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Abstract

This study explores the consequences of morphological connectivity for English compounds,
combining tools from graph theory with measures of lexical processing costs as available in
the English Lexicon Project (Balota et al., 2007). The directed compound graph reveals a
significant trend to acyclicity just as the directed affix graphs of Hay and Plag (2004); Plag
and Baayen (2009); Zirkel (2010), and similar correlations of rank and productivity. Rank
in the directed graph, however, fails to correlate with measures of processing complexity. In
order to understand the high degree of acyclicity, it is hypothesized that the activation of
more distant neighbors in the lexical network is disadvantageous. A measure for more distant
lexical neighbors, secondary family size, is proposed, and shown to have an inhibitory effect
in visual lexical decision and word naming. Furthermore, an inhibitory effect of the shortest
path from head to modifier is documented, and shown to depend on a specific time window
within which activation reaching the modifier disrupts the process of compound interpreta-
tion.

keywords directed graph, strongly connected component, productivity, lexical decision,
naming, mediated priming, complexity-based ordering

1 Introduction

Recent studies of derivational morphology have documented that sequences of suffixes (Hay
and Plag, 2004; Plag and Baayen, 2009) and prefixes Zirkel (2010) can, with remarkably
few exceptions, be ordered in an acyclic directed graph. That is, given a set of suffixes
{S1,59,...,5,}, an ordering can be found such that for any complex word ending in the
derivational suffix S; followed by the derivational suffix S;, S; precedes S} in the ordering for
any ¢ and j. This ordering was argued by Hay and Plag (2004) to arise due to processing
complexity, with less productive and less parsable affixes occurring closer to the base, and has
been proposed as a complexity-based ordering. For suffixes, the partial ordering also follows
largely from selectional restrictions (Hay and Plag, 2004), but for prefixes the selectional
restrictions allow for many more prefix combinations than actually attested (Zirkel, 2010).
In their study of 31 English suffixes, Plag and Baayen (2009) failed to obtain strong evidence
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supporting the original hypothesis that the acyclicity of the directed suffix graph is driven
by the relative difficulty of parsing constituent sequences.

For compounds, selectional restrictions and junctural phonotactics do not play the im-
portant roles documented for English derivation. If we can establish that nevertheless the
modifier-head pairs of compounds show the same degree of acyclicity that characterizes
derivation, then this will provide further evidence that the trend towards acyclicity is not
due to solely, or primarily, processing constraints on the first and second element in sequences
of constituents.

If the ordering of constituents in compounds is not complexity-based, the surprising de-
gree of acyclicity charaterizing constituent sequences in morphological networks remains to be
explaned. This study explores an explanation based on the hypothesis that the co-activation
of more distant morphological relatives due to spreading activation is disadvantageous for
lexical processing.

In what follows, we first examine the directed compound graph, the extent to which it
is acyclic, and whether the ordering of constituents in the graph can be linked to processing
complexity. We then consider in more detail the connectivity in the graph, with as tools
the graph-theoretical concept of the strongly connected component, and a new measure for
the amount of more distant lexical connectivity, the secondary family size. Finally, we zoom
in on the strongly connected component of the compound graph to address the question of
whether activation spreading from the head back to the modifier affects lexical processing.

2 The directed compound graph

Is the English compound directed graph more or less acyclic, with a relatively small propor-
tion of exceptions comparable to the proportion of exceptions observed for English deriva-
tion? To answer this question, we extracted 3880 two-constituent compounds with monomor-
phemic nouns as base words from the CELEX lexical database (Baayen et al., 1995). These
3880 compounds jointly comprised 2200 different base words. The DOT representation
(Gansner et al., 1993) of the corresponding directed graph (2200 nodes, 3880 edges), ob-
tained with the Rgraphviz package in R (Gentry et al., 2009), revealed 325 exceptions to
acyclicity. The rate of exceptions, 325/3880 = 0.084, is comparable to the exception rate
reported by Plag and Baayen (2009) for 31 English derivational suffixes, 10/161 = 0.062
(X(Ql) = 0.69,p > 0.4). This indicates that a clear trend towards acyclicity characterizes
not only suffixal derivation and prefixal derivation (Zirkel, 2010) but also compounding in
English.

