. This is subset selection, because the selected items form a subset of
the set on which selection operates. The Darwinian notion of selection is different because
selection operates on the parent generation while the selected items are the offspring (and
these two sets are disjoint). Nevertheless, these two notions can be unified. In either case,
we have two points in time, t (before selection takes place) and t′ (after selection takes
place). Furthermore, there is a set (or a “population”) P of entities at t which selection
operates on, and a set P ′ of selected items at t′. In case of subset selection, P ′ ⊆ P . In
Darwinian selection, P is the parent generation and P ′ the offspring. In the example with
selection of apples at the marketplace, P is the set of apples that are on sale, and P ′ is the
set of apples that you buy.

Price points out that P and P ′ need not be finite sets. He also considers an example
involving various chemical liquids that are filled from certain containers (time t) into other
containers (time t′). Such non-atomic entities like liquids are usually mathematically mod-
elled as infinite (in fact, continuous) sets. The central point for Price’s notion of selection
is that P and P ′ are measurable quantities. In case of finite sets, the most natural measure
is just counting, but continuous measure functions like size, mass or volume, or even more
abstract ones like probability, are also applicable. So P and P ′ are just two measurable
quantities. Whatever measure function is applied, the number of items in P is denoted by
w, and likewise w′ is the number of items in P ′. w and w′ are non-negative real numbers.

Neither need P and P ′ be sets of objects of the same nature. Price considers Mus-
sorgsky’s creation of “Pictures of an Exhibition” as a case of selection. P is the set of
paintings that the composer saw in the exhibition, and P ′ is the set of musical pieces that
were inspired by paintings from P . Another example would be citations: P is a set of
journal articles, and P ′ the set of references (in the sense of lines in the bibliography of
some other journal article) to elements of P . Or P could be manuscripts and P ′ copies
of the corresponding books and articles, etc. If P and P ′ are of a different nature, the
measures that are used to obtain w and w′ may of course be different. (For evolution via
selection, this aspect is of little relevance because the selection process can only be iterated
if P ′ is of the same nature of P .)

The next central ingredient of Price’s theory is the idea that P is partitioned into a
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disjoint portions or bins. So technically we have a family of quantities p1, . . . , pn, such that

P =
⋃
i≤n

pi (1)

pi ∩ pj = ∅ if i 6= j (2)

In the apple example, the obvious partition would be the one where each bin contains
exactly one apple. But other partitions are possible as well—like partitioning the apples
according to size, or to color, or to price.

To take another example that does not involve subset selection: let P be the set of
genes at a certain locus in the parent generation, and P ′ the corresponding set in the
offspring generation. Then P could be partitioned into single molecular copies of the gene
in question, i.e. each bin contains one DNA molecule. Alternatively, one might partition P
according to alleles. In the latter case, we have few bins, each containing many molecules.

The set P ′ is partitioned as well, into the same number of bins as P . So we have

P ′ =
⋃
i≤n

p′i (3)

p′i ∩ p′j = ∅ if i 6= j (4)

Intuitively, there should be a natural relation between the content of of some bin p′i and the
content of the corresponding bin pi. Let us again consider subset selection, as illustrated
with the apple buying scenario. If I buy the apple in pi, then p′i = pi. If, however, I do not
buy pj, then p′j = ∅ is just empty. So p′i is always the set of apples from pi that I bought.

In the Mussorgsky example, p′i is the set of musical pieces that were inspired by paintings
from pi. As for citations, p′i is the set of references to articles in pi, etc. In the examples
with genes, p′i is the set of DNA molecules that are direct copies of some molecule in pi (at
the relevant locus). Of course p′i may be empty, or it may contain many more molecules
than pi.

The latter example is instructive because gene copying is mostly but not always faithful.
Suppose we partitioned P according to alleles.1 Then all molecules in p1 will be instances
of the same allele — call it r, while all molecules in p2 are instances of a different allele,
say s. DNA copying may involve mutations from s to r and vice versa. Since p′1 contains
exactly the copies of genes in p1 (including the non-faithful copies), p′1 may contain s-alleles
next to r-alleles. The crucial point here is that the partitioning of P ′ is induced by the
partitioning of P and the copying relation, not by some independent criterion (even if such
a criterion was used to partition P ). In Price’s own words (p. 392):

“We will say that a set P ′ is a corresponding set to a set P if there exists
a one-to-one correspondence such that, for each member pi of P there is a
corresponding member p′i of P ′ which (if not empty) is composed partly or

1According to Merriam-Webster, an allele is “any of the alternative forms of a gene that may occur at
a given locus.”
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wholly of the same material of pi, or has been derived directly from pi, or
contains one or more replicas of pi or some part of pi, or has some other special
close relation to pi” (emphasis in the original)

(Note that Price does not cleanly distinguish between the set of objects P and the set of
bins that jointly constitute P , and—in case pi is a singleton set—between the set and its
only element. No confusion should arise from this though.)

The measure functions that assigned the numbers w and w′ to P and P ′ respectively
can also be applied to the various bins of P and P ′. So wi is the amount that is in bin pi,
and w′i is the amount in p′i.

