Specificity: Combining the approaches

Gerhard Jäger
ZAS Berlin
http://www.ling.uni-potsdam.de/~jaeger

March 13, 2002
University of Chicago
Outline of talk

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion
Outline of talk

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion
Outline of talk

• Specificity and scope
• Previous approaches and their problems
 • Indefinites as partial variables
 • Extension to plural quantifiers
• Conclusion
Outline of talk

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
 - Extension to plural quantifiers
- Conclusion
Outline of talk

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion
Outline of talk

• Specificity and scope
• Previous approaches and their problems
• Indefinites as partial variables
• Extension to plural quantifiers
• Conclusion
1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
 (1) A student in the syntax class cheated in the final exam

- Can be
 - statement of existence—non-specific usage
 - statement about a particular student—specific usage

 - specificity involves “cognitive contact” (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality
1. The phenomenon

- Pragramatic ambiguity of indefinite descriptions:

 (1) A student in the syntax class cheated in the final exam

- Can be
 - statement of existence—non-specific usage
 - statement about a particular student—specific usage

 - specificity involves “cognitive contact” (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality
1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:

 (1) A student in the syntax class cheated in the final exam

- Can be
 - statement of existence—**non-specific** usage
 - statement about a particular student—**specific** usage

 - specificity involves “cognitive contact” (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality
1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:

 (1) A student in the syntax class cheated in the final exam

- Can be

 - statement of existence—non-specific usage
 - statement about a particular student—specific usage

 - specificity involves “cognitive contact” (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality
1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:

 (1) A student in the syntax class cheated in the final exam

- Can be

 - statement of existence—non-specific usage
 - statement about a particular student—specific usage

 - specificity involves “cognitive contact” (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality
1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:

 (1) A student in the syntax class cheated in the final exam

- Can be

 - statement of existence—\textit{non-specific} usage
 - statement about a particular student—\textit{specific} usage

 - specificity involves “cognitive contact” (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality
1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:

 (1) A student in the syntax class cheated in the final exam

- Can be

 - statement of existence—**non-specific** usage
 - statement about a particular student—**specific** usage

 - specificity involves “cognitive contact” (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality
1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
 (1) A student in the syntax class cheated in the final exam

- Can be
 - statement of existence—**non-specific** usage
 - statement about a particular student—**specific** usage

 - specificity involves “cognitive contact” (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality
1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
 (1) A student in the syntax class cheated in the final exam

- Can be
 - statement of existence—**non-specific** usage
 - statement about a particular student—**specific** usage

 - specificity involves “cognitive contact” (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality
1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:

 (1) A student in the syntax class cheated in the final exam

- Can be

 - statement of existence—**non-specific** usage
 - statement about a particular student—**specific** usage

 - specificity involves “cognitive contact” (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality
1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
 (1) A student in the syntax class cheated in the final exam

- Can be
 - statement of existence—**non-specific** usage
 - statement about a particular student—**specific** usage

 - specificity involves “cognitive contact” (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality
Specificity and scope

- Quantifier scope is usually clause bounded

(2)
 a. Mary will be happy if every movie is shown ($if > \forall, \forall > if$)

 b. Mary will be happy if at most three movies are shown ($if > 3_{\le}, 3_{\le} > if$)

 c. Mary will be happy if at least three movies are shown ($if > 3_{\ge}, 3_{\ge} > if$)

 d. Mary will be happy if exactly three movies are shown ($if > 3_{=} = if$)
Specificity and scope

- Quantifier scope is usually clause bounded

\[(2) \quad \text{a. Mary will be happy if every movie is shown } (i f > \forall, \forall > i f)\]
\[\text{b. Mary will be happy if at most three movies are shown } (i f > 3_{\leq}, 3_{\leq} > i f)\]
\[\text{c. Mary will be happy if at least three movies are shown } (i f > 3_{\geq}, 3_{\geq} > i f)\]
\[\text{d. Mary will be happy if exactly three movies are shown } (i f > 3_{=}, 3_{=} > i f)\]
Specificity and scope

- Quantifier scope is usually clause bounded

(2)
 a. Mary will be happy if every movie is shown \((i f > \forall, \forall > i f)\)

 b. Mary will be happy if at most three movies are shown \((i f > 3_{\le}, 3_{\le} > i f)\)

 c. Mary will be happy if at least three movies are shown \((i f > 3_{\ge}, 3_{\ge} > i f)\)

 d. Mary will be happy if exactly three movies are shown \((i f > 3_{=} , 3_{=} > i f)\)
Specificity and scope

• Quantifier scope is usually clause bounded

(2) a. Mary will be happy if every movie is shown ($if > \forall$, $\forall > if$)

 b. Mary will be happy if at most three movies are shown ($if > 3\leq$, $3\leq > if$)

c. Mary will be happy if at least three movies are shown ($if > 3\geq$, $3\geq > if$)

d. Mary will be happy if exactly three movies are shown ($if > 3\equiv$, $3\equiv > if$)
• Singular indefinites and plain cardinal quantifiers can escape scope islands

(3) a. Mary will be happy if a/some movie is shown (if $> \exists, \exists >$ if)
 b. Mary will be happy if three movies are shown (if $> 3, 3 >$ if)
• Singular indefinites and plain cardinal quantifiers can escape scope islands

(3)
 a. Mary will be happy if a/some movie is shown (if $> \exists, \exists > \text{if}$)
 b. Mary will be happy if three movies are shown (if $> 3, 3 > \text{if}$)
Singular indefinites and plain cardinal quantifiers can escape scope islands

(3) a. Mary will be happy if a/some movie is shown (if $> \exists, \exists >$ if)
b. Mary will be happy if three movies are shown (if $> 3, 3 >$ if)
• Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)

• Intermediate scope readings are possible (Farkas 1981, Abusch 1994)

(4) a. Every writer overheard the rumor that she didn’t write a book she wrote (∀ > ∃ > ¬)

 b. Every professor got a headache whenever there was a student he hated in class (∀ > ∃ > whenever)

• Also possible without bound pronoun inside the restriction

(5) In every town, every girl that a boy was in love with married an Albanian (∀ > ∃ > ∀ > ∃)
• Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)

• intermediate scope readings are possible (Farkas 1981, Abusch 1994)

(4)
 a. Every writer overheard the rumor that she didn’t write a book she wrote \((\forall \, > \, \exists \, > \, \neg)\)
 b. Every professor got a headache whenever there was a student he hated in class \((\forall \, > \, \exists \, > \, \text{whenever})\)

• Also possible without bound pronoun inside the restriction

(5)
 In every town, every girl that a boy was in love with married an Albanian \((\forall \, > \, \exists \, > \, \forall \, > \, \exists)\)
• Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)

• intermediate scope readings are possible (Farkas 1981, Abusch 1994)

(4) a. Every writer overheard the rumor that she didn’t write a book she wrote \((\forall > \exists > \neg)\)
 b. Every professor got a headache whenever there was a student he hated in class \((\forall > \exists > \text{whenever})\)

• Also possible without bound pronoun inside the restriction

(5) In every town, every girl that a boy was in love with married an Albanian \((\forall > \exists > \forall > \exists)\)
• Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
• intermediate scope readings are possible (Farkas 1981, Abusch 1994)

(4) a. Every writer overheard the rumor that she didn’t write a *book she wrote* \((\forall > \exists > \neg)\)

 b. Every professor got a headache whenever there was a *student he hated* in class \((\forall > \exists > \text{whenever})\)

• Also possible without bound pronoun inside the restriction

(5) In every town, every girl that a *boy* was in love with married an Albanian \((\forall > \exists > \forall > \exists)\)
• Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
• intermediate scope readings are possible (Farkas 1981, Abusch 1994)

(4)
a. Every writer overheard the rumor that she didn’t write a book she wrote \((\forall > \exists > \neg)\)

b. Every professor got a headache whenever there was a student he hated in class \((\forall > \exists > \text{whenever})\)

• Also possible without bound pronoun inside the restriction

(5) In every town, every girl that a boy was in love with married an Albanian \((\forall > \exists > \forall > \exists)\)
• Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)

• intermediate scope readings are possible (Farkas 1981, Abusch 1994)

(4) a. Every writer overheard the rumor that she didn’t write a book she wrote \((\forall > \exists > \neg)\)

 b. Every professor got a headache whenever there was a student he hated in class \((\forall > \exists > \text{whenever})\)

• Also possible without bound pronoun inside the restriction

(5) In every town, every girl that a boy was in love with married an Albanian \((\forall > \exists > \forall > \exists)\)
• Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)

• intermediate scope readings are possible (Farkas 1981, Abusch 1994)

(4)
a. Every writer overheard the rumor that she didn’t write a book she wrote \((\forall > \exists > \neg)\)
b. Every professor got a headache whenever there was a student he hated in class \((\forall > \exists > \text{whenever})\)

• Also possible without bound pronoun inside the restriction

(5)
In every town, every girl that a boy was in love with married an Albanian \((\forall > \exists > \forall > \exists)\)
Two questions:

1. Why can some quantifiers escape scope islands (and others can’t)?
2. What determines the scope taking behavior of a quantifier?
Two questions:

1. Why can some quantifiers escape scope islands (and others can’t)?
2. What determines the scope taking behavior of a quantifier?
Two questions:

1. Why can some quantifiers escape scope islands (and others can’t)?
2. What determines the scope taking behavior of a quantifier?
2. Solution strategies

2.1. Long QR

- *Simplest solution:*
 There are two versions of QR (or whatever your favorite scoping mechanism is), one is island sensitive and the other one isn’t
2. Solution strategies

2.1. Long QR

- *Simplest solution:* There are two versions of QR (or whatever your favorite scoping mechanism is), one is island sensitive and the other one isn’t
2. **Solution strategies**

2.1. **Long QR**

- *Simplest solution:*
 There are two versions of QR (or whatever your favorite scoping mechanism is), one is island sensitive and the other one isn’t
Problems

• Conceptually unpleasant

• Empirically wrong:

(6) a. If three relatives of mine die, I’ll inherit a fortune
b. QR: \(|\text{RELATIVE}' \cap \lambda x (\text{DIE}'(x)) \rightarrow \text{INHERIT}'(i', \text{FORTUNE}'))| \geq 3
≈ There are three relatives such that if one of them ...

c. correct reading: \(\exists X (X \subseteq \text{RELATIVE}' \land |X| = 3 \land ((\forall y.y \in X \rightarrow \text{DIE}'(y)) \rightarrow \text{INHERIT}'(i', \text{FORTUNE}'))))
≈ There are three relatives such that if each of them ...

• Plural specifics have double scope (cf. Ruys 1992):
 ○ wide existential scope
 ○ narrow (clause-bounded) universal scope
Problems

• Conceptually unpleasant

• Empirically wrong:

(6) a. If three relatives of mine die, I’ll inherit a fortune
b. QR: \(|RELATIVE'| \cap \lambda x (DIE'(x) \rightarrow INHERIT'(i', FORTUNE'))| \geq 3
≈ There are three relatives such that if one of them ...
c. correct reading: \(\exists X (X \subseteq RELATIVE' \land |X| = 3 \land ((\forall y. y \in X \rightarrow DIE'(y)) \rightarrow INHERIT'(i', FORTUNE'))) \)
≈ There are three relatives such that if each of them ...

• Plural specifics have double scope (cf. Ruys 1992):
 ○ wide existential scope
 ○ narrow (clause-bounded) universal scope
Problems

• Conceptually unpleasant

• Empirically wrong:

(6) a. If three relatives of mine die, I’ll inherit a fortune
 b. QR: \(|\text{RELATIVE}' \cap \lambda x (\text{DIE}'(x) \rightarrow \text{INHERIT}'(i', \text{FORTUNE}'))| \geq 3\)
 \approx \text{There are three relatives such that if one of them ...}
 c. correct reading: \(\exists X (X \subseteq \text{RELATIVE}' \land |X| = 3 \land ((\forall y. y \in X \rightarrow \text{DIE}'(y)) \rightarrow \text{INHERIT}'(i', \text{FORTUNE}'))))\)
 \approx \text{There are three relatives such that if each of them ...}

• Plural specifics have double scope (cf. Ruys 1992):
 ○ wide existential scope
 ○ narrow (clause-bounded) universal scope
Problems

• Conceptually unpleasant

• Empirically wrong:

(6)
 a. If three relatives of mine die, I’ll inherit a fortune
 b. QR: \(|\text{RELATIVE'} \cap \lambda x (\text{DIE'}(x) \rightarrow \text{INHERIT'}(i', \text{FORTUNE'}))| \geq 3\)
 \(\approx\) There are three relatives such that if one of them ...
 c. correct reading: \(\exists X (X \subseteq \text{RELATIVE'} \land |X| = 3 \land ((\forall y. y \in X \rightarrow \text{DIE'}(y)) \rightarrow \text{INHERIT'}(i', \text{FORTUNE'})))\)
 \(\approx\) There are three relatives such that if each of them ...