In order to assess whether the observed trend towards acyclicity constitutes reason for
surprise, we proceeded as follows. In a completely acyclic adjacency matrix, all nonzero
entries can be ordered above the main diagonal, in which case the matrix is in upper diagonal
form. If the nonzero entries in the upper triangle of the matrix are uniformly distributed
across this upper triangle, the row sums and the column sums are negatively correlated.
This is easily seen for an adjacency matrix for which all entries above the main diagonal
are 1, and all entries on and below the diagonal are zero. For an n by n matrix, the row



sums are n — 1, n—2, n—3, ..., 2, 1, 0, while the column sums are 0, 1, 2, 3, ..., n — 2,
n — 1, yielding a perfect negative correlation (r = —1). As the adjacency matrix becomes
more sparse, this negative correlation will be masked by more noise. However, compared to
random matrices with the same sparseness, the observed correlation should remain in the
extreme of the distribution of correlations.

Importantly, for evaluating whether an empirical adjacency matrix approaches acyclicity,
it is not necessary to bring the adjacency matrix in upper diagonal form, which is an NP-hard
problem: The correlation of row sums and column sums remains unchanged when column ¢
and j are exchanged simultaneously with exchanging rows ¢ and j, the basic operation for
bringing the adjacency matrix in upper diagonal form.

The observed Spearman rank correlation for the observed adjacency matrix is -0.134.
The range of correlations obtained by independently permuting rows and columns of the ad-
jacency matrix 1000 times (thereby completely randomizing affix orders) was [-0.063, 0.073],
indicating that the probability of observing the actually observed, and more extreme, corre-
lation by chance is less than 0.001.

The observed trend towards acyclicity raises the question of whether there is a relation
between rank (vertical position in the graph) and constituent productivity, similar to the
relation between affix productivity and rank reported for English derivation by Hay and Plag
(2004), Plag and Baayen (2009) and Zirkel (2010). We approach this question by gauging
separately the productivity of the first constituent (the modifier) and the productivity of the
second constituent (the head).

The measure of affix productivity that emerges as most robustly correlated with rank
from the abovementioned studies on affix productivity is the category-conditioned degree
of productivity, the ratio of hapax legomena with a given suffix and the total number of
tokens with that suffix. Unfortunately, the CELEX lexical database does not provide reliable
information on hapax legomena. We therefore assessed constituent productivity through the
type count of the compounds sharing the first constituent (the modifier family size) and
similarly the count of compounds sharing the second constituent (the head family size). The
choice for these family size counts is further motivated by the following considerations. First,
the modifier and head constituent families of compounds are known to form the domains
of probabilistic generalization for interfixes in Dutch and German (Krott et al., 2001, 2004,
2007), for the interpretation of novel and existing compounds (Gagné and Shoben, 1997;
Gagné, 2001), and for the assignment of compound stress (Plag et al., 2007; Plag, 2010; Plag
and Kunter, 2010; Arndt-Lappe, 2010). Second, it is known that in visual comprehension
the modifier and head family sizes are co-determinants of the time spent by the eye on a
given constituent (Kuperman et al., 2008, 2009).

Of the 2200 compound constituents, 710 are used exclusively as head, 902 are used
exclusively as modifier, and 588 occur both as head and as modifier (e.g., soup, as in pea
soup and soup kitchen). Words that are used both as modifier and as head, unsuprisingly, are
somewhat more frequent than words that are used either as head or as modifier (mean log
frequencies 6.78 and 5.12, £(1437.375) = 20.74,p < 0.0001). The words that appear both as
head and as modifier are the source of the violations of acyclicity in the directed compound



graph: The 325 exceptional compounds comprise 225 distinct base words, all of which occur
both as head and as modifier. Note that functioning both as modifier and as head, although
a necessary condition, is not a sufficient condition for giving rise to exceptional compounds.
For instance, soup in the chain pea soup — soup kitchen does not contribute to the set of
exceptional compounds.

For the evaluation of the relation between productivity and ranking in the nearly acyclic
compound graph, consider that in order to minimize the number of exceptions to acyclicity,
it is necessary to order those words that occur only as modifier higher up in the graph, and
those words that occur only as head lower down in the graph. The more productive a word
is as modifier, the more important it will be to order it higher in the graph. Similarly, the
more productive a word is as a head, the more crucial it will be to order it lower in the
graph. For the words that take on both functions, some compromise solution will have to
be found. In what follows, we use the coordinate system of the graph obtained with the
DOT layout of the Gansner et al. (1993) algorithm using plot.graphNEL in the Rgraphviz
package. In this graph, which is too complex to reproduce here, words occurring high up
in the graph have large Y-coordinates, whereas words occurring lower in the graph have Y-
coordinates closer to zero. Following Hay and Plag (2004), larger Y-coordinates correspond
to lower ranks, and smaller Y-coordinates to greater ranks. Stated in terms of Y-coordinates,
we therefore expect to find that a greater modifier productivity correlates positively with
the Y-coordinates, and that a greater head productivity correlates negatively with the Y-
coordinates. These correlations with constituent productivity reverse when phrased in terms
of ranks. (In what follows, each distinct Y-coordinate is assigned a distinct rank. Words
with the same Y-coordinate therefore share the same rank.)