The quantity

f =
w′

w

is the growth rate or fitness of the entire system. If w and w′ are just the number of objects
in P and P ′ respectively, this is the average number of “descendants” that an element of
P has in P ′. Likewise, we can consider bin-wise fitness

fi =
w′i
wi

which gives the average number of descendants of an object from pi.
A transition from a set P to a set P ′ as described so far can only be described as

involving selection (in a non-technical sense) if the correspondence between elements of P
and elements of P ′ is not random. Rather, whether or not there are many descendants of pi
in p′i (i.e., whether fi is high or low) should be correlated with some features of the objects
in pi. Features that lead to high fitness are selected for. A smart apple buyer, for instance,
will only select high-quality apples (which can be judged from color, surface texture etc.),
so only bins containing high quality apples in P will have a non-empty corresponding set
in P ′. Slightly more technically, high quality apples have a higher fitness than low quality
ones. In this case, there is selection for the quality of apples. Analogously, influential
papers have a high fitness according to the citation scenario because their corresponding
sets contain many citations. An allele has a high fitness if many copies of it are transmitted
from generation to generation, etc.

It sounds plausible to say that apples are selected for their quality etc. However,
Price’s framework is purely quantitative, and therefore selection—in the technical sense—
can only operate on quantifiable characters (like size of an apple, or its price, its weight,
the percentage of its surface which is red, ...). So let us say that there is is some function
µ that measures some quantifiable trait of the objects in P (like total weight, total price
etc.). Likewise µ′ measures a corresponding trait of objects in P ′. Note that µ measures
this feature in a cumulative way—µ(P ) is the total weight (size, price, ...) of all objects in
P taken together. What we are actually interested in though is the average value of some
objects from P (P ′) under µ (µ′). Let us call these average values x (before selection) and
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x′ (after selection). They are computed by the formulas:

x =
µ(P )

w
(5)

x′ =
µ′(P ′)

w′
(6)

If P or P ′ are non-discrete sets, x and x′ can be interpreted as something like the average
density or concentration of the character µ. The average value of µ can also be calculated
for the separate bins:

xi =
µ(pi)

wi

x′i =
µ′(p′i)

w′i

(If w′i = 0 for some i, we simply stipulate that x′i = 0 to make sure that this term is always
defined.)

Suppose µ is a feature that is usually correlated with high fitness—like a large amount
of red skin of an apple. Then objects from P with a high value under µ will have many
counterparts in P ′. Let us also assume that the degree of µ is passed on with little change
from objects in P to their counterparts in P ′. In this case, we expect that the average
value of µ in P ′—x′—will be higher than x. Conversely, if a high value of µ usually goes
with low fitness, x′ will be smaller than x. The degree of change of the average value of µ
is notated as ∆x. It is defined as

∆x = x′ − x

Again this can also be calculated for each bin separately, so we have

∆xi = x′i − xi

Using these definitions, the dynamics of selection can concisely be expressed by the Price
equation:

f∆x = Cov(fi, xi) + E(fi∆xi). (7)

We will have to look at each term of this equation separately. The term on the left hand
side, f∆x, is the difference in the average value of µ between t′ (after selection) and t
(before selection), multiplied by fitness. So the entire equation is a difference equation.
(This fact is a bit blurred by the fact that the difference of interest, ∆x, is multiplied
with f . However, we could as well divide both sides by f to obtain a canonical difference
equation.) For the more interesting case that P and P ′ are sets of the same kind of objects
and selection is iterated many times, such an equation can be seen as an update rule that
describes the transition from one point in time to the next. More specifically, the equation
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Covariance ≈ slope of linear approximation

• (A) Cov(x, y) = 0: no dependency between x and y

• (B) Cov(x, y) > 0: high values of x correspond, on average, to high values of y and
vice versa

• (C) Cov(x, y) < 0: high values of x correspond, on average, to low values of y and
vice versa

Figure 1: The concept of covariance

tells us how the value of x evolves over time. It is important to notice that it is up to the
modeller to decide which quantitative character they want to study. x could be the average
number of children that a speaker of Esperanto has, but it can also be the probability that
a random sentence has OV word order. So essentially the Price equation can be used to
study the evolution of any quantitative character, provided the dynamics of the system is
well-understood. This, of course, is the difficult part, which is captured by the right hand
side of the equation.

The first term, Cov(fi, xi), stands for the covariance between fitness and the value of xi,
as compared between the different bins. Intuitively, the covariance of two random variables
measures how strongly these two variables vary together. If the variables in question are
independent of each other, the covariance is 0. If high values of the first variable tend to
co-occur with high values of the second variable and vice versa, the covariance, is positive,
and if high values of one variable mostly co-occur with low values of the other variable,
covariance is negative. This is graphically illustrated in figure 1. Technically the covariance
of the two random variables X and Y is defined as

Cov(Xi, Yi) = (
∑
i

p(i)XiYi)− (
∑
i

p(i)Xi)(
∑
i

p(i)Yi), (8)

where the index i gives the number of an event and p(i) the probability of this event.
In the Price equation, the events in question are the bins 1, . . . , n. If some object is

picked out from P at random, the probability that it comes from p(i) is wi

w
. So spelled out,
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the first term on the right hand side expands to

Cov(fi, xi) = (
∑
i

wi
w
fixi)− fx. (9)

(I made tacit use from the fact that the average fitness is f , and the average value of xi is
x.)