• Plural specifics have double scope (cf. Ruys 1992):
 ○ wide existential scope
 ○ narrow (clause-bounded) universal scope
Problems

- Conceptually unpleasant

- Empirically wrong:

 (6)
 a. If three relatives of mine die, I’ll inherit a fortune
 b. QR: $|\text{RELATIVE'} \cap \lambda x (\text{DIE'}(x) \rightarrow \text{INHERIT'}(i', \text{FORTUNE'}))| \geq 3$
 \approx \textbf{There are three relatives such that if one of them ...}
 c. correct reading: $\exists X (X \subseteq \text{RELATIVE'} \land |X| = 3 \land ((\forall y. y \in X \rightarrow \text{DIE'}(y)) \rightarrow \text{INHERIT'}(i', \text{FORTUNE'})))$
 \approx \textbf{There are three relatives such that if each of them ...}$

- Plural specifics have **double scope** (cf. Ruys 1992):
 - wide existential scope
 - narrow (clause-bounded) universal scope
Problems

- Conceptually unpleasant
- Empirically wrong:

(6) a. If three relatives of mine die, I’ll inherit a fortune
b. \(\text{QR: } |\text{RELATIVE'}) \cap \lambda x (\text{DIE'}(x) \rightarrow \text{INHERIT'}(i', \text{FORTUNE'})| \geq 3\)

\(\approx \text{There are three relatives such that if one of them ...}\)
c. correct reading: \(\exists X (X \subseteq \text{RELATIVE'}) \land |X| = 3 \land ((\forall y. y \in X \rightarrow \text{DIE'}(y)) \rightarrow \text{INHERIT'}(i', \text{FORTUNE'})))\)

\(\approx \text{There are three relatives such that if each of them ...}\)

- Plural specifics have **double scope** (cf. Ruys 1992):
 - wide existential scope
 - narrow (clause-bounded) universal scope
Problems

- Conceptually unpleasant
- Empirically wrong:

(6)
 a. If three relatives of mine die, I’ll inherit a fortune
 b. QR:
 \(|\text{RELATIVE}' \cap \lambda x (\text{DIE}'(x) \rightarrow \text{INHERIT}'(i', \text{FORTUNE}'()))| \geq 3\)
 \(\approx \text{There are three relatives such that if one of them ...}\)
 c. correct reading:
 \(\exists X (X \subseteq \text{RELATIVE}' \wedge |X| = 3 \wedge ((\forall y. y \in X \rightarrow \text{DIE}'(y)) \rightarrow \text{INHERIT}'(i', \text{FORTUNE}'())))\)
 \(\approx \text{There are three relatives such that if each of them ...}\)

- Plural specifics have double scope (cf. Ruys 1992):
 - wide existential scope
 - narrow (clause-bounded) universal scope
Problems

- Conceptually unpleasant
- Empirically wrong:

(6)

a. If three relatives of mine die, I’ll inherit a fortune

b. QR: \[|\text{RELATIVE}' \cap \lambda x (\text{DIE}'(x) \rightarrow \text{INHERIT}'(i', \text{FORTUNE}'))) | \geq 3 \]

\[\approx \text{There are three relatives such that if one of them ...} \]

c. correct reading: \[\exists X (X \subseteq \text{RELATIVE}' \land |X| = 3 \land ((\forall y . y \in X \rightarrow \text{DIE}'(y)) \rightarrow \text{INHERIT}'(i', \text{FORTUNE}'))) \]

\[\approx \text{There are three relatives such that if each of them ...} \]

- Plural specifics have double scope (cf. Ruys 1992):
 - wide existential scope
 - narrow (clause-bounded) universal scope
Problems

- Conceptually unpleasant
- Empirically wrong:

(6)
 a. If three relatives of mine die, I’ll inherit a fortune
 b. QR: |
 RELATIVE’ \cap \lambda x(DIE’(x) \rightarrow INHERIT’(i’, FORTUNE’)))| \geq 3
 \approx There are three relatives such that if one of them ...
 c. correct reading: \exists X(X \subseteq RELATIVE’ \land |X| = 3 \land
 ((\forall y.y \in X \rightarrow DIE’(y)) \rightarrow INHERIT’(i’, FORTUNE’)))
 \approx There are three relatives such that if each of them ...

- Plural specifics have **double scope** (cf. Ruys 1992):

 - wide existential scope
 - narrow (clause-bounded) universal scope
2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):

\[(7)\]

a. If we invite some philosopher, Max will be offended

b. predicted reading:
\[\exists x((\text{PHILOSOPHER'}(x) \land \text{INVITE'}(\text{WE'}, x)) \rightarrow \text{OFFENDED'}(\text{MAX'}))\]

c. real reading:
\[\exists x(\text{PHILOSOPHER'}(x) \land (\text{INVITE'}(\text{WE'}, x) \rightarrow \text{OFFENDED'}(\text{MAX'})))\]

- Variable binding is not syntactically constrained \(\Rightarrow\) solves the scope island puzzle
2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):

 (7)
 a. If we invite some philosopher, Max will be offended
 b. predicted reading:
 \[\exists x (\text{PHILOSOPHER}'(x) \land \text{INVITE}'(\text{WE}', x)) \rightarrow \text{OFFENDED}'(\text{MAX}')) \]
 c. real reading:
 \[\exists x (\text{PHILOSOPHER}'(x) \land (\text{INVITE}'(\text{WE}', x) \rightarrow \text{OFFENDED}'(\text{MAX}'))) \]

- Variable binding is not syntactically constrained \(\Rightarrow \) solves the scope island puzzle
2.2. Unselective binding

• Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):

(7)

a. If we invite some philosopher, Max will be offended
b. predicted reading:
 \[\exists x((\text{PHILOSOPHER'}(x) \land \text{INVITE'}(\text{WE'}, x)) \rightarrow \text{OFFENDED'}(\text{MAX'})) \]
c. real reading:
 \[\exists x((\text{PHILOSOPHER'}(x) \land (\text{INVITE'}(\text{WE'}, x) \rightarrow \text{OFFENDED'}(\text{MAX'}))) \]

• Variable binding is not syntactically constrained \(\Rightarrow\) solves the scope island puzzle
2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):

(7) a. If we invite some philosopher, Max will be offended
 b. predicted reading:
 \[\exists x((\text{PHILOSOPHER'}(x) \land \text{INVITE'}(\text{WE'}, x)) \rightarrow \text{OFFENDED'}(\text{MAX'})) \]
 c. real reading:
 \[\exists x(\text{PHILOSOPHER'}(x) \land (\text{INVITE'}(\text{WE'}, x) \rightarrow \text{OFFENDED'}(\text{MAX'}))) \]

- Variable binding is not syntactically constrained \(\Rightarrow\) solves the scope island puzzle
2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):

(7) a. If we invite some philosopher, Max will be offended
b. predicted reading:
\[\exists x ((\text{PHILOSOPHER'}(x) \land \text{INVITE'}(\text{we'}, x)) \rightarrow \text{OFFENDED'}(\text{MAX'})) \]
c. real reading:
\[\exists x (\text{PHILOSOPHER'}(x) \land (\text{INVITE'}(\text{we'}, x) \rightarrow \text{OFFENDED'}(\text{MAX'}))) \]

- Variable binding is not syntactically constrained \(\Rightarrow\) solves the scope island puzzle
2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):

\[(7) \quad \text{a. If we invite some philosopher, Max will be offended} \]

\[\text{predicted reading:} \quad \exists x((\text{PHILOSPHER}'(x) \land \text{INVITE}'(\text{WE}', x)) \rightarrow \text{OFFENDED}'(\text{MAX}')) \]

\[\text{c. real reading:} \quad \exists x((\text{PHILOSPHER}'(x) \land (\text{INVITE}'(\text{WE}', x) \rightarrow \text{OFFENDED}'(\text{MAX}')))) \]

- Variable binding is not syntactically constrained \(\Rightarrow\) solves the scope island puzzle
2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):

\[(7)\]

a. If we invite some philosopher, Max will be offended

b. predicted reading:
\[\exists x ((\text{PHILOSOPHER’}(x) \land \text{INVITE’}(\text{WE’, } x)) \rightarrow \text{OFFENDED’}(\text{MAX’}))\]

c. real reading:
\[\exists x ((\text{PHILOSOPHER’}(x) \land (\text{INVITE’}(\text{WE’, } x) \rightarrow \text{OFFENDED’}(\text{MAX’})))\]

- Variable binding is not syntactically constrained ⇒ solves the scope island puzzle
2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):

(7) a. If we invite some philosopher, Max will be offended
b. predicted reading:
\[\exists x(\text{PHILOSOPHER}'(x) \land \text{INVITE}'(\text{WE}', x)) \rightarrow \text{OFFENDED}'(\text{MAX}')) \]
c. real reading:
\[\exists x(\text{PHILOSOPHER}'(x) \land (\text{INVITE}'(\text{WE}', x) \rightarrow \text{OFFENDED}'(\text{MAX}')))) \]

- Variable binding is not syntactically constrained \(\Rightarrow\) solves the scope island puzzle
Problems

- Wrong truth conditions
- Known as “Donald Duck Problem” (because the existence of the non-philosopher Donald Duck is sufficient to make the sentence true)
Problems

- Wrong truth conditions
- Known as “Donald Duck Problem” (because the existence of the non-philosopher Donald Duck is sufficient to make the sentence true)
Problems

- Wrong truth conditions
- Known as “Donald Duck Problem” (because the existence of the non-philosopher Donald Duck is sufficient to make the sentence true)
2.3. Indefinites as choice functions

- Intuition: *some movie* refers to some movie
- Thus determiner *some* maps the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions

\[(8) \quad CF(f) \leftrightarrow \forall X. X \neq \emptyset \rightarrow f(X) \in X\]
2.3. Indefinites as choice functions

- Intuition: *some movie* refers to some movie
- Thus determiner *some* maps the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions

(8) \(CF(f) \leftrightarrow \forall X. X \neq \emptyset \rightarrow f(X) \in X \)
2.3. Indefinites as choice functions

- Intuition: some movie refers to some movie
- Thus determiner some maps the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions

(8) $CF(f) \leftrightarrow \forall X. X \neq \emptyset \rightarrow f(X) \in X$
2.3. Indefinites as choice functions

- Intuition: *some movie* refers to some movie
- Thus determiner *some* maps the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions

\[(8) \quad CF(f) \leftrightarrow \forall X. X \neq \emptyset \rightarrow f(X) \in X\]
2.3. Indefinites as choice functions

- Intuition: *some movie* refers to some movie
- Thus determiner *some* maps the set of movies to an element of this set
- I.e. indefinite determiners denote **choice functions**

\[(8) \quad CF(f) \leftrightarrow \forall X. X \neq \emptyset \rightarrow f(X) \in X\]
2.3. Indefinites as choice functions

- Intuition: *some movie* refers to some movie
- Thus determiner *some* maps the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions

\[(8) \quad CF(f) \leftrightarrow \forall X. X \neq \emptyset \rightarrow f(X) \in X\]
• Technically: indefinite Det denotes variable over choice functions

• This variable is (non-deterministically) bound via existential closure at some superordinate level

(9) a. Every girl will be happy if some movie is shown.
 b. \(\exists f. CF(f) \land IS_SHOWN'(f(MOVIE')) \rightarrow (\forall x. GIRL'(x) \rightarrow IS_HAPPY'(x)) \)
 c. \(\exists y. MOVIE'y \land (IS_SHOWN'(y) \rightarrow (\forall x. GIRL'(x) \rightarrow IS_HAPPY'(x))) \)

• no Donald Duck problem

• double scope behavior can be accommodated
• Technically: indefinite Det denotes variable over choice functions

• This variable is (non-deterministically) bound via existential closure at some superordinate level