Estimate Std. Error t value p value

Head: intercept 50.5113 1.4183 35.6138  0.0000
Head: linear 31.7507 2.9998 10.5843  0.0000
Head: spline -25.7197 4.0007 -6.4289  0.0000
Modifier: intercept  64.9062 1.3020 49.8516  0.0000
Modifier: linear -4.7250 1.3767 -3.4321 0.0006

Table 1: Coefficients for two linear models, one for the head, and one for the modifier, fitting
the Y-coordinate to log constituent family size.

The expected correlations are observed for both head and modifier, when the Y-coordinate
of a head (or modifier) is regressed on the log of the positional family size. The positional
family size of a compound’s constituent is the number of compounds in which that con-
stituent occurs in the same functional position (modifier c.q. head). In this study, positional
family sizes were calculated on the basis of the compounds in the present sample, i.e., they
are conditional on the modifier or head being a constituent of a bimorphemic noun-noun
compound. For the head, a negative decelerating curve was observed, modeled with a re-
stricted cubic spline (Harrell, 2001) with three knots, such that for the higher log head family
sizes, no further decrease in Y coordinate was present. For the modifier, the Y-coordinate
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Figure 1: Predicted Y-coordinate (left panels) and rank (right panels) in the directed com-
pound graph for the head (upper panels) and modifier (lower panels) constituents, obtained
with four separate regression models.



increased linearly with log family size. Table 1 lists the coefficients of these models, and Fig-
ure 1 visualizes the models fitted to the Y-coordinates (left panels) and ranks (right panels)
for heads (upper panels) and modifiers (lower panels).

The positive slope for rank that characterizes heads with a log family size less than 1.5
(1106 of the 1298 observations) replicates the positive slopes reported by Hay and Plag
(2004) and Plag and Baayen (2009) for derivational suffixes. For the modifiers, the negative
slope of rank replicates the study by Zirkel on prefixes in English (Zirkel, 2010). Zirkel
observed a positive correlation of rank and (hapax-conditioned) degree of productivity for
15 English prefixes, with the lower rank assigned to the inner prefix, and the higher rank
to the outer prefix. This approach mirrors the situation for suffixes, where the lower rank
is also assigned to the inner suffix, and the higher rank to the outer suffix. In other words,
ranks are traditionally assigned from the center to the periphery, to the left for prefixes, and
to the right for suffixes.

When ranks are brought in line with linear order, from word beginning to word end,
then the ranks for the prefixes have to be reversed. The correlation between this new “linear
rank” for prefixes and prefix productivity is negative, just as the correlation between modifier
productivity and rank is negative. Unlike for derivation, the distinction between bound
and free forms does not come into play. When we focus on the modifier and its rank and
productivity, the modifier precedes the head, and behaves exactly like a prefix in a prefix
sequence with respect to the correlation of rank and productivity. When we focus on the
head, which follows the modifier, it behaves exactly like a suffix in a sequence of suffixes.
Across affixation and compounding, the same principles are at work. In order to approximate
acyclicity, constituents that are productive and precede other constituents have to be ordered
high in the graph, while constituents that are productive and follow other constituents have
to be ordered low in the graph.

The existence of approximate acyclicity, combined with the significant correlations of
ranks with degrees of constituent productivity, raises the question of whether it is at all
surprising to find a correlation between productivity and rank. On the one hand, this
correlation is not surprising, in the sense that if there are differences in productivity, and
if it is possible to approach acyclicity, then this correlation is present by necessity. On the
other hand, the mere fact that it is possible to approach acyclicity is genuinely surprising,
and highly unlikely to arise under chance conditions.

When acyclicity was first observed, it was hypothesized that the ordering in the graph is
motivated by processing constraints. Hay (2002) argued that more parsable affixes should be
peripheral to less parsable affixes, where parsability was related to relative frequency (Hay,
2001), semantic transparency, and junctural phonotactics. Hay and Plag (2004) observed for
15 derivational suffixes that rank in the acyclic graph correlated not only with productivity
(as measured by hapax-conditioned degree of productivity, type parsing ratio, token parsing
ratio) but also with phonological boundary strength.

