Title: Shifting paradigms: gradient structure in morphology

To appear in *Trends in Cognitive Sciences*

Authors:
Jennifer B. Hay (corresponding author)
Department of Linguistics
University of Canterbury
Private Bag 4800
Christchurch
New Zealand
jen.hay@canterbury.ac.nz

R. Harald Baayen
Interfaculty Research Unit for Language and Speech
Radboud University Nijmegen
and Max Planck Institute for Psycholinguistics
P.O. Box 310
6500 AH Nijmegen
The Netherlands
baayen@mpi.nl

Teaser: Is probability part of the grammar? Evidence is accumulating that word structure is inherently graded.

Keywords: morphology, probability, gradience, word structure, morpheme, affix, paradigmatics, analogy, productivity, relative frequency, juncture, level ordering
Abstract:

Morphology is the study of the internal structure of words. A vigorous ongoing debate addresses the question of how such internal structure is best accounted for, by means of lexical entries and deterministic symbolic rules, or by means of probabilistic subsymbolic networks implicitly encoding structural similarities in connection weights. In this review, we separate the question of subsymbolic versus symbolic implementation from the question of deterministic versus probabilistic structure. We outline a growing body of evidence, mostly external to the above debate, indicating that morphological structure is indeed intrinsically graded. By allowing probability into the grammar, progress can be made toward solving some long-standing puzzles in morphological theory.
Shifting paradigms: gradient structure in morphology
Jennifer B. Hay and R. Harald Baayen
March 2005

Introduction

According to the symbolic view [1, 2, 3, 4, 5], morphological structure is combinatorial. A past tense form like *walked* consists of two discrete elements, the morphemes *walk* and *ed*, both of which have independent lexical entries. A deterministic rule combines these morphemes into the complex structure *walk*+*ed* and compositionally derives its meaning from the meanings of the parts. The resulting complex forms are not (in more recent versions of the theory, need not) be stored in memory. By contrast, irregular past tense forms like *came* are stored in memory, and are not rule-governed.

According to the subsymbolic view, both regular and irregular forms can be accounted for with subsymbolic networks. Connectionist networks can be trained to map present tense forms (*come/walk*) onto past tense forms (*came/walked*) without requiring overt symbolic rules and without making an a-priori distinction between regular and irregular verbs [6, 7, 8]. In this approach, morphological structure is inherently probabilistic, experience always leaves traces in memory irrespective of irregularity, and the meanings of complex words can be affected in subtle ways by similarity [9, 10].

According to the symbolic model with entries and rules, discrete non-probabilistic combinatorial structure lies at the heart of morphology. According to the subsymbolic approach, morphological structure is fundamentally non-discrete. Instead, morphological structure emerges from the statistical regularities that characterize the forms and meanings of words. In this view, morphological structure is inherently graded. As demonstrated by recent papers in this journal [4, 5, 11], the two sides seem to be locked in stalemate.

Whether morphological structure is graded is therefore a contentious topic. However, there is convergent evidence supporting the gradience of morphological structure. A substantial part of this evidence comes from studies that are external to the above debate, and that are not committed to the connectionist subsymbolic perspective. This review outlines this body of work, and demonstrates that a probabilistic approach to morphological structure can bring insight to some long-standing issues in morphological theory.

In this review we separate the questions of subsymbolic versus symbolic implementation on the one hand, from discrete versus gradient structure on the other. The results summarized could potentially be modelled both by symbolic and non-symbolic approaches. However, they resist modelling by strictly deterministic, non-probabilistic approaches.
Graded structure in morphology

Traditionally, morphological theory posits a categorical distinction between simple words (e.g. *govern*) and complex words (e.g. *government*). However, people’s behavior in experimental tasks is anything but categorical. Individuals can rate affixed forms consistently on a scale from un-affixed to affixed, and can assess which member of a pair of complex words is more complex (e.g. *settlement* is reported as ‘more affixed’ than *government*) [12, 13, 14]. This suggests that morphological complexity is not a binary category. In addition, similarity judgements between affixed forms and their bases are continuous, with no clear division between semantically compositional, TRANSPARENT forms (e.g., *leader*) and semantically non-compositional, OPAQUE forms (e.g., *dresser*) [9, 15]. Different degrees of semantic transparency are reflected in degrees of priming [9, 15, 16], and graded priming effects are also observed with different degrees of phonological or orthographic similarity [17, 18].