(9)
 a. Every girl will be happy if some movie is shown.
 \[
 \exists f. CF(f) \land IS_SHOWN'(f(MOVIE')) \rightarrow (\forall x. GIRL'(x) \rightarrow IS_HAPPY'(x))
 \]
 b. \[
 \exists f. CF(f) \land IS_SHOWN'(f(MOVIE')) \rightarrow (\forall x. GIRL'(x) \rightarrow IS_HAPPY'(x))
 \]
 c. \[
 \exists y. MOVIE'y \land (IS_SHOWN'(y) \rightarrow (\forall x. GIRL'(x) \rightarrow IS_HAPPY'(x))))
 \]

• no Donald Duck problem

• double scope behavior can be accommodated
• Technically: indefinite Det denotes variable over choice functions

• This variable is (non-deterministically) bound via existential closure at some superordinate level

\[(9)\]

a. Every girl will be happy if some movie is shown.
 \[
 \exists f. CF(f) \land IS_SHOWN'(f(MOVIE')) \rightarrow (\forall x. GIRL'(x) \rightarrow IS_HAPPY'(x))
 \]

b. Every girl will be happy if some movie is shown.
 \[
 \exists f. CF(f) \land IS_SHOWN'(f(MOVIE')) \rightarrow (\forall x. GIRL'(x) \rightarrow IS_HAPPY'(x))
 \]

\[
(9) \quad c. \exists y. MOVIE'y \land (IS_SHOWN'(y) \rightarrow (\forall x. GIRL'(x) \rightarrow IS_HAPPY'(x)))
\]

• no Donald Duck problem

• double scope behavior can be accommodated
• Technically: indefinite Det denotes variable over choice functions
• This variable is (non-deterministically) bound via existential closure at some superordinate level

\[(9)\] a. Every girl will be happy if some movie is shown.
 b. \(\exists f. CF(f) \land IS_SHOWN'(f(MOVIE')) \rightarrow (\forall x. GIRL'(x) \rightarrow IS_HAPPY'(x))\)
 c. \(\exists y. MOVIE'y \land (IS_SHOWN'(y) \rightarrow (\forall x. GIRL'(x) \rightarrow IS_HAPPY'(x))))\)

• no Donald Duck problem
• double scope behavior can be accommodated
• Technically: indefinite Det denotes variable over choice functions
• This variable is (non-deterministically) bound via existential closure at some superordinate level

(9)
 a. Every girl will be happy if some movie is shown.
 b. \(\exists f. CF(f) \land IS_{\text{SHOWN}}(f(MOVIE')) \rightarrow (\forall x.\text{GIRL'}(x) \rightarrow \text{IS_HAPPY'}(x)) \)
 c. \(\exists y.\text{MOVIE'}y \land (IS_{\text{SHOWN}}'(y) \rightarrow (\forall x.\text{GIRL'}(x) \rightarrow \text{IS_HAPPY'}(x))) \)

• no Donald Duck problem
• double scope behavior can be accommodated
• Technically: indefinite Det denotes variable over choice functions
• This variable is (non-deterministically) bound via existential closure at some superordinate level

(9) a. Every girl will be happy if some movie is shown.
 b. \(\exists f. CF(f) \land IS_SHOWN'(f(MOVIE')) \rightarrow (\forall x. GIRL'(x) \rightarrow IS_HAPPY'(x)) \)
 c. \(\exists y. MOVIE'y \land (IS_SHOWN'(y) \rightarrow (\forall x. GIRL'(x) \rightarrow IS_HAPPY'(x))) \)

• no Donald Duck problem
• double scope behavior can be accommodated
Technically: indefinite Det denotes variable over choice functions

- This variable is (non-deterministically) bound via existential closure at some superordinate level

\[(9)\]

a. Every girl will be happy if some movie is shown.

\[\exists f. \text{CF}(f) \land \text{IS SHOWN'}(f(\text{MOVIE'})) \rightarrow (\forall x. \text{GIRL'}(x) \rightarrow \text{IS HAPPY'}(x))\]

b. \[\exists f. \text{CF}(f) \land \text{IS SHOWN'}(f(\text{MOVIE'})) \rightarrow (\forall x. \text{GIRL'}(x) \rightarrow \text{IS HAPPY'}(x))\]

c. \[\exists y. \text{MOVIE'}y \land (\text{IS SHOWN'}(y) \rightarrow (\forall x. \text{GIRL'}(x) \rightarrow \text{IS HAPPY'}(x)))\]

- no Donald Duck problem
- double scope behavior can be accommodated
Problems

- **Empty set problem:**
 - Choice function supplies arbitrary object if applied to empty set
 - Thus according to CF-approach:
 \[(10) \text{A cup moved } \not\equiv \text{There exists a cup} \]

- **Bound pronoun problem:**
 - Arises if indefinite NP contains a pronoun that is bound from outside the NP
 \[(11) \]
 a. At most three girls, visited a boy that they fancied.
 b. \[\exists f. CF(f) \land |\lambda x. \text{GIRL}'(x) \land \text{VISIT}'(x, f(\lambda y. \text{BOY}'(y) \land \text{FANCY}'(x, y))))| \leq 3 \]
 c. \[|\lambda x. \text{GIRL}'(x) \land \forall y. \text{BOY}'(y) \land \text{FANCY}'(x, y) \rightarrow \text{VISIT}'(x, y)| \leq 3 \]
 - CF-approach predicts a reading (b), which is equivalent to (c)
Problems

- **Empty set problem:**
 - Choice function supplies arbitrary object if applied to empty set
 - Thus according to CF-approach:
 (10) A cup moved $\not\equiv$ There exists a cup

- **Bound pronoun problem:**
 - Arises if indefinite NP contains a pronoun that is bound from outside the NP
 - (11) a. At most three girls$_i$ visited a boy that they$_i$ fancied.
 - b. $\exists f.\text{CF}(f) \land |\lambda x.\text{GIRL'}(x) \land \text{VISIT'}(x, f(\lambda y.\text{BOY'}(y) \land \text{FANCY'}(x, y)))| \leq 3$
 - c. $|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x, y) \rightarrow \text{VISIT'}(x, y)| \leq 3$
 - CF-approach predicts a reading (b), which is equivalent to (c)
Problems

• Empty set problem:
 ○ Choice function supplies arbitrary object if applied to empty set
 ○ Thus according to CF-approach:
 (10) A cup moved $\not\models$ There exists a cup

• Bound pronoun problem:
 ○ Arises if indefinite NP contains a pronoun that is bound from outside the NP
 (11) a. At most three girls$_i$ visited a boy that they$_i$ fancied.
 b. $\exists f. CF(f) \land |\lambda x.\text{GIRL'}(x) \land \text{VISIT'}(x, f(\lambda y.\text{BOY'}(y) \land \text{FANCY'}(x, y))))| \leq 3$
 c. $|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x, y) \rightarrow \text{VISIT'}(x, y)| \leq 3$
 ○ CF-approach predicts a reading (b), which is equivalent to (c)
Problems

• Empty set problem:
 ◦ Choice function supplies arbitrary object if applied to empty set
 ◦ Thus according to CF-approach:
 (10) A cup moved \(\not\exists \) There exists a cup

• Bound pronoun problem:
 ◦ Arises if indefinite NP contains a pronoun that is bound from outside the NP
 (11)
 a. At most three girls\(_i\) visited a boy that they\(_i\) fancied.
 b. \(\exists f. CF(f) \land |\lambda x.\text{GIRL}'(x) \land \text{VISIT}'(x, f(\lambda y.\text{BOY}'(y) \land \text{FANCY}'(x, y))))| \leq 3 \)
 c. \(|\lambda x.\text{GIRL}'(x) \land \forall y.\text{BOY}'(y) \land \text{FANCY}'(x, y) \rightarrow \text{VISIT}'(x, y)| \leq 3 \)

 ◦ CF-approach predicts a reading (b), which is equivalent to (c)
Problems

● Empty set problem:
 ○ Choice function supplies arbitrary object if applied to empty set
 ○ Thus according to CF-approach:
 (10) A cup moved \(\not\exists \) There exists a cup

● Bound pronoun problem:
 ○ Arises if indefinite NP contains a pronoun that is bound from outside the NP

 (11) a. At most three girls\(_i\) visited a boy that they\(_i\) fancied.
 b. \(\exists f. CF(f) \land \lambda x. \text{GIRL}'(x) \land \text{VISIT}'(x, f(\lambda y. \text{BOY}'(y) \land \text{FANCY}'(x, y))) \leq 3 \)
 c. \(\lambda x. \text{GIRL}'(x) \land \forall y. \text{BOY}'(y) \land \text{FANCY}'(x, y) \rightarrow \text{VISIT}'(x, y) \leq 3 \)

 ○ CF-approach predicts a reading (b), which is equivalent to (c)
Problems

- **Empty set problem:**
 - Choice function supplies arbitrary object if applied to empty set
 - Thus according to CF-approach:
 \[(10)\] A cup moved \(\not=\) There exists a cup

- **Bound pronoun problem:**
 - Arises if indefinite NP contains a pronoun that is bound from outside the NP
 \[(11)\]
 a. At most three girls\(_i\) visited a boy that they\(_i\) fancied.
 b. \(\exists f. CF(f) \land |\lambda x.\text{GIRL'}(x) \land \text{VISIT'}(x, f(\lambda y.\text{BOY'}(y) \land \text{FANCY'}(x, y))))| \leq 3\)
 c. \(|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x, y) \rightarrow \text{VISIT'}(x, y)| \leq 3\)
 - CF-approach predicts a reading (b), which is equivalent to (c)
Problems

• Empty set problem:
 ○ Choice function supplies arbitrary object if applied to empty set
 ○ Thus according to CF-approach:
 (10) A cup moved \(\not\exists \) There exists a cup

• Bound pronoun problem:
 ○ Arises if indefinite NP contains a pronoun that is bound from outside the NP
 (11) a. At most three girls\(_i\) visited a boy that they\(_i\) fancied.
 b. \(\exists f.\ CF(f) \land \lambda x.\ \text{GIRL}'(x) \land \text{VISIT}'(x, f(\lambda y.\ \text{BOY}'(y) \land \text{FANCY}'(x, y))) \leq 3 \)
 c. \(\lambda x.\ \text{GIRL}'(x) \land \forall y.\ \text{BOY}'(y) \land \text{FANCY}'(x, y) \rightarrow \text{VISIT}'(x, y) \leq 3 \)
 ○ CF-approach predicts a reading (b), which is equivalent to (c)
Problems

- **Empty set problem:**
 - Choice function supplies arbitrary object if applied to empty set
 - Thus according to CF-approach:

 $$\text{(10) A cup moved } \not\exists \text{ There exists a cup}$$

- **Bound pronoun problem:**
 - Arises if indefinite NP contains a pronoun that is bound from outside the NP

 $$(11) a. \ \exists f. CF(f) \land |\lambda x. \text{GIRL}'(x) \land \text{VISIT}'(x, f(\lambda y. \text{BOY}'(y) \land \text{FANCY}'(x, y)))| \leq 3$$

 $$b. \ |\lambda x. \text{GIRL}'(x) \land \forall y. \text{BOY}'(y) \land \text{FANCY}'(x, y) \rightarrow \text{VISIT}'(x, y)| \leq 3$$

 - CF-approach predicts a reading (b), which is equivalent to (c)
Problems

- **Empty set problem:**
 - Choice function supplies arbitrary object if applied to empty set
 - Thus according to CF-approach:
 \((10) \) A cup moved \(\not\exists \) There exists a cup

- **Bound pronoun problem:**
 - Arises if indefinite NP contains a pronoun that is bound from outside the NP
 \((11) \)
 a. At most three girls\(_i\) visited a boy that they\(_i\) fancied.
 b. \(\exists f. \text{CF}(f) \land |\lambda x. \text{GIRL}'(x) \land \text{VISIT}'(x, f(\lambda y. \text{BOY}'(y) \land \text{FANCY}'(x, y)))| \leq 3 \)
 c. \(|\lambda x. \text{GIRL}'(x) \land \forall y. \text{BOY}'(y) \land \text{FANCY}'(x, y) \rightarrow \text{VISIT}'(x, y)| \leq 3 \)
 - CF-approach predicts a reading (b), which is equivalent to (c)
Problems

- **Empty set problem:**
 - Choice function supplies arbitrary object if applied to empty set
 - Thus according to CF-approach:

 \[(10) \text{ A cup moved } \not\exists \text{ There exists a cup}\]