However, two follow-up studies provide evidence only for a correlation of rank with hapax-
conditioned degree of productivity: a survey of 31 suffixes of Plag and Baayen (2009), as
well as a study of 15 prefixes by Zirkel (2010). Parsing ratios and phonological measures



of junctural phonotactics did not reach significance in these studies. For the compounds
presently under study, there is also no correlation of rank with the frequency of the biphone
straddling the boundary of modifier and head. Furthermore, almost all the compounds in
our data set are highly parsable in the relative frequency sense of Hay (2001). For the
subset of the data for which we have reliable frequency information (see below), compound
frequency is greater than the frequency of the head in only 10 cases out of 1252, and there
are no cases where the compound frequency exceeds both the frequency of its modifier and
that of its head. As a consequence, the role of relative frequency is much reduced for
compounds compared to derived words. In the dual route model of Hay (2001), this would
indicate a strong parsing bias for allmost all compounds, and a ceiling effect for productivity
and rank. Although indeed a ceiling effect characterizes the correlation of rank and head
productivity, this ceiling effect is observed only for a minority of very productive heads.
We therefore conclude that the presence of a statistically surprising degree of acyclicity for
compounds indicates that the trend towards acyclicity and the correlation of rank and degree
of productivity are motivated, at least for compounding, independently of parsability.

Acyclicity may offer processing advantages other than local parsability. Plag and Baayen
(2009) speculate that acyclicity may be advantageous for predicting upcoming constituents:
Given that the current constituent has rank R, all constituents with rank r < R can be
ruled out as possible upcoming constituents in the word. However, the present compound
graph indicates, thanks to the large number of observations on which it is based, that there
is a non-negligible number of compounds that contribute cycles to the graph. This raises
the question of whether such highly connected compounds are more difficult to process than
normal compounds. If so, this would provide straightforward support for the hypothesis
that cycles are in some way computationally costly. The alternative, a processing advantage
for highly connected compounds, would indicate that cycles in the compound graph have
their own processing advantage to offer, leading to a system in which the high-level global
advantages of acyclicity are balanced against the local, low-level advantages of being part
of a cycle. In what follows, we explore these two alternatives by inspecting the strongly
connected components of the compound graph.

3 The strongly connected component of the directed
compound graph

A strongly connected component of a directed graph is a subgraph such that any node
in that subgraph can be reached from any other node. By inspecting the number and
size of the strongly connected components of the compound graph, enhanced insight can
be obtained into how and why acyclicity is violated. It turns out, using the strongComp
function (implementing Tarjan’s algorithm) in the RGBL package (Carey et al., 2009), that the
compound graph contains one large strongly connected subgraph, comprising 344 vertices,
as well as one small strongly connected subgraph consisting solely of price and list, the
constituents of the compounds price list and list price. The 344 vertices in the non-trivial



strongly connected subgraph support 983 compounds, about one fourth of the total number of
compounds. All but four of the exception constituents participate in the strongly connected
component, agar (in agar-agar), hula (in hula-hula), and the abovementioned price and list.
As we shall see below, it is being part of the strongly connected component rather than just
being exceptional with respect to acyclicity that has consequences for lexical processing.

For studying the processing consequences of membership in the strongly connected com-
ponent, we need to add information to our database concerning the lexical distributional
properties of the compounds and their constituents, as well as measures of processing com-
plexity. Lexical distributional information was extracted from the CELEX lexical database.
As counts in CELEX are string-based, no information is available about spaced compounds.
Consequently, the analyses to follow are all based on compounds written in CELEX as one
word, or written with a hyphen. We further imposed the restriction that a compound should
be listed with non-zero frequency. Processing information was extracted from the English
Lexicon Project (Balota et al., 2007). In all, 1252 compounds were available both in CELEX
and in the English Lexicon Project. Of these compounds, 830 were not exceptional and not
part of the strongly connected component (e.g., airbase), 242 were exceptional and part of
the strongly connected component (e.g., armchair), and 180 were both exceptional and part
of the strongly connected component (e.g., baseline).

For the statistical analysis, a Generalized Additive Model, henceforth GAM, was used.
GAMs provide a more flexible and precise way of modeling interactions involving two (or
more) numerical predictors than the standard linear model. A generalized additive model
consists of two parts, a parametric part identical to that of standard linear models, and a
non-parametric part that provides non-parametric functions for modeling wiggly surfaces in
two or higher dimensions. In the present study, we make use of so-called tensor products to
model such surfaces, recommended by Wood (2006) for data with non-isotropic predictors.
Tensor product functions are non-parametric in the sense that we will not be interested in
the parameters that these smoothing functions use internally, but only in how well the shape
of a given surface is captured. When fitting a tensor smoother to the data, it is important
to avoid both undersmoothing and oversmoothing. We have used the default of the gam
implementation of the MGCV package of Wood (2006) (version 1.4-1.1), which estimates
the optimal smoothness from the data using generalized cross validation. The greater the
estimated degrees of freedom (edf) for a tensor product term, the more the smoother invests
in wiggliness. For other examples of GAMs applied to compound processing, see (Baayen
et al., 2010).