If bins with a high average value of µ, i.e., with a high xi, tend to have many offspring
(meaning: large correspondence sets in P ′) and vice versa, there is a positive correlation
between xi and fi. This means that Cov(fi, xi) is positive. Conversely, if high values of xi
are correlated with low fitness, Cov(fi, xi) is negative. This is intuitively unsurprising—if
a certain character is correlated with high fitness, we expect it to be strongly represented
in the next generation, i.e. ∆x should be positive. Likewise, if a high value of µ is an
indicator of low fitness, the average value of µ will decrease over time. So the first term
on the right hand side simply covers the essential intuition of Darwinism: characters that
lead to high fitness will spread in the population.

This logic only works if the degree of µ is passed on faithfully from parents to offspring.
Price’s framework does not require copying fidelity though. Unfaithful reproduction of
µ is dealt with by the second term, E(fi∆xi). E(X) is the expectation value—i.e., the
weighted average—of the random variable X. So the second term of the Price equation
can be spelled out as

E(fi∆xi) =
∑
i

wi
w
fi∆xi. (10)

What is the value of ∆xi? We start with the apple example again. Suppose pi contains
a single apple that is selected. Then p′i = pi, and x′i = xi, hence ∆xi = 0. If, however,
the apple in pi is not selected, both x′i = 0 and fi = 0. Hence fi∆xi = 0 as well. So in
this scenario, E(fi∆xi) = 0. Here each “surviving” object in P ′ is exactly identical to its
counterpart in P , hence replication is entirely faithful. Let us consider an example where
this is not the case.

Suppose there are two alleles of some gene, s and t. The fitness of s-genes is exactly 2,
i.e. each s-gene has exactly two offspring. The fitness of the t-allele is only 0.5—only every
second copy has one offspring on average. Also, suppose that there are 300 copies of the
gene in question in P , 100 s-alleles and 200 t-alleles. So we have

w = 300

w′ = 300

ws = 100

wt = 200

w′s = 200

w′t = 100

f = 1
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fs = 2

ft =
1

2

Note that w′s is not necessarily the number of s-alleles in the offspring generation, but
the number of offspring that have an s-parent! In fact, we assume that only t-alleles are
entirely faithfully reproduced. An s-allele, however, has a 50% chance to mutate into an
t-allele.

Let µ = µ′ be the function that counts the number of s-alleles in a set. Then we have

µ(P ) = 100

µ(ps) = 100

µ(pt) = 0

x =
1

3
xs = 1

xt = 0

µ′(p′s) = 100

µ′(p′t) = 0

x′ =
1

3

x′s =
1

2
x′t = 0

∆x = 0

∆xs = −1

2
∆xt = 0

This means that the first term of the Price equation is positive:

Cov(fi, xi) =
1

3

x has a high value—1—within the s-subpopulation, and a low value—0—within the t-
subpopulation. Also, s-alleles have a higher fitness than t-alleles. So high values of x go
with high fitness and vice versa. Hence the covariance is positive.

The second term is negative though:

E(fi∆xi) = −1

3

This is so because the value of x may change from 1 to 0 under mutation, but not vice
versa. So the average difference between x′ and x under replication is negative. In the
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example the number are chosen in such a way that P and P ′ actually have an identical
composition and the two terms on the right hand side cancel each other out.

In this example, the covariance term covers the change of x that is due to selection, while
the second term takes care of changes that are due to mutation. Under this interpretation,
the Price equation is one way to express the so-called replication-mutation dynamics that
is well-studied in theoretical biology (but mostly by different analytical means, especially
by the so-called quasi-species model).

Depending on how the P -population is split into bins, the two terms of the equation may
also receive a different interpretation though. Suppose there are two types of individuals
in a species, altruistic ones and selfish ones. These are genetically determined traits.
Altruistic individuals, by definition, behave in such a way that their interaction partners
profit from the interaction, i.e. they receive a higher fitness than without the interaction.
The altruists themselves do not profit from the interaction. (We may think of the two
strategies of the well-known Prisoner’s Dilemma in this context.)

Now suppose the population is structured into groups in such a way that everybody
only interacts with partners within the same group. One possible application of the Price
equation here is to identify the partition cells pi with those groups. Then fi is the fitness,
i.e. the average reproduction rate, of an entire group. Let us furthermore assume that
there are no mutations whatsoever and reproduction is asexual, so altruistic parents will
have altruistic offspring only, and selfish parents selfish offspring.

If a group pi contains many altruistic individuals, many of its member will benefit from
interaction with the altruists and receive a high fitness. So fi will be high. Conversely, a
group consisting mainly of egoists will receive a low average fitness. So if xi is the relative
frequency of altruists within group pi, high values of xi go with high fitness and vice versa.
So the first term of the equation, Cov(fi, xi), is positive. This term measures selection
between groups. The fact that it is positive means that groups with many altruists have
an advantage over groups with many egoists.

The second term, however, measures selection within groups. On average a selfish
individual will have more offspring than an altruistic one. So the percentage of altruists
within one group will decrease from generation to generation. Hence ∆xi (and therefore
also fi∆xi) will be negative for all i, which means that E(fi∆xi) is also negative. So
the qualitative interpretation here is that between-group selection favors altruism, while
within-group selection favors selfishness. Depending on the relative strength of these two
forces, the term on the left hand side will be positive, zero or negative. If between-group
selection is strong enough, altruism may actually survive in the long run.