- **Bound pronoun problem:**
 - Arises if indefinite NP contains a pronoun that is bound from outside the NP

 \[(11) \text{ a. At most three girls}_i \text{ visited a boy that they}_i \text{ fancied.} \]

 \[\text{ b. } \exists f. CF(f) \land |\lambda x. \text{GIRL}'(x) \land \text{VISIT}'(x, f(\lambda y. \text{BOY}'(y) \land \text{FANCY}'(x, y)))| \leq 3\]

 \[\text{ c. } |\lambda x. \text{GIRL}'(x) \land \forall y. \text{BOY}'(y) \land \text{FANCY}'(x, y) \rightarrow \text{VISIT}'(x, y)| \leq 3\]

- CF-approach predicts a reading (b), which is equivalent to (c)
Problems

- **Empty set problem:**
 - Choice function supplies arbitrary object if applied to empty set
 - Thus according to CF-approach:
 (10) A cup moved $\not\models$ There exists a cup

- **Bound pronoun problem:**
 - Arises if indefinite NP contains a pronoun that is bound from outside the NP
 (11) a. At most three girls$_i$ visited a boy that they$_i$ fancied.
 b. $\exists f. CF(f) \land |\lambda x. \text{GIRL}'(x) \land \text{VISIT}'(x, f(\lambda y. \text{BOY}'(y) \land \text{FANCY}'(x, y))))| \leq 3$
 c. $|\lambda x. \text{GIRL}'(x) \land \forall y. \text{BOY}'(y) \land \text{FANCY}'(x, y) \rightarrow \text{VISIT}'(x, y)| \leq 3$
 - CF-approach predicts a reading (b), which is equivalent to (c)
2.4. Specificity as presupposition accommodation

- Specific indefinites are presupposition triggers
- Wide scope is result of accommodation
2.4. Specificity as presupposition accommodation

- Specific indefinites are presupposition triggers
- Wide scope is result of accommodation
2.4. Specificity as presupposition accommodation

- Specific indefinites are presupposition triggers
- Wide scope is result of accommodation
Obvious parallels

- Preference for global scope:
 - *Classical presupposition trigger*
 1. Every Italian watched a film that showed the king in his childhood
 2. = There is a (salient?) king, and every Italian watched a film that showed him in his childhood
 - *Specific indefinite*
 1. Every Italian watched a program that showed a certain diva in her youth
 2. = There is a certain diva, and every Italian watched a program that showed her in her youth
Obvious parallels

● Preference for global scope:
 ○ Classical presupposition trigger
 (12) a. Every Italian watched a film that showed the king in his childhood
 b. = There is a (salient?) king and every Italian watched a film that showed him in his childhood
 ○ Specific indefinite
 (13) a. Every Italian watched a program that showed a certain diva in her youth
 b. = There is a certain diva and every Italian watched a program that showed her in her youth
Obvious parallels

- Preference for global scope:
 - *Classical presupposition trigger*

 (12) a. Every Italian watched a film that showed the king in his childhood
 b. = There is a (salient?) king and every Italian watched a film that showed him in his childhood

 - *Specific indefinite*

 (13) a. Every Italian watched a program that showed a certain diva in her youth
 b. = There is a certain diva and every Italian watched a program that showed her in her youth
Obvious parallels

- Preference for global scope:
 - *Classical presupposition trigger*

 (12) a. Every Italian watched a film that showed the king in his childhood
 b. = There is a (salient?) king, and every Italian watched a film that showed him in his childhood

 - *Specific indefinite*

 (13) a. Every Italian watched a program that showed a certain diva in her youth
 b. = There is a certain diva, and every Italian watched a program that showed her in her youth
Obvious parallels

- Preference for global scope:
 - Classical presupposition trigger
 (12) a. Every Italian watched a film that showed the king in his childhood
 b. = There is a (salient?) king and every Italian watched a film that showed him in his childhood
 - Specific indefinite
 (13) a. Every Italian watched a program that showed a certain diva in her youth
 b. = There is a certain diva and every Italian watched a program that showed her in her youth
Obvious parallels

- Preference for global scope:
 - Classical presupposition trigger
 (12) a. Every Italian watched a film that showed the king in his childhood
 b. = There is a (salient?) king and every Italian watched a film that showed him in his childhood

 - Specific indefinite
 (13) a. Every Italian watched a program that showed a certain diva in her youth
 b. = There is a certain diva and every Italian watched a program that showed her in her youth
Obvious parallels

• Preference for global scope:
 ○ *Classical presupposition trigger*
 (12) a. Every Italian watched a film that showed the king in his childhood
 b. = There is a (salient?) king and every Italian watched a film that showed him in his childhood
 ○ *Specific indefinite*
 (13) a. Every Italian watched a program that showed a certain diva in her youth
 b. = There is a certain diva and every Italian watched a program that showed her in her youth
Obvious parallels

- Preference for global scope:
 - Classical presupposition trigger
 (12) a. Every Italian watched a film that showed the king in his childhood
 b. = There is a (salient?) king and every Italian watched a film that showed him in his childhood
 - Specific indefinite
 (13) a. Every Italian watched a program that showed a certain diva in her youth
 b. = There is a certain diva and every Italian watched a program that showed her in her youth
“Trapping”: bound pronouns cannot become unbound

○ *Presupposition trigger*

(14) a. Every girl$_i$ visited her$_i$ boyfriend
 b. = Every girl has a boyfriend and visited him
 c. $\not\Rightarrow$ There is a boyfriend that every girl visited

○ *Specific indefinite*

(15) a. Every girl$_i$ visited a certain boy she$_i$ fancied
 b. = Every girl fancies a boy and visited him
 c. $\not\Rightarrow$ There is a boy that every girl visited
“Trapping”: bound pronouns cannot become unbound

- Presupposition trigger
 (14) a. Every girl$_i$ visited her$_i$ boyfriend
 b. \equiv Every girl has a boyfriend and visited him
 c. $\not\Rightarrow$ There is a boyfriend that every girl visited

- Specific indefinite
 (15) a. Every girl$_i$ visited a certain boy she$_i$ fancied
 b. \equiv Every girl fancies a boy and visited him
 c. $\not\Rightarrow$ There is a boy that every girl visited
● “Trapping”: bound pronouns cannot become unbound
 ○ *Presupposition trigger*
 (14) a. Every girl, visited her boyfriend
 b. = Every girl has a boyfriend and visited him
 c. ∉ There is a boyfriend that every girl visited
 ○ *Specific indefinite*
 (15) a. Every girl, visited a certain boy she fancied
 b. = Every girl fancies a boy and visited him
 c. ∉ There is a boy that every girl visited
• “Trapping”: bound pronouns cannot become unbound
 ◦ Presupposition trigger
 (14) a. Every girl$_i$ visited her$_i$ boyfriend
 b. = Every girl has a boyfriend and visited him
 c. $\not\Rightarrow$ There is a boyfriend that every girl visited
 ◦ Specific indefinite
 (15) a. Every girl$_i$ visited a certain boy she$_i$ fancied
 b. = Every girl fancies a boy and visited him
 c. $\not\Rightarrow$ There is a boy that every girl visited
“Trapping”: bound pronouns cannot become unbound

- **Presupposition trigger**

 (14) a. Every girl\textsubscript{i} visited her\textsubscript{i} boyfriend
 b. = Every girl has a boyfriend and visited him
 c. $\not\Rightarrow$ There is a boyfriend that every girl visited

- **Specific indefinite**

 (15) a. Every girl\textsubscript{i} visited a certain boy she\textsubscript{i} fancied
 b. = Every girl fancies a boy and visited him
 c. $\not\Rightarrow$ There is a boy that every girl visited
• “Trapping”: bound pronouns cannot become unbound

 ◦ *Presupposition trigger*
 (14) a. Every girl, visited her boyfriend
 b. = Every girl has a boyfriend and visited him
 c. ⊳ There is a boyfriend that every girl visited

 ◦ *Specific indefinite*
 (15) a. Every girl, visited a certain boy she fancied
 b. = Every girl fancies a boy and visited him
 c. ⊳ There is a boy that every girl visited
• “Trapping”: bound pronouns cannot become unbound

 ○ *Presupposition trigger*

 (14) a. Every girl$_i$ visited her$_i$ boyfriend
 b. = Every girl has a boyfriend and visited him
 c. $\not\implies$ There is a boyfriend that every girl visited

 ○ *Specific indefinite*

 (15) a. Every girl$_i$ visited a certain boy she$_i$ fancied
 b. = Every girl fancies a boy and visited him
 c. $\not\implies$ There is a boy that every girl visited
“Trapping”: bound pronouns cannot become unbound

○ *Presupposition trigger*

(14) a. Every girl$_i$ visited her$_i$ boyfriend
 b. = Every girl has a boyfriend and visited him
 c. $\not\Rightarrow$ There is a boyfriend that every girl visited

○ *Specific indefinite*

(15) a. Every girl$_i$ visited a certain boy she$_i$ fancied
 b. = Every girl fancies a boy and visited him
 c. $\not\Rightarrow$ There is a boy that every girl visited
• “Trapping”: bound pronouns cannot become unbound
 ○ Presupposition trigger
 (14) a. Every girl$_i$ visited her$_i$ boyfriend
 b. = Every girl has a boyfriend and visited him
 c. $\not\Rightarrow$ There is a boyfriend that every girl visited
 ○ Specific indefinite
 (15) a. Every girl$_i$ visited a certain boy she$_i$ fancied
 b. = Every girl fancies a boy and visited him
 c. $\not\Rightarrow$ There is a boy that every girl visited
“Trapping”: bound pronouns cannot become unbound

- *Presupposition trigger*
 (14) a. Every girl$_i$ visited her$_i$ boyfriend
 b. = Every girl has a boyfriend and visited him
 c. $\not\Rightarrow$ There is a boyfriend that every girl visited

- *Specific indefinite*
 (15) a. Every girl$_i$ visited a certain boy she$_i$ fancied
 b. = Every girl fancies a boy and visited him
 c. $\not\Rightarrow$ There is a boy that every girl visited
• “Local informativity”: Accommodation/wide scope must not make substructures redundant
 ◦ Presupposition trigger
 (16) a. If France is a kingdom, the king of France is bald
 b. \(\neq\) There is a king of France, and if France is a kingdom, he is bald
 ◦ Specific indefinite
 (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 b. \(\neq\) John has a sibling and if he is not a single child, this sibling will inherit his house

• avoids all shortcomings of above mentioned approaches
“Local informativity”: Accommodation/wide scope must not make substructures redundant

- Presupposition trigger
 (16) a. If France is a kingdom, the king of France is bald
 b. \(\neq \) There is a king of France, and if France is a kingdom, he is bald

- Specific indefinite
 (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 b. \(\neq \) John has a sibling and if he is not a single child, this sibling will inherit his house

- Avoids all shortcomings of above mentioned approaches
“Local informativity” : Accommodation/wide scope must not make substructures redundant

- **Presupposition trigger**
 (16) a. If France is a kingdom, the king of France is bald
 b. \neq There is a king of France, and if France is a kingdom, he is bald

- **Specific indefinite**
 (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house

- avoids all shortcomings of above mentioned approaches
“Local informativity”: Accommodation/wide scope must not make substructures redundant

- Presupposition trigger
 (16) a. If France is a kingdom, the king of France is bald
 b. \neq There is a king of France, and if France is a kingdom, he is bald

- Specific indefinite
 (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house

- avoids all shortcomings of above mentioned approaches
• “Local informativity”: Accommodation/wide scope must not make substructures redundant

 ◦ Presupposition trigger

 (16)
 a. If France is a kingdom, the king of France is bald
 b. \(\neq \) There is a king of France, and if France is a kingdom, he is bald

 ◦ Specific indefinite

 (17)
 a. If John is not a single child, a certain sibling of him will inherit his house.
 b. \(\neq \) John has a sibling and if he is not a single child, this sibling will inherit his house

• avoids all shortcomings of above mentioned approaches
“Local informativity”: Accommodation/wide scope must not make substructures redundant

○ Presupposition trigger

(16) a. If France is a kingdom, the king of France is bald
b. \(\neq\) There is a king of France, and if France is a kingdom, he is bald

○ Specific indefinite

(17) a. If John is not a single child, a certain sibling of him will inherit his house.
b. \(\neq\) John has a sibling and if he is not a single child, this sibling will inherit his house

• avoids all shortcomings of above mentioned approaches
• “Local informativity”: Accommodation/wide scope must not make substructures redundant