A generalized additive model (Wood, 2006) fitted to the lexical decision latencies re-
vealed linear facilitation for compound frequency, modifier frequency, and modifier family
size. Heads that are also attested as modifiers in our database enjoyed a small processing
advantage as well. These partial effects of the linear terms of the generalized additive model
are visualized in Figure 2. (Due to the identifiability constraints in generalized additive mod-
els, confidence intervals fan out from zero.) The corresponding coefficients and associated
statistics are listed in Table 2. We discuss the nonlinear part of the model below.

The (log-transformed) frequency of the modifier and log modifier family size are sig-
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Figure 2: Lexical decision latencies in the English Lexicon Project as a function of log
compound frequency, log modifier frequency, log modifier family size, and a binary factor for
whether the head is also used as modifier, fitted with a generalized additive model.



nificantly correlated, » = 0.59, but the collinearity of the design matrix is small enough
(k = 16.4, Belsley et al. (1980)) and the data set large enough that no further corrective
measures are required. Head frequency and head family size are also significantly correlated
(r = 0.65), but here inclusion of either measure renders the other measure non-significant.
In what follows, we work with the family size measure, as this is the measure that is most
directly related to the structure of the compound directed graph, but it should be kept in
mind that an equivalent model can be obtained by replacing the family size measure by the
head frequency measure.

Estimate Std. Error t value p value

Intercept 6.9208 0.0203 341.6953  0.0000
Log Modifier Family Size -0.0280 0.0055  -5.0643  0.0000
Compound Frequency -0.0451 0.0027 -16.5240  0.0000
Modifier Frequency -0.0075 0.0029  -2.6106 0.0091
Head is also used as Modifier -0.0270 0.0112  -2.4039 0.0164

Table 2: Coefficients for the linear predictors in the generalized additive model fitted to the
log-transformed lexical decision latencies.

Head family size emerged as significant in a three-way interaction (modeled with a ten-
sor product) with whether the head is part of the strongly connected component of the
compound graph, as well as in interaction with a new family size measure, the compound’s
(log-transformed) secondary family size. The secondary family size is obtained by summing,
across both constituents, the positional family sizes of their compound family members. For
instance, trolley occurs as modifier in trolley car and trolleybus, and as head in tea-trolley.
The number of compounds in which tea occurs either as head or as modifier is 25, and the
corresponding counts for car and bus are 16 and 3. Thus the total secondary family count
is 44. As these counts include the head and modifier primary family sizes, the measure that
we used in our model was the residual of the log-transformed secondary family size count
regressed on the log-transforms of the primary family size counts for head and modifier. The
resulting measure reflects the connectivity of a compound in the compound graph, in as far
as that connectivity is not carried by the immediate connectivity of the modifier and head
themselves.

Figure 3 presents contour plots for the fitted surface for the decision latencies predicted
from log head family size, (residualized) log secondary family size, and membership in the
strongly connected component, modeled with a tensor product. Darker shades of gray rep-
resent shorter latencies. The top panel represents the compounds with heads that are not
part of the strongly connected component (modeled with a tensor product with 16.346 edf,
F(16.846,1220.989) = 2.946, p < 0.0001), the bottom panel shows the corresponding surface
for the compounds in the strongly connected component (modeled with a tensor product
with 8.665 edf (£'(9.165,1200.989) = 4.864,p < 0.0001). Likelihood ratio tests comparing
this model with simpler models supported the model with the three-way interaction.
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When the head is not included in the strongly connected component, the main trends are
inhibition from the secondary family size for compounds with log head family size less than 2,
and facilitation from head family size for compounds with (residualized) log secondary family
size roughly in the interval (-1, 1). Note that there are no data points in the lower right
quadrant of the plot: large head constituent families invariably give rise to large secondary
families.

The clear inhibition from secondary family size for small head family sizes follows from
the (simplifying) assumption that when the family is large, a unit of activation is divided
equally across all family members. Since the amount of activation spreading to secondary
family members is smaller when the family size is large, the amount of noise contributed by
secondary family members is greater for smaller families.