In biology, the Price equation is used mainly to study this kind of competition between
group level and individual level selection. However, as the previous example illustrated,
the framework is general enough to accommodate very diverse scenarios.

If this framework is used to model population dynamics, we are forced to assume
discrete time steps, and one generation is completely replaced by the next generation when
going from t to t′. A more realistic model would assume that some small portions of the
population reproduce with small time intervals. If the population is large enough, this can
legitimately be approximated by a process with continuous time. In Price (1972a) it is
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shown that this continuous time approximation can be described by the following version
of the Price equation:

Ė(x) = Cov(fi, xi) + E(ẋi) (11)

The expression φ̇ gives the first derivative of some variable φ against time. Intuitively this
is the rate of change of that variable. If φ̇ = 0, the value of φ does not change. φ̇ > 0
means that the value of φ increases and vice versa.

Equation (11) is a differential equation—actually one of a particularly well-behaved
kind, because it is an ordinary autonomous differential equation. By choosing different
quantitative traits for µ/x, we can use (11) to set up a system of such differential equations
that describes the dynamics of the domain which is modelled. The theory of this kind of
equations is well-understood. In many cases it is even possible to solve them analytically,
and even if this is not possible, there are established techniques to predict the qualitative
long-run behaviour of the dynamical system in question. Also, there are good numerical
algorithms to study the behaviour of such a system.

It is important to appreciate that the Price equation (both the discrete time version
and the continuous time version) is a tautology. It follows directly from the assumptions
about P and P ′, their correspondence relation, the partition into bins etc. Even though
the derivation of the actual equation is not straightforward (and will not be explained
here—the interested reader is referred to literature, for instance to Frank (1995)), it does
not add any new information. The equations simply makes the implicit assumptions of the
model explicit.

The main reason that I find Price’s approach appealing for studying language evolution
is not that it leads to systems of ordinary differential equations (even though this is certainly
an asset). Rather, it imposes a certain intellectual discipline which I think is healthy. At
the same time, it gives the modeller all the freedom that is needed to study a certain
phenomenon, without enforcing a certain ontology that may be useful in one discipline but
misplaced in another one. Let me spell out these two aspects in detail.

To apply Price’s model—which means, in the end, to come up with an instance of his
equation—the modeller has to be absolutely clear what is being modelled. There has to
be absolute clarity about

• what the sets P and P ′ are,

• how P is partitioned into bins,

• what correspondence relation is assumed and what partition this relation imposes on
P ′, and

• which quantitative character µ (or rather its average x) is being studied.

On the other hand, the approach is extremely flexible and general. P and P ′ can be
any sets you like, as long as P ′ is, in whatever abstract sense, “later” than P and some
well-defined correspondence relation can be established between the sets. P and P ′ even
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need not consist of empirical objects. We could imagine a set of empirical objects M and
its descendants N ; and an abstract sample space Ω (which can for instance be identified
with the interval [0, 1]). Nothing prevents us from defining P as M ×Ω and P ′ as N ×Ω.
For instance, this would enable us to split an integral empirical object from M into disjoint
fractions and to put them into different bins, which may be useful for a given application.

The only requirement on the correspondence relation is that it uniquely induces a par-
tition of P ′ from a given partition of P . This is guaranteed if it is a function from P ′ to
P .2 The correspondence relation is the closest counterpart to the notion of “replication”
in other conceptualizations of evolution. However, no specific requirements are made in
Price’s framework regarding the nature of correspondence. Neither need its domain and
range (P ′ and P ) be discrete sets with atomic elements (“replicators”), nor is there any
requirement that there is any copying fidelity between correspondents. “Unfaithful” cor-
respondence simply means that the second term (on the right hand side) of the equation
is non-negligible. In principle this even covers dynamic systems where the elements are
neither created nor destroyed but simply change states according to some transition prob-
abilities (so-called Markov processes). In a Markov process, the fitness of each bin is a
constant (namely 1), and the covariance term becomes 0. So the right hand side reduces
to the second term.

One might object that such an extreme case cannot be called “evolution” anymore. It is
certainly true that the covariance term of the equation pretty much captures the intuitive
content of “evolution via replication and selection”. However, reality does not care about
the conceptual distinction between “evolutionary” and “non-evolutionary” processes, and
it therefore strikes me as an advantage that Price’s approach is tailored to capture the
effects of selection and of non-faithful correspondence within one model.

3 Applications

In this section I will present two applications of the framework described above. My point
here is not primarily to propose certain analyses but to give some examples of applications
of the Price equation to demonstrate its versatility. The examples are essentially taken
from the literature; its formalization in terms of the Price equation is new though.

3.1 Nowak’s model of grammar evolution

In a series of publications, Martin Nowak and his co-workers developed a formal model of
the evolutionary dynamics that is induced by iterated grammar acquisition (see for instance
Komarova et al. 2001; Nowak et al. 2001). In the sequel I will use the version from Nowak
(2006), chapter 13, as basis for discussion.