 ○ *Presupposition trigger*

 (16) a. If France is a kingdom, the king of France is bald
 b. ̸= There is a king of France, and if France is a kingdom, he is bald

 ○ *Specific indefinite*

 (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 b. ̸= John has a sibling and if he is not a single child, this sibling will inherit his house

• avoids all shortcomings of above mentioned approaches
• “Local informativity”: Accommodation/wide scope must not make substructures redundant

 ○ *Presupposition trigger*

 (16) a. If France is a kingdom, the king of France is bald
 b. \neq There is a king of France, and if France is a kingdom, he is bald

 ○ *Specific indefinite*

 (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house

• avoids all shortcomings of above mentioned approaches
• “Local informativity”: Accommodation/wide scope must not make substructures redundant
 o Presupposition trigger
 (16) a. If France is a kingdom, the king of France is bald
 b. \neq There is a king of France, and if France is a kingdom, he is bald
 o Specific indefinite
 (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house

• avoids all shortcomings of above mentioned approaches
Problems

• Unless “ordinary” presuppositions, specifics cannot be bound

 (18) a. If a man walks, the man talks
 b. can mean: If a man_1 walks, he_i talks

 (19) a. If a man walks, a (certain) man talks
 b. cannot mean: If a man_1 walks, he_i talks

• only formally spelled out theory of accommodation—van der Sandt 1992—is non-compositional
Problems

• Unlike “ordinary” presuppositions, specifics cannot be bound

(18) a. If a man walks, the man talks
 b. *can mean:* If a man$_i$ walks, he$_i$ talks

(19) a. If a man walks, a (certain) man talks
 b. *cannot mean:* If a man$_i$ walks, he$_i$ talks

• only formally spelled out theory of accommodation—van der Sandt 1992—is non-compositional
Problems

• Unlike “ordinary” presuppositions, specifics cannot be bound

(18) a. If a man walks, the man talks
 b. *can mean:* If a man\(_i\) walks, he\(_i\) talks

(19) a. If a man walks, a (certain) man talks
 b. *cannot mean:* If a man\(_i\) walks, he\(_i\) talks

• only formally spelled out theory of accommodation—van der Sandt 1992—is non-compositional
Problems

• Unlike “ordinary” presuppositions, specifics cannot be bound

(18) a. If a man walks, the man talks
 b. *can mean:* If a manᵢ walks, heᵢ talks

(19) a. If a man walks, a (certain) man talks
 b. *cannot mean:* If a manᵢ walks, heᵢ talks

• only formally spelled out theory of accommodation—van der Sandt 1992—is non-compositional
Problems

• Unlike “ordinary” presuppositions, specifics cannot be bound

(18) a. If a man walks, the man talks
 b. *can mean*: If a man walks, he talks

(19) a. If a man walks, a (certain) man talks
 b. *cannot mean*: If a man walks, he talks

• only formally spelled out theory of accommodation—van der Sandt 1992—is non-compositional
Problems

• Unlike “ordinary” presuppositions, specifics cannot be bound

 (18) a. If a man walks, the man talks
 b. *can mean*: If a man
 walks, he talks

 (19) a. If a man walks, a (certain) man talks
 b. *cannot mean*: If a man
 walks, he talks

• only formally spelled out theory of accommodation—van der Sandt
 1992—is non-compositional
Problems

• Unlike “ordinary” presuppositions, specifics cannot be bound

(18)
(a) If a man walks, the man talks
(b) *can mean*: If a man \(i\) walks, he \(i\) talks

(19)
(a) If a man walks, a (certain) man talks
(b) *cannot mean*: If a man \(i\) walks, he \(i\) talks

• only formally spelled out theory of accommodation—van der Sandt 1992—is non-compositional
3. Combining the approaches

3.1. The idea

- Heim style DRT, choice function approach, and specificity-as-presupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as *as cup*

<table>
<thead>
<tr>
<th>DRT</th>
<th>CF</th>
<th>Presup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>is supplied by context</td>
<td>is some cup</td>
<td>does not exist if it is not a cup</td>
</tr>
</tbody>
</table>
3. Combining the approaches

3.1. The idea

- Heim style DRT, choice function approach, and specificity-as-presupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as *as cup*

<table>
<thead>
<tr>
<th>DRT</th>
<th>CF</th>
<th>Presup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>is supplied by context</td>
<td>is some cup</td>
<td>does not exist if it is not a cup</td>
</tr>
</tbody>
</table>
3. Combining the approaches

3.1. The idea

- Heim style DRT, choice function approach, and specificity-as-presupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as *as cup*

<table>
<thead>
<tr>
<th>DRT</th>
<th>CF</th>
<th>Presup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>is supplied by context</td>
<td>is some cup</td>
<td>does not exist if it is not a cup</td>
</tr>
</tbody>
</table>
3. Combining the approaches

3.1. The idea

- Heim style DRT, choice function approach, and specificity-as-presupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as *as cup*

<table>
<thead>
<tr>
<th></th>
<th>DRT</th>
<th>CF</th>
<th>Presup.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>is supplied by context</td>
<td>is some cup</td>
<td>does not exist</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if it is not a cup</td>
</tr>
</tbody>
</table>
3. Combining the approaches

3.1. The idea

- Heim style DRT, choice function approach, and specificity-as-presupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as \textit{as cup}

<table>
<thead>
<tr>
<th>DRT</th>
<th>CF</th>
<th>Presup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>is supplied by context</td>
<td>is some cup</td>
<td>does not exist if it is not a cup</td>
</tr>
</tbody>
</table>
3. Combining the approaches

3.1. The idea

- Heim style DRT, choice function approach, and specificity-as-presupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as *as cup*

<table>
<thead>
<tr>
<th>DRT</th>
<th>CF</th>
<th>Presup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>is supplied by context</td>
<td>is some cup</td>
<td>does not exist if it is not a cup</td>
</tr>
</tbody>
</table>
3. Combining the approaches

3.1. The idea

- Heim style DRT, choice function approach, and specificity-as-presupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as *as cup*

<table>
<thead>
<tr>
<th>DRT</th>
<th>CF</th>
<th>Presup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>is supplied by context</td>
<td>is some cup</td>
<td>does not exist if it is not a cup</td>
</tr>
</tbody>
</table>
3. Combining the approaches

3.1. The idea

- Heim style DRT, choice function approach, and specificity-as-presupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

<table>
<thead>
<tr>
<th>DRT</th>
<th>CF</th>
<th>Presup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>is supplied by context</td>
<td>is some cup</td>
<td>does not exist if it is not a cup</td>
</tr>
</tbody>
</table>
3.2. Technical implementation

- Denotation of a cup is a **partial variable**:
 \(a \text{ cup} \sim [x | \text{CUP}'(x)] \)

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \(\exists \) turns definedness conditions into part of truth conditions
3.2. Technical implementation

- Denotation of a cup is a **partial variable**:

 \[a \text{ cup} \sim [x]|\text{CUP}'(x) \]

- Partial variables only denote if the restriction is true
- Otherwise they behave like ordinary variables
- Optional existential closure of free (partial) variables at some superordinate level
- \(\exists \) turns definedness conditions into part of truth conditions
3.2. Technical implementation

- Denotation of a *cup* is a **partial variable**:

\[a \text{ cup} \sim [x|\text{CUP}'(x)] \]

- Partial variables only denote if the restriction is true
- Otherwise they behave like ordinary variables
- Optional existential closure of free (partial) variables at some superordinate level
- \(\exists \) turns definedness conditions into part of truth conditions
3.2. Technical implementation

- Denotation of a *cup* is a **partial variable**:

 \[a \text{ cup} \sim [x | \text{CUP}'(x)] \]

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \(\exists \) turns definedness conditions into part of truth conditions
3.2. Technical implementation

- Denotation of a cup is a partial variable:
 \[a \text{ cup} \sim [x|\text{CUP}'(x)] \]

- Partial variables only denote if the restriction is true
- Otherwise they behave like ordinary variables
- Optional existential closure of free (partial) variables at some superordinate level
- \(\exists \) turns definedness conditions into part of truth conditions
3.2. Technical implementation

- Denotation of a cup is a partial variable:

\[a \text{ cup} \sim [x | \text{CUP}'(x)] \]

- Partial variables only denote if the restriction is true.
- Otherwise, they behave like ordinary variables.
- Optional existential closure of free (partial) variables at some superordinate level.
- \(\exists \) turns definedness conditions into part of truth conditions.
3.2. Technical implementation

- Denotation of a cup is a **partial variable**:

 \[a \text{ cup} \sim [x|\text{CUP'}(x)] \]

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \(\exists \) turns definedness conditions into part of truth conditions
• If x is a variable of type α and φ is a formula of type t, then $[x|\varphi]$ is a partial variable of type α

• $\| [x|\varphi] \|_g = \begin{cases} g(x) & \text{iff } \| \varphi \|_g = 1 \\ \text{undefined} & \text{else} \end{cases}$

• $\| \exists x \varphi \|_g = \begin{cases} 1 & \text{iff for some } a : \| \varphi \|_{g[a/x]} = 1 \\ 0 & \text{else} \end{cases}$

• Otherwise an expression only has a denotation if each of its immediate subexpressions has a denotation
• If x is a variable of type α and φ is a formula of type t, then $[x|\varphi]$ is a partial variable of type α

• $\| [x|\varphi] \|_g = \begin{cases} g(x) \text{ iff } \| \varphi \|_g = 1 \\ \text{undefined else} \end{cases}$

• $\| \exists x \varphi \|_g = \begin{cases} 1 \text{ iff for some } a : \| \varphi \|_{g[a/x]} = 1 \\ 0 \text{ else} \end{cases}$

• Otherwise an expression only has a denotation if each of its immediate subexpressions has a denotation
• If x is a variable of type α and φ is a formula of type t, then $[x|\varphi]$ is a partial variable of type α

• $\parallel [x|\varphi] \parallel_g = \begin{cases} g(x) \text{ iff } \parallel \varphi \parallel_g = 1 \\ \text{undefined else} \end{cases}$

• $\parallel \exists x \varphi \parallel_g = \begin{cases} 1 \text{ iff for some } a : \parallel \varphi \parallel_{g[a/x]} = 1 \\ 0 \text{ else} \end{cases}$

• Otherwise an expression only has a denotation if each of its immediate subexpressions has a denotation
• If \(x \) is a variable of type \(\alpha \) and \(\varphi \) is a formula of type \(t \), then \([x|\varphi]\) is a partial variable of type \(\alpha \)

\[\| [x|\varphi] \|_g = \begin{cases}
g(x) \text{ iff } \|\varphi\|_g = 1 \\
\text{undefined else} \end{cases}\]

\[\| \exists x \varphi \|_g = \begin{cases}
1 \text{ iff for some } a : \|\varphi\|_{g[a/x]} = 1 \\
0 \text{ else} \end{cases}\]

• Otherwise an expression only has a denotation if each of its immediate subexpressions has a denotation
• If x is a variable of type α and φ is a formula of type t, then $[x|\varphi]$ is a partial variable of type α

• $\| [x|\varphi] \|_g = \begin{cases} g(x) \text{ iff } \| \varphi \|_g = 1 \\ \text{undefined else} \end{cases}$

• $\| \exists x \varphi \|_g = \begin{cases} 1 \text{ iff for some } a : \| \varphi \|_{g[a/x]} = 1 \\ 0 \text{ else} \end{cases}$

• Otherwise an expression only has a denotation if each of its immediate subexpressions has a denotation
An example

(20) a. A cup moved
 b. $\exists x. \text{MOVE'}([x|\text{CUP'}(x)])$

c. $\|\text{MOVE'}([x|\text{CUP'}(x)])\|_g = \begin{cases}
1 & \text{iff } g(x) \in \|\text{CUP'}\|_g \land g(x) \in \|\text{MOVE'}\|_g \\
0 & \text{iff } g(x) \in \|\text{CUP'}\|_g \land g(x) \notin \|\text{MOVE'}\|_g \\
\text{undefined} & \text{iff } g(x) \notin \|\text{CUP'}\|_g
\end{cases}$

d. $\|\exists x. \text{MOVE'}([x|\text{CUP'}(x)])\| = \begin{cases}
1 & \text{iff } \|\text{CUP'}\|_g \cap \|\text{MOVE'}\|_g \neq \emptyset \\
0 & \text{else}
\end{cases}$
An example

