Static and dynamic stability conditions for structurally stable signaling games

Gerhard Jäger
Gerhard.Jaeger@uni-bielefeld.de

September 8, 2007

Workshop on Communication, Game Theory, and Language, NWU
Overview

- signaling games
- costly signaling
- some examples
- conditions for evolutionary stability
- ESSets
- neutral stability
- dynamic stability and basins of attraction
Signaling games

general setup

- two players, the sender and the receiver.
- sender has private information about an event that is unknown to the receiver
- event is chosen by nature according to a certain fixed probability distribution
- sender emits a signal which is revealed to the receiver
- receiver performs an action, and the choice of action may depend on the observed signal
- utilities of sender and receiver may depend on the event, the signal and the receiver’s action
Signaling games

specific assumptions

- the utility of sender and receiver are identical,
- set of events \mathcal{E}, set of events \mathcal{F}, and set of actions \mathcal{A} are finite,
- $\mathcal{E} = \mathcal{A}$ (the receiver’s action is to guess an event)
Signaling games

<table>
<thead>
<tr>
<th>costly signaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ production/reception of signals may incur costs</td>
</tr>
<tr>
<td>▪ examples:</td>
</tr>
<tr>
<td>▪ length, processing complexity etc. of natural language expressions</td>
</tr>
<tr>
<td>▪ advertising costs in economics</td>
</tr>
<tr>
<td>▪ “handicap” signaling in biology</td>
</tr>
<tr>
<td>▪ ...</td>
</tr>
<tr>
<td>▪ can be represented as negative utility</td>
</tr>
</tbody>
</table>
Signaling games

- let e be the event to be communicated, σ the signal and a the receiver’s action
- c_σ is the cost of using signal σ
- partnership game: S and H have identical utility function

utility function (extensive form)

$$u(e, \sigma, a) = \delta_{e,a} + c_\sigma$$ (1)
Signaling games

Matrix representation

- Let $n = |\mathcal{E}|$ be the number of events.
- $m = |\mathcal{F}|$ is the number of signals.
- (Pure) strategies can be represented as matrices with one 1 per row and else columns.
- Sender strategy S: $n \times m$-matrix.
- Receiver strategy R: $m \times n$-matrix.
- \vec{e}: nature’s probability distribution over events.
- \vec{c}: costs of signals $1, \ldots, m$.
Signaling games

normal form utility function

\[u(S, R) = \sum_i e_i \times \sum_j s_{ij} (r_{ji} + c_j) \] (2)
Signaling games

compiling costs and probabilities into matrix notation

\[p_{ij}^S \doteq s_{ij} \times e_i \]
\[q_{ij}^R \doteq r_{ij} + c_i \]

utility function

\[u(S, R) = \sum_i \sum_j p_{ij}^S q_{ji}^R = \text{tr}(P^S Q^R). \]
let x be a mixed strategy of a symmetrized signaling game with costly signaling

\[
P^x = \sum_{P,Q} x(P, Q)P \quad (3)
\]

\[
Q^x = \sum_{P,Q} x(P, Q)Q \quad (4)
\]
Signaling games

symmetrized utility function

\[u(x, y) = \text{tr}(P^x Q^y) + \text{tr}(P^y Q^x) \] \hspace{1cm} (5)
Signaling games

Further constraints

- Costs are normalized such that $\max_i c_i = 0$
- All events have positive probability
- No event has costs ≤ -1—otherwise use of that signal would never be rationalizable

Structural stability

- No two events have identical probability
- No two signals have identical costs
- All signals have costs strictly > -1
example 1: more signals than events

- \((n, m) = (2, 3)\)
- \(\vec{e} = \langle .6, .4 \rangle\)
- \(\vec{c} = \langle 0, -.1, -.4 \rangle\)
- one possible Nash equilibrium:

\[
P^x = \begin{pmatrix} .3 & .3 & 0 \\ .3 & 0 & .1 \end{pmatrix} \quad Q^x = \begin{pmatrix} .9 & .1 \\ .9 & -.1 \\ -.9 & .1 \end{pmatrix}
\]
example 2: more events than signals

- \((n,m) = (3, 2)\)
- \(\vec{e} = \langle .5, .3, .2 \rangle\)
- \(\vec{c} = \langle 0, -.1 \rangle\)
- Nash equilibrium:

\[
P^x = \begin{pmatrix} .5 & 0 \\ .1 & .2 \\ 0 & .2 \end{pmatrix} \quad Q^x = \begin{pmatrix} 1 & 0 & 0 \\ -.1 & 0 & .8 \end{pmatrix}
\]
Example 3: a strict Nash equilibrium

- strict equilibria:
 - \(n = m \)
 - bijection between events and signals
 - ESSs are exactly the strict NE

- \(\vec{e} = \langle .75, .25 \rangle \)

- \(\vec{c} = \langle 0, -.1 \rangle \)

\[
\begin{align*}
P^{x_1} & = \begin{pmatrix} .75 & 0 \\ 0 & .25 \end{pmatrix} & Q^{x_1} & = \begin{pmatrix} 1 & 0 \\ -1 & .9 \end{pmatrix} \\
P^{x_2} & = \begin{pmatrix} 0 & .75 \\ .25 & 0 \end{pmatrix} & Q^{x_2} & = \begin{pmatrix} 0 & 1 \\ .9 & -1 \end{pmatrix}
\end{align*}
\]
Neutral stability

Definition (Neutral stability)