2To be perfectly precise, it has to be a measurable function under w/w′ and µ/µ′. In the case of
finite sets, every function is automatically measurable. For infinite measurable sets, measurability of the
function means that the image of a measurable subset of P ′ is a measurable subset of P .
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Grammars are culturally transmitted from the parent generation to infants. This is a
form of replication, and thus a candidate for being the base of an evolutionary process.
Nowak assumes that there are only finitely many grammars that are compatible with UG,
G1, . . . , Gn.3 The languages that are generated by these grammars need not be disjoint,
but there may be a degree of mutual intelligibility of speakers of different grammars. Let
aij be the probability that a sentence uttered by a speaker of grammar Gi is correctly
understood by a speaker of grammar Gj. The chances that speakers of grammars Gi and
Gj can communicate with each other (if both assume the roles of speaker and listener with
equal probability) is then

F (Gi, Gj) =
1

2
(aij + aji) (12)

Now suppose that the population is mixed, and that the number of speakers of grammar
Gi is wi, for all i. The total population size is w =

∑
iwi. If everybody speaks with

everybody else with equal probability, the chance of successful communication of a speaker
of Gi are then

fi =
∑
j

wj
w
F (Gi, Gj) (13)

(This is strictly speaking wrong because it assumes that people talk to themselves with the
same probability as with everybody else. If the population is sufficiently large, this effect
is negligible though, and the definition above is a licit simplification.)

The key assumption of Nowak’s model is that communicative success immediately trans-
lates into fitness. Briefly put, an eloquent individual is supposed to have, on average, more
offspring than a less eloquent one. That this is indeed the case seems plausible, given that
eloquence raises social status, which in turn increases reproductive chances. Of course
there are many other factors determining fitness, but it is legitimate to construct a simple
model where the selective effects of communicative success are studied in isolation.

Nowak’s assumption are somewhat stronger even, because the fitness differences in-
duced by differential communicative success have to be quantitatively proportional to the
differences in expected communicative success. This is perhaps too strong an assumption,
but it is the null hypothesis as long as no more information about the quantitative relation
between communicative and replicative success is available.

Ignoring the intricacies of sexual reproduction, the model assumes that each infant
acquires its grammar from its parents. Grammars are discrete entities, and effects like
bilingualism or language contact are not part of the model. Language acquisition may be
imperfect though. There is an error matrix Q with the intended interpretation that a child
acquiring its language from a parent using Gi will acquire Gj is Qij. If language acquisition
is fairly accurate, Qii should be close to 1, but this assumption is not part of the model.

3This assumption is not uncontested, and franky, I consider it wrong because grammars are probalistic
rather than algebraic entities. But it is nevertheless instructive to study the evolutionary consequences of
the simplifying assumption of a finite grammar space.
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Now all ingredients are in place to apply Price’s analytical technique. The population
before selection, P , is the set of speakers in the parent generation. P ′ is the children
generation. We assume that every infant acquires its grammar from exactly one adult,
so the the natural correspondence relation between a and b is: b acquired its grammar
from a. An obvious way to split P into bins is given by the grammars of the speakers:
pi is the set of speakers in the parent generation using grammar Gi. This, together with
the correspondence relation, induces a partition of P ′ as well. p′i is the set of infants that
acquired their grammar from a speaker of Gi. Note that the infants in p′i need not all be
speakers of Gi due to imperfect language acquisition.

Let µ∗(M) be the number of speakers of grammar Gi∗ within the set M . We define

x∗i =
µ∗(pi)

wi
(14)

x′∗i =
µ∗(p′i)

fiwi
(15)

f =
∑
i

wi
w
fi (16)

∆x∗i = x′∗i − x∗i (17)

Applied to the total population, ∆x∗ is the change of the relative frequency of Gi∗ within
the population during the transition from the parent generation to the children generation.

The Price equation then says:

f∆x∗ = Cov(fi, x
∗
i )− E(fi∆x

∗
i ) (18)

Let us look at the two terms on the right-hand side in turn.
The covariance term is defined as

Cov(fi, x
∗
i ) =

∑
i

wi
w
fix
∗
i − f

∑
i

wi
w
x∗i (19)

Now note that x∗i∗ = 1 and x∗i = 0 if i 6= i∗. So we can simplify to

Cov(fi, x
∗
i ) =

wi∗

w
fi∗ − f

wi∗

w
(20)

=
wi∗

w
(fi∗ − f) (21)

The second term is defined as

E(fi∆x
∗
i ) =

∑
i

wi
w
fi(x

′∗
i − x∗i ) (22)

Note that x′∗i = qii∗ . So we can simplify to

E(fi∆x
∗
i ) =

∑
i

wi
w
fi(qii∗ − x∗i ) (23)
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=
wi∗

w
fi∗(qi∗i∗ − 1) +

∑
i 6=i∗

wi
w
fiqii∗ (24)

=
∑
i

wi
w
fiqii∗ −

wi∗

w
fi∗ (25)

Putting the two terms together, we get

f∆x∗ =
wi∗

w
(fi∗ − f) +

∑
i

wi
w
fiqii∗ −

wi∗

w
fi∗ (26)

=
∑
i

wi
w
fiqii∗ −

wi∗

w
f (27)

Without going into the details of the continuous time model, I just mention here that the
version of the Price equation in this case looks almost identical, namely: Putting the two
terms together, we get

ẋ∗ =
∑
i

wi
w
fiqii∗ −

wi∗

w
f (28)

This is exactly the replicator-mutator equation that Nowak uses in his model (even though
he derives it in a different way). The bulk of Nowak’s work about this model concerns
conditions on learning precision that are necessary to guarantee stability of a coherent
language in a population. For these investigations, the reader is referred to the original
literature. My point in this subsection was to show how the Price framework can be used
to model the iterated-learning notion of language evolution in a precise quantitative way,
thereby taking the effects of imperfect learning into account.