(20) a. A cup moved
 b. $\exists x. \text{MOVE}'([x|\text{CUP}'(x)])$
 c. $\|\text{MOVE}'([x|\text{CUP}'(x)])\|_g = \begin{cases}
1 & \text{iff } g(x) \in \|\text{CUP}'\|_g \text{ & } g(x) \in \|\text{MOVE}'\|_g \\
0 & \text{iff } g(x) \in \|\text{CUP}'\|_g \text{ & } g(x) \not\in \|\text{MOVE}'\|_g \\
\text{undefined} & \text{iff } g(x) \not\in \|\text{CUP}'\|_g
\end{cases}$
 d. $\|\exists x. \text{MOVE}'([x|\text{CUP}'(x)])\|_g = \begin{cases}
1 & \text{iff } \|\text{CUP}'\|_g \cap \|\text{MOVE}'\|_g \neq \emptyset \\
0 & \text{else}
\end{cases}$
An example

(20) a. A cup moved
 b. $\exists x.\text{MOVE}'([x|\text{CUP}'(x)])$

c. $\|\text{MOVE}'([x|\text{CUP}'(x)])\|_g = \begin{cases}
1 & \text{iff } g(x) \in \|\text{CUP}'\|_g \land g(x) \in \|\text{MOVE}'\|_g \\
0 & \text{iff } g(x) \in \|\text{CUP}'\|_g \land g(x) \notin \|\text{MOVE}'\|_g \\
\text{undefined} & \text{iff } g(x) \notin \|\text{CUP}'\|_g
\end{cases}$

d. $\|\exists x.\text{MOVE}'([x|\text{CUP}'(x)])\| = \begin{cases}
1 & \text{iff } \|\text{CUP}'\|_g \cap \|\text{MOVE}'\|_g \neq \emptyset \\
0 & \text{else}
\end{cases}$
An example

(20) a. A cup moved
b. $\exists x. \text{MOVE'}([x|\text{CUP'}(x)])$

c. $\|\text{MOVE'}([x|\text{CUP'}(x)])\|_g = \begin{cases}
1 & \text{iff } g(x) \in \|\text{CUP'}\|_g \text{ and } g(x) \in \|\text{MOVE'}\|_g \\
0 & \text{iff } g(x) \in \|\text{CUP'}\|_g \text{ and } g(x) \notin \|\text{MOVE'}\|_g \\
\text{undefined} & \text{iff } g(x) \notin \|\text{CUP'}\|_g
\end{cases}$

d. $\|\exists x. \text{MOVE'}([x|\text{CUP'}(x)])\| = \begin{cases}
1 & \text{iff } \|\text{CUP'}\|_g \cap \|\text{MOVE'}\|_g \neq \emptyset \\
0 & \text{else}
\end{cases}$
An example

(20) a. A cup moved
 b. $\exists x.\text{MOVE'}([x|\text{CUP'}(x)])$

c. $\|\text{MOVE'}([x|\text{CUP'}(x)])\|_g = \begin{cases}
1 & \text{iff } g(x) \in \|\text{CUP'}\|_g \land g(x) \in \|\text{MOVE'}\|_g \\
0 & \text{iff } g(x) \in \|\text{CUP'}\|_g \land g(x) \notin \|\text{MOVE'}\|_g \\
\text{undefined} & \text{iff } g(x) \notin \|\text{CUP'}\|_g
\end{cases}$

d. $\|\exists x.\text{MOVE'}([x|\text{CUP'}(x)])\| = \begin{cases}
1 & \text{iff } \|\text{CUP'}\|_g \cap \|\text{MOVE'}\|_g \neq \emptyset \\
0 & \text{else}
\end{cases}$
no empty set problem:

- Suppose there are no cups
- Then restriction on variable \([x|\text{CUP}'(x)]\) is always false
- Thus \([x|\text{CUP}'(x)]\) never denotes
- Hence the sentence as a whole becomes false
- no empty set problem:
 - Suppose there are no cups
 - Then restriction on variable \([x|\text{CUP}'(x)]\) is always false
 - Thus \([x|\text{CUP}'(x)]\) never denotes
 - Hence the sentence as a whole becomes false
• no empty set problem:
 • Suppose there are no cups
 • Then restriction on variable \([x|\text{CUP}'(x)]\) is always false
 • Thus \([x|\text{CUP}'(x)]\) never denotes
 • Hence the sentence as a whole becomes false
• no empty set problem:
 ○ Suppose there are no cups
 ○ Then restriction on variable \([x \mid {\text{CUP}}'(x)]\) is always false
 ○ Thus \([x \mid {\text{CUP}}'(x)]\) never denotes
 ○ Hence the sentence as a whole becomes false
no empty set problem:

- Suppose there are no cups
- Then restriction on variable \([x \mid \text{CUP}'(x)]\) is always false
- Thus \([x \mid \text{CUP}'(x)]\) never denotes
- Hence the sentence as a whole becomes false
• no empty set problem:
 ○ Suppose there are no cups
 ○ Then restriction on variable \([x|\text{CUP}'(x)]\) is always false
 ○ Thus \([x|\text{CUP}'(x)]\) never denotes
 ○ Hence the sentence as a whole becomes false
(21) a. If a cup moved the ghost is present
b. $\exists x (\text{MOVE}'([x|\text{CUP}'(x)]) \rightarrow \text{GHIP}')$

c. $\|\text{MOVE}'([x|\text{CUP}'(x)]) \rightarrow \text{GHIP}'\|_g =$

\[
\begin{cases}
1 & \text{iff } g(x) \in \|\text{CUP}'\|_g \land (g(x) \in \|\text{MOVE}'\|_g \Rightarrow \|\text{GHIP}'\|_g = 1) \\
0 & \text{iff } g(x) \in \|\text{CUP}'\|_g \land g(x) \in \|\text{MOVE}'\|_g \land \|\text{GHIP}'\|_g = 0 \\
\text{undefined} & \text{iff } g(x) \not\in \|\text{CUP}'\|_g
\end{cases}
\]

d. $\|(b)\|_g = \begin{cases}
1 & \text{iff } \exists a. a \in \|\text{CUP}'\|_g \land (a \in \|\text{MOVE}'\|_g \Rightarrow \|\text{GHIP}'\|_g = 1) \\
0 & \text{else}
\end{cases}$

- **no island sensitivity**: variable binding is syntactically unbounded
- **no Donald Duck problem**: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level
(21) a. If a cup moved the ghost is present
 b. $\exists x (\text{MOVE}'([x|\text{CUP}'(x)]) \rightarrow \text{GHIP}')$
 c. $\|\text{MOVE}'([x|\text{CUP}'(x)]) \rightarrow \text{GHIP}'\|_g =$

 \[
 \begin{cases}
 1 & \text{iff } g(x) \in \|\text{CUP}'\|_g & (g(x) \in \|\text{MOVE}'\|_g \Rightarrow \|\text{GHIP}'\|_g = 1) \\
 0 & \text{iff } g(x) \in \|\text{CUP}'\|_g & g(x) \in \|\text{MOVE}'\|_g & \|\text{GHIP}'\|_g = 0 \\
 \text{undefined} & \text{iff } g(x) \notin \|\text{CUP}'\|_g
 \end{cases}
 \]

 d. $\|(b)\|_g = \begin{cases}
 1 & \text{iff } \exists a.a \in \|\text{CUP}'\|_g \land (a \in \|\text{MOVE}'\|_g \Rightarrow \|\text{GHIP}'\|_g = 1) \\
 0 & \text{else}
 \end{cases}$

- no island sensitivity: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level
(21) a. If a cup moved the ghost is present
b. \(\exists x \left[\text{MOVE}'\left([x|\text{CUP'}(x)]\right) \rightarrow \text{GHIP}' \right] \)
c. \(\|\text{MOVE}'([x|\text{CUP'}(x)]) \rightarrow \text{GHIP}'\|_g = \)
\[
\begin{cases}
1 & \text{iff } g(x) \in \|\text{CUP'}\|_g & (g(x) \in \|\text{MOVE}'\|_g \Rightarrow \|\text{GHIP'}\|_g = 1) \\
0 & \text{iff } g(x) \in \|\text{CUP'}\|_g & g(x) \in \|\text{MOVE}'\|_g & \|\text{GHIP'}\|_g = 0 \\
\text{undefined} & \text{iff } g(x) \notin \|\text{CUP'}\|_g
\end{cases}
d. \| (b) \|_g = \begin{cases} 1 & \text{iff } \exists a. a \in \|\text{CUP'}\|_g \land (a \in \|\text{MOVE}'\|_g \Rightarrow \|\text{GHIP'}\|_g = 1) \\
0 & \text{else} \end{cases}

- no island sensitivity: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level
(21) a. If a cup moved the ghost is present
b. $\exists x (\text{MOVE'}([x|\text{CUP'}(x)]) \rightarrow \text{GHIP'})$
c. $\|\text{MOVE'}([x|\text{CUP'}(x)]) \rightarrow \text{GHIP'}\|_g =$
 \[
 \begin{cases}
 1 & \text{iff } g(x) \in \|\text{CUP'}\|_g \land (g(x) \in \|\text{MOVE'}\|_g \Rightarrow \|\text{GHIP'}\|_g = 1) \\
 0 & \text{iff } g(x) \in \|\text{CUP'}\|_g \land g(x) \in \|\text{MOVE'}\|_g \land \|\text{GHIP'}\|_g = 0 \\
 \text{undefined} & \text{iff } g(x) \notin \|\text{CUP'}\|_g
 \end{cases}
d. $\|(b)\|_g = \begin{cases}
1 & \text{iff } \exists a.a \in \|\text{CUP'}\|_g \land (a \in \|\text{MOVE'}\|_g \Rightarrow \|\text{GHIP'}\|_g = 1) \\
0 & \text{else}
\end{cases}$

- no island sensitivity: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level
(21) a. If a cup moved the ghost is present
 b. \(\exists x (\text{MOVE}'([x|\text{CUP}'(x)]) \rightarrow \text{GHIP}') \)
 c. \(\|\text{MOVE}'([x|\text{CUP}'(x)]) \rightarrow \text{GHIP}'\|_g = \)
 \[
 \begin{cases}
 1 & \text{iff } g(x) \in \|\text{CUP}'\|_g \land (g(x) \in \|\text{MOVE}'\|_g \Rightarrow \|\text{GHIP}'\|_g = 1) \\
 0 & \text{iff } g(x) \in \|\text{CUP}'\|_g \land g(x) \in \|\text{MOVE}'\|_g \land \|\text{GHIP}'\|_g = 0 \\
 \text{undefined} & \text{iff } g(x) \not\in \|\text{CUP}'\|_g
 \end{cases}
 \]
 d. \(\|(b)\|_g = \begin{cases}
 1 & \text{iff } \exists a.a \in \|\text{CUP}'\|_g \land (a \in \|\text{MOVE}'\|_g \Rightarrow \|\text{GHIP}'\|_g = 1) \\
 0 & \text{else}
 \end{cases} \)

- no island sensitivity: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level
(21) a. If a cup moved the ghost is present
 b. \[\exists x (\text{MOVE}'([x]|\text{CUP}'(x)]) \rightarrow \text{GHIP}') \]
 c. \[\| \text{MOVE}'([x]|\text{CUP}'(x)]) \rightarrow \text{GHIP}' \|_g = \]
 \[
 \begin{cases}
 1 & \text{iff } g(x) \in \| \text{CUP}' \|_g \land (g(x) \in \| \text{MOVE}' \|_g \Rightarrow \| \text{GHIP}' \|_g = 1) \\
 0 & \text{iff } g(x) \in \| \text{CUP}' \|_g \land g(x) \in \| \text{MOVE}' \|_g \land \| \text{GHIP}' \|_g = 0 \\
 \text{undefined} & \text{iff } g(x) \notin \| \text{CUP}' \|_g
 \end{cases}
 \]
 d. \[\| (b) \|_g = \begin{cases}
 1 & \text{iff } \exists a.a \in \| \text{CUP}' \|_g \land (a \in \| \text{MOVE}' \|_g \Rightarrow \| \text{GHIP}' \|_g = 1) \\
 0 & \text{else}
 \end{cases} \]