When the head is part of the strongly connected component, we find general facilitation
for head family size. Interestingly, compounds with residualized log secondary family sizes
around zero elicited the shortest latencies, now across the full range of head family sizes. For
larger secondary families, we observe inhibition just as for compounds that are not part of
the strongly connected component, giving rise to the longest (fitted) latencies. For smaller
secondary family sizes, there is a hint of inhibition. Note that compounds in the strongly
connected component with small head families and small secondary families are rare.

In this analysis, the factor specifying whether the head is part of the strongly con-
nected component can be replaced by a factor specifying whether the head constitutes an
exception to acyclicity. The resulting model is very similar to the one obtained on the
basis of membership in the strongly connected component, but the fit is slightly less tight
(F(5.8699, 1227.8588) = 3.5056, p = 0.0021, however, as the models compared are not nested,
this likelihood ratio test is informal). In the following analyses, we therefore proceed with
scrutinizing the tightly connected component. Irrespective of which factor is used, a sim-
ple main effect does not reach significance, indicating that there is no overall processing
advantage to being exceptional or being part of the strongly connected component.

Figure 4 presents the surfaces fitted to the naming latencies, for which the same three-way
interaction reached significance. For compounds with heads outside the strongly connected
component, we have the same general pattern as for lexical decision. For compounds with
heads in the strongly connected component, we observe mainly an effect of head family size.
Effect sizes are smaller compared to lexical decision (contour lines are 0.02 log units apart in
the contour plots for both tasks, but in the plots for lexical decision there are more contour
lines that are closer to each other).

Both naming and lexical decision suggest that large secondary family sizes slow lexical
processing. It follows that lexical decisions are not based just on the aggregated amount of
activation in the mental lexicon, with more activation allowing shorter response latencies.
If tea-trolley is presented, trolley may activate bus stop, but this compound is more likely
to slow the lexical decision instead of speeding it. Apparently, lexical decisions involve
discrimination between semantically relevant and semantically irrelevant lexical activation.

The presence of inhibition from the secondary family size in the naming task shows
that this task is also sensitive to irrelevant lexical activation. Since tea-trolley is named
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slower due to the co-activation of bus stop, the mediated priming effect observed by Balota
and Lorch (1986) may be specific to the priming task. In unprimed contexts, activation of
semantically too distant neighbors is probably detrimental. If this line of reasoning is correct,
generalization from priming to normal (unprimed) processing is hazardous.

The absence of inhibition in the naming task for larger secondary family sizes for com-
pounds in the strongly connected component is surprising. In fact, if anything, there is facil-
itation from larger secondary families, instead of inhibition. As compounds in the strongly
connected component generate more co-activation, due to greater connectivity, mechanisms
for ignoring irrelevant co-activation must be in place anyway for selecting the correct target
for articulation. Possibly, the co-activated secondary family members are rendered harmless
by the same deactivation mechanism.

This line of reasoning would be strengthened if it could be shown that connectivity in the
strongly connected component can indeed be detrimental to lexical processing. We explore
this possibility by means of the shortest paths from head to modifier in the strongly connected
component.

4 Shortest Paths in the Compound Graph

In a study of mediated priming, Balota and Lorch (1986) observed that in word naming a
word such as cat can prime tazi thanks to the mediating word cab, which is a form neighbor
of the prime and a semantic neighbor of the target. Given that activation spreads beyond
immediately related words, the question arises of whether activation likewise spreads within
the directed compound graph from the head to the modifier. If so, there are two possible
consequences for lexical processing. Activation spreading back from the head to the modifier
might strengthen the activation of the modifier, facilitating lexical processing. Alternatively,
given the inhibition observed from the secondary family size, activating the modifier from
a chain initiated by the head might create uncertainty about which constituent is head and
which constituent is modifier, leading to longer processing times: when worm in worm-
wood receives activation from the chain woodcock — cockhorse — horsehair — hairoil — oilsilk
—silkworm, it is (re)activated as a head, while it functions as a modifier in wormwood.

To explore these possibilities, we calculated for each head in the strongly connected com-
ponent the shortest path from the head to the modifier, using the johnson.all.pairs.sp
function in the RBGL package (Carey et al., 2009). Examples of cycles illustrating shortest
paths are shown in Figure 5.