3.2 Exemplar dynamics and blending inheritance

Exemplar based approaches to cognitive processing and representation, originally deriving
from psychology, have gained high interest in several areas of linguistics in recent years
(see for instance the articles in Gahl and Yu 2006, a special issue of The Linguistic Review
on exemplar-based models in linguistics). The overarching idea of exemplar theory is that
instances of linguistic events (both production and comprehension) are stored in a highly
detailed fashion in memory. So even if two utterance tokens belong to the same type—like
two utterances of the same word with the same meaning, they are memorized separately and
in a detailed fashion. This may include specific information about phonetic parameters (like
fundamental and formant frequencies of segments, their length etc.) as well as information
about the specific syntactic context (i.e. cooccurrence with other lexical items) and the
like. An exemplar is a detailed cognitive representation of an event, alongside with a
categorization. So for instance, the exemplar of a vowel consists of a category (like the
phoneme /a/) alongside with specific information about its phonetic representation like
formant frequencies.

An important aspect of exemplar theories is that they assume a similarity metric over
exemplars. Processing of new exemplars is based on analogy with similar exemplars. In
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the simplest implementation of this idea, exemplars consist of points in an n-dimensional
vector space, together with a category label. A new perceptual event is categorized by
analogy with the closest exemplars in its neighborhood. Likewise, new exemplars of a
given category are located in the neighborhood of previously stored exemplars of the same
category.

Since new exemplars are generated in analogy to old ones, the dynamics of the exemplar
“population” can be considered an evolutionary process, as has been observed by various
authors like Batali (2002) and Wedel (2004). In this subsection I will analyse a very simple
version of exemplar dynamics in detail. It is inspired by Pierrehumbert (2001).

Suppose exemplars are points in some n-dimensional vector space. We can think of
them as phonetic events, where the dimensions are parameters like fundamental frequency,
formant frequency, length, volume and the like (or rather their articulatory correlates).
For simplicity, we only consider exemplars of one category, so the category labels can be
ignored. In Pierrehumbert’s model it is assumed that each exemplar has an activation level
that decays over time. The impact of an old exemplar on new events is correlated with
its activation, so that recent exemplars have the strongest impact. For simplicity’s sake,
I assume that the memory stores m-many exemplars, which all have the same activation
level. If a new exemplar is added to the memory, one old item is picked out at random
and removed instead.

In each cycle, a new exemplar is generated by picking out k-many exemplars from
memory at random (with k ≥ 2), and forming the average of this random sample. In a
vector space, the average of k vectors is simply the arithmetic mean:

av(s1, . . . , sk) =
1

k

k∑
i=1

si (29)

Figure 2 gives some snapshots from a computer simulation of this model. Here the vector
space has two dimension. The memory always contains m = 100 exemplars, and each
sample consists of k = 10 items. At the beginning of the simulation, the memory is initial-
ized with random exemplars (first picture). The cloud of exemplars constantly gravitates
towards the centre, and after about 200 cycles, all items in memory are located in a small
area. Pierrehumbert’s simulations are somewhat more complex but show the same qualita-
tive behaviour. She points out that this illustrates category formation via entrenchement.
Even though the microscopic structure of the exemplar space is continuous (or at least
very fine-grained), all exemplars of a category tend to gravitate towards the centre of the
extension of this category, which leads to the emergence of categoricity at the macroscopic
level.

This model is interesting for the issue of evolutionary modelling because it displays—
as pointed out by Wedel (2004)—blending inheritance. Each new exemplar is causally
connected to the sample of k old exemplars of which it is the arithmetic mean. So in a
sense, each new exemplar has k parents. However, the features of the offspring are not
faithfully inherited from any of the parents. Rather, they are a blend of the features of
all parents. So this dynamics is qualitatively different from the neo-Darwinian conception
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Figure 2: Simulation after 0, 90, 180, and 240 iterations

of biological evolution because there are no discrete units of inheritance that are faithfully
passed on. Nonetheless, Price’s framework is general enough to cope with this kind of
evolution as well.

To fit this version of exemplar dynamics into Price’s model, we have to decide what the
sets P and P ′ are, what the correspondence relation is like etc. An obvious starting point
is to say that t is a certain point in time when the memory contains a certain population of
exemplars, and t′ is the point in time when a new exemplar has been added (which replaces
an old exemplar). It is not so clear so that the nature of the correspondence relation should
be then. All the surviving old exemplars naturally correspond to themselves, but the new
exemplar equally corresponds to all of its k “parents”. Therefore we have to construct a
slightly more abstract model. Let us say that P consists of k isomorphic copies of the
memory at time t, and P ′ accordingly of k copies of the memory at t′. (If this is too
abstract, you can also conceptualize this as splitting each exemplars into k equal parts.)
Now each copy of the new exemplar corresponds to some copy of one of its parents—and
each parent exemplar has a copy that corresponds to one copy of the offspring exemplar.
All copies of old exemplars correspond to themselves. In this way each element of P ′ has
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exactly one correspondent in P , as desired. For reasons that will become clear immediately,
we furthermore assume that P ′ is not the set of exemplars one time step after t. Instead,
we take P ′ to be the set of exemplars after g-many time-steps, where g ≥ 1.