- **no island sensitivity**: variable binding is syntactically unbounded
- **no Donald Duck problem**: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level
• restrictions on variables comparable to presuppositions
• existential closure amounts to accommodation
• Presupposition binding corresponds to coindexation with a discourse-familiar variable
• specific indefinites are subject to Heim’s Novelty Condition
• Thus no coindexation \(\sim \) accommodation is only option
• restrictions on variables comparable to presuppositions
 • existential closure amounts to accommodation
 • Presupposition binding corresponds to coindexation with a discourse-familiar variable
 • specific indefinites are subject to Heim’s Novelty Condition
 • Thus no coindexation ~> accommodation is only option
• restrictions on variables comparable to presuppositions
• existential closure amounts to **accommodation**
 • Presupposition **binding** corresponds to coindexation with a discourse-familiar variable
• specific indefinites are subject to Heim’s Novelty Condition
• Thus no coindexation \leadsto accommodation is only option
• restrictions on variables comparable to presuppositions
• existential closure amounts to **accommodation**
• Presupposition **binding** corresponds to coindexation with a discourse-familiar variable
 • specific indefinites are subject to Heim’s Novelty Condition
 • Thus no coindexation \(\sim \) accommodation is only option
• restrictions on variables comparable to presuppositions
• existential closure amounts to **accommodation**
• Presupposition **binding** corresponds to coindexation with a discourse-familiar variable
• specific indefinites are subject to Heim’s Novelty Condition
 • Thus no coindexation \(\nsim\) accommodation is only option
• restrictions on variables comparable to presuppositions
• existential closure amounts to **accommodation**
• Presupposition **binding** corresponds to coindexation with a discourse-familiar variable
• specific indefinites are subject to Heim’s Novelty Condition
• Thus no coindexation \sim accommodation is only option
- **Bound pronoun problem** remains:

- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)

(22) a. Every girl visited a boy she fancied
 b. \(\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y|\text{BOY}'(y) \land \text{FANCY}'(x, y)]) \)
 c. \(\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y)) \)

- Can be solved by using sequences of \(n \)-ary assignment function rather than single functions, cf. appendix
• **Bound pronoun problem** remains:

 • Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)

(22) a. Every girl visited a boy she fancied
 b. $\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y | \text{BOY}'(y) \land \text{FANCY}'(x, y)])$
 c. $\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y))$

• Can be solved by using sequences of n-ary assignment function rather than single functions, cf. appendix
• **Bound pronoun problem** remains:

• Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)

(22) a. Every girl visited a boy she fancied
 b. \(\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y | \text{BOY}'(y) \land \text{FANCY}'(x, y)]) \)
 c. \(\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y)) \)

• Can be solved by using sequences of \(n \)-ary assignment function rather than single functions, cf. appendix
• **Bound pronoun problem** remains:

• Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)

(22) a. Every girl visited a boy she fancied
 b. \(\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y|\text{BOY}'(y) \land \text{FANCY}'(x, y)]) \)
 c. \(\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y)) \)

• Can be solved by using sequences of \(n \)-ary assignment function rather than single functions, cf. appendix
• **Bound pronoun problem** remains:

• Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)

(22) a. Every girl visited a boy she fancied
b. $\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y|\text{BOY}'(y) \land \text{FANCY}'(x, y)])$
c. $\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y))$

• Can be solved by using sequences of n-ary assignment function rather than single functions, cf. appendix
• **Bound pronoun problem** remains:

• Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)

(22) a. Every girl visited a boy she fancied
 b. \(\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y|\text{BOY}'(y) \land \text{FANCY}'(x, y)]) \)
 c. \(\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y)) \)

• Can be solved by using sequences of \(n \)-ary assignment function rather than single functions, cf. appendix
Bound pronoun problem remains:

Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)

(22) a. Every girl visited a boy she fancied
 b. $\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y|\text{BOY}'(y) \land \text{FANCY}'(x, y)])$
 c. $\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y))$

Can be solved by using sequences of n-ary assignment function rather than single functions, cf. appendix
4. Plurals

The puzzle

- *three cups* and *at least three cups* have the same truth-conditional content:

\[
\text{Three cups moved } \equiv \text{ At least three cups moved}
\]

- Yet the former can be specific, the latter not:

 (23) a. If three cups moved, the ghost was present

 b. *Can mean:* There are three cups, and if they all moved, the ghost was present

 (24) a. If at least three cups moved, the ghost was present

 b. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present
4. Plurals

The puzzle

- *three cups* and *at least three cups* have same truth-conditional content

\[\text{Three cups moved} \equiv \text{At least three cups moved} \]

- Yet the former can be specific, the latter not

(23) a. If three cups moved, the ghost was present
 b. *Can mean:* There are three cups, and if they all moved, the ghost was present

(24) a. If at least three cups moved, the ghost was present
 b. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present
4. Plurals

The puzzle

- *three cups* and *at least three cups* have same truth-conditional content

\[\text{Three cups moved} \equiv \text{At least three cups moved} \]

- Yet the former can be specific, the latter not

(23) a. If three cups moved, the ghost was present
 b. *Can mean:* There are three cups, and if they all moved, the ghost was present

(24) a. If at least three cups moved, the ghost was present
 b. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present
4. Plurals

The puzzle

- *three cups* and *at least three cups* have same truth-conditional content

\[\text{Three cups moved} \equiv \text{At least three cups moved} \]

- Yet the former can be specific, the latter not

(23) a. If three cups moved, the ghost was present
 b. *Can mean:* There are three cups, and if they all moved, the ghost was present

(24) a. If at least three cups moved, the ghost was present
 b. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present
4. Plurals

The puzzle

- *three cups* and *at least three cups* have same truth-conditional content

\[
\text{Three cups moved} \equiv \text{At least three cups moved}
\]

- Yet the former can be specific, the latter not

(23) a. If three cups moved, the ghost was present
 b. *Can mean:* There are three cups, and if they all moved, the ghost was present

(24) a. If at least three cups moved, the ghost was present
 b. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present
4. Plurals

The puzzle

- *three cups* and *at least three cups* have same truth-conditional content

\[\text{Three cups moved} \equiv \text{At least three cups moved} \]

- Yet the former can be specific, the latter not

(23) a. If three cups moved, the ghost was present
 b. *Can mean:* There are three cups, and if they all moved, the ghost was present

(24) a. If at least three cups moved, the ghost was present
 b. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present
4. Plurals

The puzzle

- *three cups* and *at least three cups* have same truth-conditional content

\[
\text{Three cups moved } \equiv \text{ At least three cups moved}
\]

- Yet the former can be specific, the latter not

(23) a. If three cups moved, the ghost was present
 b. *Can mean:* There are three cups, and if they all moved, the ghost was present

(24) a. If at least three cups moved, the ghost was present
 b. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present
4. Plurals

The puzzle

- *three cups* and *at least three cups* have same truth-conditional content

\[
\text{Three cups moved } \equiv \text{ At least three cups moved}
\]

- Yet the former can be specific, the latter not

(23) a. If three cups moved, the ghost was present
 b. *Can mean:* There are three cups, and if they all moved, the ghost was present

(24) a. If at least three cups moved, the ghost was present
 b. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present
Exhaustivity and Specificity

- Szabolcsi 1997: Difference in anaphora licensing:

(25) Three cups moved. They (= the three cups) turned black

Perhaps there are more cups that moved which did turn black

(26) At least three cups moved. They (= the cups that moved) turned black

All cups that moved turned black
Exhaustivity and Specificity

• Szabolcsi 1997: Difference in anaphora licensing:

(25) Three cups moved. They (= the three cups) turned black

Perhaps there are more cups that moved which did turn black

(26) At least three cups moved. They (= the cups that moved) turned black

All cups that moved turned black
Exhaustivity and Specificity

- Szabolcsi 1997: Difference in anaphora licensing:

 (25) Three cups moved. They (= the three cups) turned black

 Perhaps there are more cups that moved which did turn black

 (26) At least three cups moved. They (= the cups that moved) turned black

 All cups that moved turned black
Exhaustivity and Specificity

• Szabolcsi 1997: Difference in anaphora licensing:

(25) Three cups moved. They (= the three cups) turned black

Perhaps there are more cups that moved which did turn black

(26) At least three cups moved. They (= the cups that moved) turned black

All cups that moved turned black
Formalization

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables \((X, Y, Z, \ldots)\)
- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)

\[(27)\]
a. Three cups moved
b. \(\forall y(y \in [X|X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y))\)

\[(28)\]
a. At least three cups moved
b. \(\forall y(y \in [X|X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3] \rightarrow \text{MOVE'}(y))\)
Formalization

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables \((X, Y, Z, \ldots)\)
- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)

\[(27)\]
\[a. \text{ Three cups moved} \]
\[b. \forall y(y \in [X | X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y)) \]

\[(28)\]
\[a. \text{ At least three cups moved} \]
\[b. \forall y(y \in [X | X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3] \rightarrow \text{MOVE'}(y)) \]
Formalization

- In current framework, anchors for anaphors correspond to free partial variables

- Plural anaphors correspond to set variables ($X, Y, Z, ...$)

- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)

(27) a. Three cups moved
 b. $\forall y (y \in [X | \text{cup} \subseteq X \land |X| = 3] \rightarrow \text{move}'(y))$

(28) a. At least three cups moved
 b. $\forall y (y \in [X | \text{cup} \cap \text{move} \subseteq X \land |X| \geq 3] \rightarrow \text{move}'(y))$
Formalization

• In current framework, anchors for anaphors correspond to free partial variables

• Plural anaphors correspond to set variables ($X, Y, Z, ...$)

• Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)

(27) a. Three cups moved
 b. $\forall y(y \in [X | X \subseteq \text{CUP}’ \land |X| = 3] \rightarrow \text{MOVE’}(y))$

(28) a. At least three cups moved
 b. $\forall y(y \in [X | X = \text{CUP'} \cap \text{MOVE’} \land |X| \geq 3] \rightarrow \text{MOVE’}(y))$
Formalization

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables \((X, Y, Z, ...\))
- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)

(27) a. Three cups moved
 b. \(\forall y (y \in [X | X \subseteq \text{cup'} \land |X| = 3] \rightarrow \text{MOVE'}(y))\)

(28) a. At least three cups moved
 b. \(\forall y (y \in [X | X = \text{cup'} \cap \text{MOVE'} \land |X| \geq 3] \rightarrow \text{MOVE'}(y))\)
Formalization

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables \((X, Y, Z, \ldots)\)
- Combination of plural variable with singular predicate (like \textit{move}, \textit{break}) requires insertion of a distribution operator (tacit \textit{each})

(27) a. Three cups moved
 b. \(\forall y (y \in [X \mid X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y))\)

(28) a. At least three cups moved
 b. \(\forall y (y \in [X \mid X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3] \rightarrow \text{MOVE'}(y))\)
Formalization

- In current framework, anchors for anaphors correspond to free partial variables

- Plural anaphors correspond to set variables ($X, Y, Z, ...$)

- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)

(27) a. Three cups moved
 b. $\forall y (y \in [X | X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y))$

(28) a. At least three cups moved
 b. $\forall y (y \in [X | X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3] \rightarrow \text{MOVE'}(y))$
Formalization

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables $(X, Y, Z, ...)$
- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)

(27) a. Three cups moved
 b. $\forall y (y \in [X | X \subseteq \text{CUP}' \land |X| = 3] \rightarrow \text{MOVE}'(y))$

(28) a. At least three cups moved
 b. $\forall y (y \in [X | X = \text{CUP}' \cap \text{MOVE}' \land |X| \geq 3] \rightarrow \text{MOVE}'(y))$
Specific interpretation

• Difference becomes truth conditionally relevant if we do wide scope existential closure

(29) a. If three cups moved, the ghost was present

b. \(\exists X (\forall y (y \in [X | X \subseteq \textsc{cup'} \land |X| = 3] \rightarrow \text{MOVE}'(y)) \rightarrow \text{GHWP}') \)

\(\exists X (X \subseteq \textsc{cup'} \land |X| = 3 \land \forall y (y \in X \rightarrow \text{MOVE}'(y)) \rightarrow \text{GHWP}') \)

d. = There are three cups, and if they all moved, the ghost was present

• Wide scope interpretation is possible
Specific interpretation

• Difference becomes truth conditionally relevant if we do wide scope existential closure

(29) a. If three cups moved, the ghost was present

b. \(\exists X (\forall y (y \in \{X|X \subseteq \text{CUP}' \land |X| = 3\} \rightarrow \text{MOVE}'(y)) \rightarrow \text{GHWP}') \)

c. \(\exists X (X \subseteq \text{CUP}' \land |X| = 3 \land \forall y (y \in X \rightarrow \text{MOVE}'(y)) \rightarrow \text{GHWP}') \)

d. = There are three cups, and if they all moved, the ghost was present

• Wide scope interpretation is possible
Specific interpretation

- Difference becomes truth conditionally relevant if we do wide scope existential closure