The shortest paths show a skewed distribution with a long right tail. Most of this
skew is removed by a logarithmic transformation. A generalized additive model fitted to
the naming latencies revealed an effect of shortest path length, in interaction with log
modifier family size, as illustrated in the bottom left panel of Figure 6. This interaction
was modeled with a tensor product (F(8.048,424.453) = 6.224,p < 0.0001) that outper-
formed simpler models with separate splines for modifier family size and shortest path
length (F'(2.5251,427.9786) = 3.2529,p = 0.02883). The upper right panel shows the
tensor product smooth for the interaction of head family size and secondary family size
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Figure 5: Examples of cycles in the compound directed graph: shortest head-to-modifier
paths for boat— house, back— paper, worm— silk, and stove— gas.
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Figure 6: Partial effects in a generalized additive model fitted to the log naming latencies for
the words in the strongly connected subgraph. Effects are shown relative to the intercept.
Darker shades of gray indicate shorter naming latencies. The lower right panel shows the
functional approximation of the panel to its left by equation (1).
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(F(8.499,424.453) = 6.224,p < 0.0001), and the upper left panel the facilitatory effect of
compound frequency (#(424.453) = —6.934, p < 0.0001), completing the full specification of
the generalized additive model fitted to the data.

The contour plot in the lower left of Figure 6 shows, first of all, a facilitatory effect of
modifier family size: we find darker shades of gray to the right. Furthermore, there is a ridge
of higher naming latencies for intermediate shortest path lengths. For the smallest modifier
families, the crest of this ridge is around log shortest path lengths of 2. As the modifier
family size increases, this crest moves to slightly smaller shortest path lengths.

To understand the latency surface for modifier family size and shortest path length,
we proceed from the assumption that activation spreading from the head to the modifier
is disruptive, creating ambiguity about the functional status of the first constituent. The
first constituent is a modifier, but at the end of the cycle receives activation from another
modifier, suggesting it is a head. This disrupts the process of compound interpretation which,
as shown by Gagné and Shoben (1997); Gagné (2001); Gagné et al. (2005), is driven by the
distribution of conceptual relations instantiated in the compounds in the modifier family.

Across the range of values for modifier family size, we observe an initial increase followed
by a decrease in latency as the shortest path length is increased. This suggests that there
is a critical time window during which the incoming activation is especially disruptive. As
the number of links in a cycle increases, the amount of time required for activation from the
modifier to spread to the head, and from the head back to the modifier, increases as well.
For very short shortest path lengths, the incoming spreading activation arrives to early to
affect the process of compound interpretation. For very long shortest path lengths, it arrives
too late.

The fitted surface is characterized by a ridge, extending from approximately (0.69, 2) to
(3.5, 1.5) roughly along a straight line. This linear relation follows from the assumptions
(i) that the amount of time required for activation to reach the modifier is proportional to
the (log) shortest path length (L), and (ii) that the amount of time for sufficient activation
to accumulate to be disruptive is proportional to (log) modifier family size (F'). For larger
families, activation spreads out more thinly. More time is required for sufficient activation
to build up. To obtain an equivalent amount of disruption, a shorter shortest path length is
required.

Formally, we can approximate the fitted surface obtained with the tensor product (a
mathematical black box) with the following explicit parametric function for naming latency
T (time), with as arguments modifier family size F' and shortest path length L,

T(F,L)=a—b(F — Asinjw(L — ¢)]), (1)
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and with parameters

a = 6.6065 (intercept)

b = 0.0457 (slope for modifier family size)

A =0.2407 4 0.1847F (amplitude of the “ridge” sine)
w = 2.4867 (angular frequency of “ridge” sine)

¢ = 1.6664 — 0.2610F" (phase shift of “ridge” sine).
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Parameter values are estimated from the fitted partial effect of modifier family size and
shortest path length shown in the lower left panel of Figure 6, using mean squared error
minimization by means of a nonlinear conjugate gradient method (Fletcher, 1987) on a 30
by 30 grid (MSE= 0.0003 at convergence).! The resulting approximated surface is shown in
the lower right panel of Figure 6.

The general negative slope for the modifier family size is represented by b. On a given
contour line, T" is constant, in which case F' = Asin[w(L — ¢]), yielding a “ridge” sine for F' as
a function of L. The amplitude of this ridge sine is modeled as linear in F": as modifier family
size increases, the amplitude increases. Finally, the phase shift ¢ of the ridge sine decreases
linearly with F. The crest of the ridge is reached when w(L — ¢) = 7/2. By (6), this is
equivalent to L 4+ 0.2610F = 7/(2w) + 1.6664, which is a constant independent of L and F.
Thus, increasing L implies decreasing F' and vice versa, consistent with the interpretation of
the location of the crest as the statistical fingerprint of a critical window in time in which
activation reaching the modifier interferes with the interpretation of the compound, slowing
the naming latencies.