Since the dynamics that is investigated here is a random process, it is not possible
to give deterministic expressions for fi etc. All we know are probability distributions
over possible trajectories. To obtain a deterministic dynamic system, we apply a common
technique here: we let the size of all relevant sets grow to infinity and study the behaviour
of the relevant parameters under this model inflation. Due to the law of large numbers,
relative average values converge towards expected values. Since we know all probability
distributions involved, we can actually calculate those values. So strictly speaking we do
not study the behaviour of the actual, finite model, but the asymptotic properties of the
model as the model size grows to infinity.

We will study the asymptotic behaviour of the exemplar model described if m, the
number of exemplars, grows to infinity. We will also use two more parameters that grow
to infinity, but at a slower rate:

• b = dm1/4e is the number of bins into which P is partitioned,4 and

• g = dm1/2e is the number of time steps between t and t′.

In this way we ensure that limm→∞ b, g =∞, but limm→∞
b
g

= limm→∞
g
m

= 0.
We assume that the n-dimensional vector space is partitioned into b cells. You can

imagine this as an ever-finer grid that is laid over the vector space. pi is the set of copies
of exemplars at time t that are within the i-th partition cell. (We can assume, without
restriction of generality, that each pi is non-empty, because empty bins have a 0-weight and
therefore have no impact on the exptectaction values that figure in the Price equation.) p′i,
accordingly, is the set of items that correspond to some item in pi.

As P and P ′ are finite sets, the measure function w simply measures the cardinality of
sets. So we have

fi =
|p′i|
|pi|

.

What is the cardinality of p′i? The probability that the k copies of some exemplar from pi
do not survive within a single time step is wi

w
, so the expected number of items from pi that

do not survive is kgwi

w
. The probability that an exemplar from pi is used to spawn a new

exemplar (of which one copy belongs to p′i) within a single round is kwi

w
. So the expected

number of new items in p′i that belong to newly created exemplars is kgwi

w
as well. Hence

the expected change in cardinality from pi to p′i is 0. Therefore the expected fitness fi for
each i is 1, and, using the notation α → β for “α converges to β if m grows to infinity”,
we have

Cov(fi, xi) → 0, (30)

4dxe is the smallest integer ≥ x.
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no matter what parameter x we care to consider—the covariance of a constant with any
random variable is always 0. So the entire dynamics is encapsulated in the second term of
the Price equation this time.

The parameter x can be anything we like, so we start with studying the arithmetic
mean c of all exemplars in memory. If vj is the j-th exemplar, we have

c =
1

m

m∑
j=1

vj. (31)

In physical terms, this can be interpreted as the centre of gravity of the memory, if each
exemplar has the same mass. Let c(d) be the coordinate of c at the d-th dimension.

Let us say that pi(d) is the arithmetic mean of the d-th dimension of the objects in pi
(which are all n-dimensional vectors). Likewise, p′i(d) is the average of the d-th coordinates
of the copies in p′i. (If p′i = ∅, we stipulate that p′i(d) = 0.) We define

x(d) = E(pi(d)) (32)

x′(d) = E(p′i(d)) (33)

∆x(d) = x′(d)− x(d). (34)

It follows directly from the definition of c that x(d) is the d-th coordinate of c at time t,
and x′(d) is the d-th coordinate of c at time t′.

The discrete-time Price equation now becomes

∆x(d) =
∑
i

wi
w

(p′i(d)− pi(d)) (35)

=
∑
i

wi
w
p′i(d)− x(d) (36)

Note that |p′i| = wi and p′i(d) = |p′i|−1
∑

v∈p′i
v(d). Also, |P | = km. Hence we can simplify

to

∆x(d) =

∑
v∈P ′ v(d)

km
− x(d) (37)

Let us consider the term
P

v∈P ′ v(d)

km
, which is the centre of gravity of all objects in P ′.

Each v ∈ P ′ is either a survivor from P , or it is a new exemplar, i.e. the average of some
sample of k objects from the previous round. Of the items in P , kg-many do not survive
in P ′. Each non-surviving exemplar from P is chosen at random, so the expected average
of the non-survivors is identical with c, with x(d) as its d-th coordinate. Likewise, each
new exemplar is the average of a random sample of exemplars. Hence the expected d-th
coordinate of each new exemplar is x(d) as well. There are g-many new exemplars that
are added between t and t′. As g converges to infinity as m grows to infinity, the average
of the new exemplars converges to their expected value, x(d). Hence the average of the
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items in P ′,
P

v∈P ′ v(d)

km
, converges to x(d) as well. So we have

∆x(d) → x(d)− x(d) (38)

= 0. (39)

In words, the centre of gravity of the population of exemplars remains constant. At least
this is the limit behaviour of this dynamics for large population—for smaller populations
the centre of gravity undergoes some random drift due to sampling effects.