(29) a. If three cups moved, the ghost was present
 b. $\exists X (\forall y (y \in [X | X \subseteq \text{cup}' \land |X| = 3] \rightarrow \text{move}'(y)) \rightarrow \text{ghwp}')$
 c. $\exists X (X \subseteq \text{cup}' \land |X| = 3 \land \forall y (y \in X \rightarrow \text{move}'(y)) \rightarrow \text{ghwp}')$
 d. = There are three cups, and if they all moved, the ghost was present

- Wide scope interpretation is possible
Specific interpretation

- Difference becomes truth conditionally relevant if we do wide scope existential closure

(29) a. If three cups moved, the ghost was present
 b. $\exists X (\forall y (y \in [X | X \subseteq \text{cup'} \wedge |X| = 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 c. $\exists X (X \subseteq \text{cup'} \wedge |X| = 3 \wedge \forall y (y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 d. = There are three cups, and if they all moved, the ghost was present

- Wide scope interpretation is possible
Specific interpretation

- Difference becomes truth conditionally relevant if we do wide scope existential closure

(29) a. If three cups moved, the ghost was present
b. \(\exists X (\forall y (y \in [X | X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}) \)
c. \(\exists X (X \subseteq \text{CUP'} \land |X| = 3 \land \forall y (y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}) \)
d. = There are three cups, and if they all moved, the ghost was present

- Wide scope interpretation is possible
Specific interpretation

- Difference becomes truth conditionally relevant if we do wide scope existential closure

(29) a. If three cups moved, the ghost was present
 b. $\exists X (\forall y (y \in [X|X \subseteq \text{cup’} \land |X| = 3] \rightarrow \text{MOVE’}(y))) \rightarrow \text{GHWP’}$
 c. $\exists X (X \subseteq \text{cup’} \land |X| = 3 \land \forall y (y \in X \rightarrow \text{MOVE’}(y))) \rightarrow \text{GHWP’}$
 d. = There are three cups, and if they all moved, the ghost was present

- Wide scope interpretation is possible
Specific interpretation

- Difference becomes truth conditionally relevant if we do wide scope existential closure

(29) a. If three cups moved, the ghost was present
 b. $\exists X (\forall y (y \in [X | X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 c. $\exists X (X \subseteq \text{CUP'} \land |X| = 3 \land \forall y (y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 d. = There are three cups, and if they all moved, the ghost was present

- Wide scope interpretation is possible
Compare to:

(30) a. If at least three cups moved, the ghost was present
 b. \(\exists X (\forall y (y \in [X | X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}) \)
 c. \(\exists X (X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3 \land \forall y (y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}) \)
 d. = There are at least three cups that moved, and if they moved, the ghost was present

- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by “Local Informativity Constraint”: Avoid redundant substructures
• Compare to:

(30) a. If at least three cups moved, the ghost was present
 b. $\exists X (\forall y (y \in [X | X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 c. $\exists X (X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3 \land \forall y (y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 d. = There are at least three cups that moved, and if they moved, the ghost was present

• Antecedent of conditional would become redundant under wide scope interpretation

• Thus ruled out by “Local Informativity Constraint”: Avoid redundant substructures
• Compare to:

(30) a. If at least three cups moved, the ghost was present
 b. $\exists X (\forall y (y \in [X | X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 c. $\exists X (X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3 \land \forall y (y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 d. = There are at least three cups that moved, and if they moved, the ghost was present

• Antecedent of conditional would become redundant under wide scope interpretation

• Thus ruled out by “Local Informativity Constraint”: Avoid redundant substructures
• Compare to:

(30) a. If at least three cups moved, the ghost was present
 b. \(\exists X (\forall y (y \in [X \mid X = \text{CUP'} \cap \text{MOVE'}] \land |X| \geq 3) \rightarrow \text{MOVE'}(y) \rightarrow \text{GHWP'}) \)
 c. \(\exists X (X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3 \land \forall y (y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}) \)
 d. = There are at least three cups that moved, and if they moved, the ghost was present

• Antecedent of conditional would become redundant under wide scope interpretation

• Thus ruled out by “Local Informativity Constraint”: Avoid redundant substructures
• Compare to:

(30) a. If at least three cups moved, the ghost was present
b. \(\exists X (\forall y (y \in \{X\mid X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3\} \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})) \)
c. \(\exists X (X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3 \land \forall y (y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}) \)
d. = There are at least three cups that moved, and if they moved, the ghost was present

• Antecedent of conditional would become redundant under wide scope interpretation

• Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures
Compare to:

(30) a. If at least three cups moved, the ghost was present
 \[\exists X (\forall y (y \in [X | X = \text{CUP} \cap \text{MOVE} \land |X| \geq 3] \rightarrow \text{MOVE}'(y)) \rightarrow \text{GHWP}') \]

b. \[\exists X (X = \text{CUP} \cap \text{MOVE} \land |X| \geq 3 \land \forall y (y \in X \rightarrow \text{MOVE}'(y)) \rightarrow \text{GHWP}') \]

c. \[= \text{There are at least three cups that moved, and if they moved, the ghost was present} \]

- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by “Local Informativity Constraint”: Avoid redundant substructures
• Compare to:

(30) a. If at least three cups moved, the ghost was present
 b. \(\exists X (\forall y (y \in [X | X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}) \)
 c. \(\exists X (X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3 \land \forall y (y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}) \)
 d. = There are at least three cups that moved, and if they moved, the ghost was present

• Antecedent of conditional would become redundant under wide scope interpretation

• Thus ruled out by “Local Informativity Constraint”: Avoid redundant substructures
Compare to:

(30) a. If at least three cups moved, the ghost was present
 b. \(\exists X (\forall y (y \in [X | X = \text{CUP}' \cap \text{MOVE}' \land |X| \geq 3] \rightarrow \text{MOVE}'(y) \rightarrow \text{GHWP}') \)
 c. \(\exists X (X = \text{CUP}' \cap \text{MOVE}' \land |X| \geq 3 \land \forall y (y \in X \rightarrow \text{MOVE}'(y)) \rightarrow \text{GHWP}' \)
 d. = There are at least three cups that moved, and if they moved, the ghost was present

Antecedent of conditional would become redundant under wide scope interpretation
Thus ruled out by “Local Informativity Constraint”: Avoid redundant substructures
The generalization

• “Local informativity” is violated iff VP becomes part of the restriction of a partial variable.

⇒ Generalization

A quantifier has a specific reading iff it is not exhaustive.

• Gives correct classification of quantifiers

<table>
<thead>
<tr>
<th>exhaustive</th>
<th>non-exhaustive</th>
</tr>
</thead>
<tbody>
<tr>
<td>at least three cups</td>
<td>a cup</td>
</tr>
<tr>
<td>at most three cups</td>
<td>three cups</td>
</tr>
<tr>
<td>exactly three cups</td>
<td>some cups</td>
</tr>
<tr>
<td>every cup</td>
<td></td>
</tr>
<tr>
<td>most cups</td>
<td></td>
</tr>
</tbody>
</table>
The generalization

- “Local informativity” is violated iff VP becomes part of the restriction of a partial variable

⇒ Generalization

A quantifier has a specific reading iff it is not exhaustive.

- Gives correct classification of quantifiers

<table>
<thead>
<tr>
<th>exhaustive</th>
<th>non-exhaustive</th>
</tr>
</thead>
<tbody>
<tr>
<td>at least three cups</td>
<td>a cup</td>
</tr>
<tr>
<td>at most three cups</td>
<td>three cups</td>
</tr>
<tr>
<td>exactly three cups</td>
<td>some cups</td>
</tr>
<tr>
<td>every cup</td>
<td></td>
</tr>
<tr>
<td>most cups</td>
<td></td>
</tr>
</tbody>
</table>
The generalization

• “Local informativity” is violated iff VP becomes part of the restriction of a partial variable

⇒ Generalization

A quantifier has a specific reading iff it is not exhaustive.

• Gives correct classification of quantifiers

<table>
<thead>
<tr>
<th>exhaustive</th>
<th>non-exhaustive</th>
</tr>
</thead>
<tbody>
<tr>
<td>at least three cups</td>
<td>a cup</td>
</tr>
<tr>
<td>at most three cups</td>
<td>three cups</td>
</tr>
<tr>
<td>exactly three cups</td>
<td>some cups</td>
</tr>
<tr>
<td>every cup</td>
<td></td>
</tr>
<tr>
<td>most cups</td>
<td></td>
</tr>
</tbody>
</table>
The generalization

• “Local informativity” is violated iff VP becomes part of the restriction of a partial variable

⇒ Generalization

A quantifier has a specific reading iff it is not exhaustive.

• Gives correct classification of quantifiers

<table>
<thead>
<tr>
<th>exhaustive</th>
<th>non-exhaustive</th>
</tr>
</thead>
<tbody>
<tr>
<td>at least three cups</td>
<td>a cup</td>
</tr>
<tr>
<td>at most three cups</td>
<td>three cups</td>
</tr>
<tr>
<td>exactly three cups</td>
<td>some cups</td>
</tr>
<tr>
<td>every cup</td>
<td></td>
</tr>
<tr>
<td>most cups</td>
<td></td>
</tr>
</tbody>
</table>
The generalization

- “Local informativity” is violated iff VP becomes part of the restriction of a partial variable

⇒ Generalization

A quantifier has a specific reading iff it is not exhaustive.

- Gives correct classification of quantifiers

<table>
<thead>
<tr>
<th>exhaustive</th>
<th>non-exhaustive</th>
</tr>
</thead>
<tbody>
<tr>
<td>at least three cups</td>
<td>a cup</td>
</tr>
<tr>
<td>at most three cups</td>
<td>three cups</td>
</tr>
<tr>
<td>exactly three cups</td>
<td>some cups</td>
</tr>
<tr>
<td>every cup</td>
<td></td>
</tr>
<tr>
<td>most cups</td>
<td></td>
</tr>
</tbody>
</table>
The generalization

- “Local informativity” is violated iff VP becomes part of the restriction of a partial variable

⇒ Generalization

A quantifier has a specific reading iff it is not exhaustive.

- Gives correct classification of quantifiers

<table>
<thead>
<tr>
<th>exhaustive</th>
<th>non-exhaustive</th>
</tr>
</thead>
<tbody>
<tr>
<td>at least three cups</td>
<td>a cup</td>
</tr>
<tr>
<td>at most three cups</td>
<td>three cups</td>
</tr>
<tr>
<td>exactly three cups</td>
<td>some cups</td>
</tr>
<tr>
<td>every cup</td>
<td></td>
</tr>
<tr>
<td>most cups</td>
<td></td>
</tr>
</tbody>
</table>
5. Conclusion

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advantages of DRT, CF, and presuppositional analyses of the phenomena
- predicts correlation between exhaustivity and impossibility of a specific reading of plural quantifiers

Open questions

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals
5. Conclusion

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advantages of DRT, CF, and presuppositional analyses of the phenomena
- predicts correlation between exhaustivity and impossibility of a specific reading of plural quantifiers

Open questions

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals
5. Conclusion

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advantages of DRT, CF, and presuppositional analyses of the phenomena
- predicts correlation between exhaustivity and impossibility of a specific reading of plural quantifiers

Open questions

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals
5. Conclusion

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advantages of DRT, CF, and presuppositional analyses of the phenomena
 - predicts correlation between exhaustivity and impossibility of a specific reading of plural quantifiers

Open questions

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals
5. Conclusion

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advantages of DRT, CF, and presuppositional analyses of the phenomena
- predicts correlation between exhaustivity and impossibility of a specific reading of plural quantifiers

Open questions

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals
5. Conclusion

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advantages of DRT, CF, and presuppositional analyses of the phenomena
- predicts correlation between exhaustivity and impossibility of a specific reading of plural quantifiers

Open questions

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals
Contents

1. **The phenomenon** 3
 - Solution strategies 8
 - Long QR 8
 - Unselective binding 10
 - Indefinites as choice functions 12
 - Specificity as presupposition accommodation 15

2. **Combining the approaches** 20
 - The idea 20
 - Technical implementation 21

4. **Plurals** 28

5. **Conclusion** 34