The lexical decision latencies did not reveal any effect for log shortest path length. The
presence of an effect of shortest path length in word naming and its absence in lexical decision
fits well with the results of Balota and Lorch (1986), who observed mediated priming in word
naming but not in lexical decision. Balota and Lorch attribute the absence of an effect in
the lexical decision task to a post-access verification stage specific to lexical decision, during
which subjects would execute a lexical decision conditional on having checked whether there
is a semantic relation between primes such as cat and targets such as taxi. As the data from
the English Lexicon Project are from unprimed lexical decision, a more general explanation
is called for. The crucial difference between naming and lexical decision is that in naming a
specific compound has to be selected for articulation, while a lexical decision can be based
on the amount of lexical activation triggered by the visual stimulus. If a decision is based, at
least in part, on this general lexical activation (Grainger and Jacobs, 1996), then the small
effect of mediated activation due to head-to-modifier cycles may be washed out by the much
larger activation contributed by a word’s morphological family members.

1T am indebted to Jorn Baayen for his help with formulating and fitting this model.
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5 General Discussion

This study explored the connectivity in the lexical network of English compounds with con-
ceptual tools from graph theory, and studied the consequences of this connectivity using the
naming and decision latencies available in the English Lexicon Project. The compound di-
rected graph, although not acyclic, revealed the same surprising tendency towards acyclicity
that characterizes suffixation (Hay and Plag, 2004; Plag and Baayen, 2009) and prefixation
(Zirkel, 2010) in English. As for suffix sequences, we observed a positive correlation between
productivity and rank for heads. For modifiers, we observed a negative correlation between
productivity and rank, reflecting the results for prefixation. Rank (or Y coordinate) in the
DOT representation of the directed graph did not enter into any further correlations with
distributional measures of processing complexity (relative frequency, junctural biphone fre-
quency), nor with naming or lexical decision latencies. For compounds, the conclusion is
that the significant tendency to acyclicity cannot be derived from principles of processing
complexity.

This conclusion raises the question of why the tendency towards acyclicity exists. Plag
and Baayen (2009) speculated that acyclicity affords enhanced prediction of upcoming con-
stituents. In this study, we explored the complementary possibility that extensive connectiv-
ity might have adverse effects on lexical processing due to activation spreading to irrelevant
words. It is well known that greater primary connectivity, as measured by the positional fam-
ily size of head and modifier, goes hand in hand with shorter processing latencies (De Jong
et al., 2002; Kuperman et al., 2008, 2009). It turns out, however, that the count of all family
members of the compounds’ constituents, the secondary family size, has an inhibitory ef-
fect. Especially for heads with a small primary family, larger secondary families give rise to
elongated latencies in lexical decision and word naming. In the lexical decision task, the in-
hibitory effect of the secondary family size is especially prominent in the strongly connected
component of the compound graph, the part of the graph where connectivity is most dense,
and where activation of irrelevant words resonates most strongly.

The adverse effects of the co-activation of more distant morphological relatives was ex-
plored further by investigating the shortest path lengths from head to modifier for compounds
in the strongly connected component. Delayed naming latencies emerged for intermediate
shortest path lengths. The path length with maximum inhibition decreased for increasing
modifier family size. This pattern was modeled as reflecting a critical time window for in-
terference from activation arriving back at the modifier to interfere with the interpretation
of the semantic relation between modifier and head.

One of the issues raised by Balota and Lorch (1986) is how, given the massive spreading of
activation into the lexical network, individual words can still be identified. The present study
provides a partial solution by demonstrating that not all connectivity is helpful. Apparently,
the algorithms used to meet the requirements of the naming and lexical decision tasks are
sensitive to the semantic relevance of co-activated words. In the naming task, which requires
a unique response, the de-activating of irrelevant more distant morphological relatives is seen
most prominently: the effect sizes of the secondary family size are much reduced in this task
compared to lexical decision.
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The present results challenge the usefulness of the priming paradigm as a tool for un-
derstanding normal lexical processing. The primed naming task used by Balota and Lorch
(1986) revealed an effect of mediated priming (from cat through cab to tazi). In our naming
data, the effect of the secondary family size is inhibitory, instead of the facilitatory effect one
would expect given the immediate priming results. The present data lead to the prediction
that in unprimed naming, the processing of taxi is delayed by the mediated co-activation of
cat.

We end this study with a cautionary note. The analyses presented here are all exploratory
in nature. A wide variety of measures were explored, and only the predictors that turned out
to have robust explanatory value are reported. Therefore, replication studies for larger data
sets, and different languages, will be required before the present results can be established
as more than a promising window on the pros and cons of morphological connectivity in the
mental lexicon.
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