As a next step, we analyse the evolution of the variance of the population. (Recall that
the variance of a random variable X is defined as the expected value of (X −E(X))2.) To
this end we can posit another instance of the Price equation. First some notation:

V ar(P (d)) =
∑
i

wi
w

(pi(d)− x(d))2 (40)

V ar(P ′(d)) =
∑
i

wi
w

(p′i(d)− x(d))2 (41)

∆V ar(d) = V ar(P ′(d))− V ar(P (d)) (42)

Plugging the variance into the Price equation, we get:

∆V ar(d) = E((p′i(d)− x(d))2 − (pi(d)− x(d))2) (43)

What is p′i(d)? It obviously holds that

p′i(d) =
1

|p′i|
∑
v∈p′i

v(d) (44)

Let Di be the set of items from pi that do not survive in p′i. Also, let Ni be the set of
items in p′i that are copies of new exemplars that have been added between t and t′. Let
Ni(d) =

∑
v∈Ni

v(d), and likewise for Di(d). We thus have:

|p′i| → wi (45)

|Di| →
wi
w
gk (46)

|Ni| →
wi
w
gk (47)

p′i = (pi −Di) ∪Ni (48)

pi ∩Ni = ∅ (49)

We therefore get

p′i(d) =
1

|p′i|
(
∑
v∈pi

v −
∑
v∈Di

v +
∑
v∈Ni

v) (50)

= pi(d)− 1

|p′i|
(
∑
v∈Di

v +
∑
v∈Ni

v) (51)
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= pi(d)− |Di|
|p′i|

Di(d) +
|Ni|
|p′i|

Ni(d) (52)

→ pi(d)− gk

w
Di(d) +

gk

w
Ni(d) (53)

The elements of Di are drawn at random from pi, so

Di(d) → pi(d) (54)

Each element of Ni is the average of k random samples from P . So the expected average
of Ni is identical to the average of P , and we thus have

Ni(d) → x(d) (55)

Putting all this together, we get

p′i(d) → pi(d)− gk

w
pi(d) +

gk

w
x(d) (56)

= (1− gk

w
)pi(d) +

gk

w
x(d). (57)

Therefore

p′i(d)− x(d) → (1− gk

w
)(pi(d)− x(d)) (58)

(p′i(d)− x(d))2 → (1− gk

w
)2(pi(d)− x(d))2 (59)

(p′i(d)− x(d))2 − (pi(d)− x(d))2 → ((1− gk

w
)2 − 1)(pi(d)− x(d))2 (60)

(61)

As abbreviation, we use

α = ((1− gk

w
)2 − 1) (62)

Obviously α < 0. Equation (43) now reduces to

∆V ar(d) → αV ar(P (d)) (63)

The continous time version of the Price equation takes an even simpler form. If we assume
that one unit of time corresponds to m update steps, the slope of V ar(d) is the limit α

g
,

which converges to 2 as m grows to infinity. Therefore we get

V̇ ar(d) = −2V ar(d) (64)

As α < 0, both versions of the Price equation predict that the variance of the exemplars
decreases at an exponential rate and asymptotically approaches 0. Since the centre of
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gravity remains constant over time, this means that in the long run, all exemplars are
concentrated in an arbitrarily small environment around c. The continuous time version
of the Price equation can even be solved analytically; all functions of the form

V ar(d) = K exp(−2t) (65)

for some constant K are possible solutions, and each solution converges to 0 as t goes to
+∞.

4 Conclusion

The main purpose of this article is to bring the conceptual framework that underlies the
Price equation to the attention of linguists that are interested in evolutionary modelling.
Price’s framework has several attractive features that are briefly recapitulated here:

• Price’s framework is very general. It does not over-emphasize certain features of bio-
logical evolution that are specific to biology rather than to the notion of evolution via
selection—like assuming discrete units of heritable information or the dual ontology
of genotype and phenotype. Rather, it focuses on population dynamics as such.

• There are no specific requirements about what the nature of the populations involved
or the correspondence relation betwen them is. It is thus clear that evolution and
selection are a perspective under which empirical phenomena can be studied, rather
than being objective properties of these phenomena. Identifying a certain set as an
evolving population and a certain relation between stages of this set as replication
(i.e. correspondence) is a matter of practicality and usefulness, not of truth or falsity.

• In particular, Price’s framework does not require anything like copying fidelity of
replicators to be applicable. If a certain process does in fact involve faithfully repli-
cating entities, this simplifies the analysis because the second term of the Price
equation can be dropped in this case. However, this is a matter of convenience, not
of principle.

• While Price’s framework admits considerable methodological freedom, it enforces an
absolutely rigorous analysis, once the basic modelling decisions are made.

In the second part of the paper, I presented two case studies of applications of the Price
framework to language evolution. The examples involved two quite different notions of lin-
guistics replication: first language acquisition in the first case and exemplar imitation in
the second case. Both processes involve non-faithful replication; imperfect learning in the
first example and blending inheritance in the second one. The main point of the discussion
of the examples was to illustrate possible applications of Price’s framework in linguistics.
In both cases, the Price style model confirmed previous findings: Nowak’s different math-
ematical approach in the first case and Pierrehumbert’s computational simulation results
in the second case.
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