The (possibly mixed) strategy profile x^* is *neutral stability* iff

1. $\forall y : u(x^*, x^*) \geq u(y, x^*)$, and
2. $\forall y : \text{if } u(y, x^*) = u(x^*, x^*), \text{ then } u(x^*, y) \geq u(y, y)$.
Examples

example 4: a neutrally stable state for the previous game

\[P^x = \begin{pmatrix} 0.75 & 0 \\ 0.25 & 0 \end{pmatrix} \quad Q^x = \begin{pmatrix} 1 & 0 \\ \alpha - 1 & 0.9 - \alpha \end{pmatrix} \]

for \(\alpha \in (0.9, 1] \).
example 5: an unstable equilibrium

\[P^x = \begin{pmatrix} .75 & 0 \\ .25 & 0 \end{pmatrix} \quad Q^x = \begin{pmatrix} 1 & 0 \\ .8 & 0 \end{pmatrix} \]
Evolutionary stability

Observation

If $n = m$, x is an ESS if and only if S^x is a permutation matrix and R^x its transpose.

Theorem

x is an ESS if and only if

1. $m \leq n$,
2. the first column of P^x has $n - m + 1$ positive entries,
3. each other column of P^x has exactly one positive entry, and
4. $q^x_{ji} = 1 + c_j$ iff $i = \min\{i': p^x_{i'j} > 0\}$, otherwise $q^x_{ji} = c_j$.

Evolutionary stability

an ESS with $m < n$

$$P^x = \begin{pmatrix} .5 & 0 \\ .3 & 0 \\ 0 & .2 \end{pmatrix} \quad Q^x = \begin{pmatrix} 1 & 0 & 0 \\ -1 & -1 & .9 \end{pmatrix}$$
Evolutionary stability

Evolutionarily stable sets

- proposed in Thomas (1985)
- generalization of ESSet
- set of Nash equilibria that is, as a whole, protected against invasions by mutants

Definition

A set A of symmetric Nash equilibria is an evolutionarily stable set (ESSet) if, for all $x^* \in A$, $u(x^*, x) > u(x, x)$ whenever $u(x, x^*) = u(x^*, x^*)$ and $x \not\in A$.
Evolutionary stability

a non-singleton ESSet

\[\left\{ x : \begin{pmatrix} .8 & 0 & 0 \\ 0 & .2 & 0 \end{pmatrix}, \quad Q^x = \begin{pmatrix} 1 & 0 \\ -1 & .9 \\ \alpha - .2 & .8 - \alpha \end{pmatrix} \quad \& \quad \alpha \in [0, 1] \right\} \]
Theorem

A set of strategies A is an ESSet iff for each $x \in A$, x is an ESS or

1. $m > n$,
2. the restriction of P^x to the first n columns and the restriction of Q^x to the first n rows form an ESS, and
3. for each y such that $P^x = P^y$, and Q^x and Q^y agree on the first n rows: $y \in A.$
Neutral stability

Theorem

x is a NSS if and only if it is a Nash equilibrium and Q^x does not contain multiple column maxima.

Observation

If $m, n \geq 2$, there is always at least one NSS that is not element of an ESSet.
Some facts

- In symmetrized asymmetric games:
 - The ESSs are exactly the asymptotically stable rest points under the replicator dynamics,
 - The ESSets are exactly the asymptotically stable sets of rest points under the replicator dynamics (Cressman, 2003)

- In doubly symmetric games,
 - The neutrally stable states are exactly the Lyapunov stable rest points (Thomas, 1985; Bomze and Weibull, 1995; Bomze, 2002)
Lemma

Let x^* be a NSS that is not an ESS. There is some $\epsilon > 0$ such that for each Nash equilibrium y with $\|x - y\| < \epsilon$,

1. y is itself neutrally stable, and
2. for each $\alpha \in [0, 1]$, $\alpha x^* + (1 - \alpha)y$ is neutrally stable.
Dynamic stability

Theorem

Each NSS x has some non-null environment A such that each interior point in A converges to some neutrally stable equilibrium y under the replicator dynamics that belongs to the same continuum of NSSs as x.
Dynamic stability

sketch of proof

(proof inspired by Pawlowitsch, 2006)

- suppose \(x \) is an NSS
- then \(x \) is Lyapunov stable
- for each environment \(U \) of \(x \), every interior point in \(U \) converges to some Nash equilibrium (Hofbauer and Sigmund, 1998; Akin and Hofbauer, 1982)
- hence almost every point in some environment \(A \) of \(x \) converges to some NSS that belongs to the same continuum of NSSs as \(x \)
Corollary

The set of Nash equilibria that do not belong to any ESS set attracts a positive measure of the state space.
Dynamic stability

Theorem

Given any strategy profile x_1, there is a finite sequence of profiles $(x_i)_{i \leq n}$ for some $n \in \mathbb{N}$ such that

1. there is an ESSet E such that $x_n \in E$, and
2. $u(x_{i+1}, x_i) \geq u(x_i, x_i) \quad \forall i < n$.

Conclusion

in a nutshell

- evolutionary stability: 1-1 map between min(m, n)-many events and signals
- if $n > m$, excess events are expressed by cheapest signal
- neutral stability: some signals may remain unused, even if they would be useful
- natural selection alone does not suffice to guarantee convergence to evolutionary stability (= local maximum of average utility)
- combination of natural selection and drift does guarantee convergence to some ESSet