Supporters of discrete models of morphological structure may argue that gradient behaviour in experimental tasks reflects gradience in processing, or in response strategies, but not in underlying structure. This interpretation becomes problematic in the light of evidence (reviewed below) that gradience is also reflected in speech production, and constrains morphological processes such as affix-ordering. The clearest interpretation of the combined evidence from speech perception and speech production is that morphological structure is inherently graded.

But how can structure be graded? If we decompose *walked* into the MORPHEMES *walk* and *ed*, haven’t we assigned a discrete, deterministic decompositional structure to *walked*? It is certainly difficult to see how morphological structure might be graded as long as the MORPHEME is viewed as the cornerstone of a morphological system which consists of MORPHEMES and rules operating on these MORPHEMES.

However, there are other morphological theories which do allow a graded view of morphological structure. These theories take the position that the MORPHEME (defined as the minimal structural unit combining form and meaning) is a highly problematic theoretical construct [19, 20, 21]. For instance, in many languages of the world, one finds FORMATIVES that in no way participate in a semantic combinatorial system. An example from the Estonian case system is shown in Figure 1.

In theories such as WORD AND PARADIGM MORPHOLOGY (WPM) [23] the MORPHEME is dispensed with. Full words are viewed as the basic units in the lexicon. The degree to which *ed* is ‘present’ in *walked* depends on the amount of analogical support from other words in the lexicon occupying similar positions in the inflectional paradigm (e.g., *thanked*, *warmed*). Since structure ‘exists’ in WPM only to the extent that it is supported by exemplar-driven similarity across paradigms, WPM offers a perspective on linguistic cognition in which morphological structure is inherently graded.

If the word rather than the MORPHEME is the basic lexical unit, one would expect that all words
<table>
<thead>
<tr>
<th>Case</th>
<th>Singular</th>
<th>Plural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominative</td>
<td>'jalg</td>
<td>'jalad</td>
</tr>
<tr>
<td>Partititive</td>
<td>'jalga</td>
<td>'jalgasid</td>
</tr>
<tr>
<td>Genitive</td>
<td>'jala</td>
<td>'jalgade</td>
</tr>
<tr>
<td>Illative</td>
<td>'jalasse</td>
<td>'jalgadesse</td>
</tr>
<tr>
<td>Inessive</td>
<td>'jalas</td>
<td>'jalgades</td>
</tr>
<tr>
<td>Elative</td>
<td>'jalast</td>
<td>'jalgadest</td>
</tr>
<tr>
<td>Allative</td>
<td>'jalale</td>
<td>'jalgadele</td>
</tr>
<tr>
<td>Adessive</td>
<td>'jalal</td>
<td>'jalgadel</td>
</tr>
<tr>
<td>Ablative</td>
<td>'jalalt</td>
<td>'jalgadelt</td>
</tr>
<tr>
<td>Translative</td>
<td>'jalaks</td>
<td>'jalgadeks</td>
</tr>
<tr>
<td>Terminative</td>
<td>'jalani</td>
<td>'jalgadeni</td>
</tr>
<tr>
<td>Essive</td>
<td>'jalana</td>
<td>'jalgadena</td>
</tr>
<tr>
<td>Abessive</td>
<td>'jalata</td>
<td>'jalgadeta</td>
</tr>
<tr>
<td>Comitative</td>
<td>'jalaga</td>
<td>'jalgadega</td>
</tr>
</tbody>
</table>

Figure 1. The **inflectional paradigm** of singular and plural case endings of the Estonian noun *jalg* ‘foot’ (simplified after [22]). Case forms in Estonian have functions similar to those of prepositions in English. Most of the singular case forms are built on the genitive singular, most of the plural case forms are built on the partitive singular. But there is no corresponding dependence in meaning. Data such as these have led many morphologists to abandon the structuralist notion of the **morpheme** as the basic morphological unit that would combine form and meaning in an incremental combinatorial system.
which have been encountered are stored in long-term lexical memory, irrespective of whether they are simple or complex, and irrespective of whether they are regular or irregular. The hypothesis of storage of full forms ([23], see also [21, 24]) recently has received extensive experimental support [25, 26, 27, 28, 29]. These experimental results are in harmony with the more general view in memory research that any experience leaves a memory trace, and that, as phrased by Landauer ([30], p. 493), we should not be looking for models and mechanisms that produce storage economies, but rather models ‘in which marvels are produced by profligate use of capacity’.

WPM’s claim that only full words have representations in the lexicon is arguably too strong. Stems and affixes may well develop their own representations. Even so, such representations probably depend for their continuing existence on the graded support they receive from paradigmatic analogy.

This is an attractive alternative to the entries plus rules model only to the extent that the notion of paradigmatic analogy receives empirical support.

**Experimental evidence for paradigmatic analogy**

In addition to the extensive evidence for the storage of full-forms, there is a growing body of evidence in the literature supporting the hypothesis that several paradigmatic relations (see Figure 2) characterize lexical representation and co-determine lexical processing.

Recent experimental work shows that the probability distribution of all the distinct forms in a word’s *inflectional paradigm* affect lexical processing [31, 32, 33]. Derived words and compounds also entertain paradigmatic relations, they form *morphological families* through shared stems (*worm, wormy, ringworm, woodworm*). The size of a word’s morphological family has emerged in recent years as an independent predictor of lexical decision and word naming latencies as well as of subjective frequency ratings in several typologically unrelated languages [34]. These paradigmatic effects show that the relations between words need to be taken into account, and are therefore at odds with the entries plus rules model.

Paradigmatic analogy is also crucial for understanding so-called rule-less morphology. In Dutch, the traditional analysis of the regular past tense required exception marking for a large subset of verbs. However, exemplar-driven paradigmatic analogy can not only explain the distribution of regular past tense formatives (obviating the need of exception markers), but also explains why and where native speakers do not follow the norms of the standard language, i.e., where paradigmatic pressure is leading to language change. Furthermore, the strength of the analogical pressure is reflected as well in regular past tense production [35, 36].

Paradigmatic analogy also co-determines the interpretation of novel compounds [37], and guides the use of the otherwise mysterious interfixes (formatives such as the *s* in *helmsman*) which are rare in English compounds but quite productive in German and Dutch compounds [38, 39].
Figure 2. Examples of paradigmatic lexical relations in English. Relations between inflected variants (INFLECTIONAL PARADIGMS) are shown in red, relations between morphologically related compounds and derived words (MORPHOLOGICAL FAMILIES) are shown in green, and relations between words sharing the same affix are shown in blue. Affixes that occur across many words are described as PRODUCTIVE.
A practical example of the importance of paradigms comes from the design and teaching of spelling systems. One of the enigmas of the orthographies of French and Dutch is why even highly educated writers invariably commit morphological spelling errors, even though the spelling rules for complex words are supposed to be simple and transparent. The problem is that analogical memory interferes, allowing inappropriate but more frequent homophones in the paradigm to take precedence [40].

**The whole and the parts**

We have reviewed evidence for the storage of full words, and the existence of paradigmatic relations between them. However, the parts of complex wholes may also be active during production and comprehension.

There is a comprehensive literature demonstrating that paradigmatically supported partial matches co-determine lexical processing to different degrees, depending on their distributional characteristics. Apart from partial matches that are themselves words, such as walk in walked [41, 42], there are various other kinds of paradigmatically supported partial matches: bound stems such as *ject* in *inject* [12, 43], affixes such as *ed* in *walked* [42, 44, 45], and phonaesthemes (*fl* in words pertaining to liquid such as *flow*, *float*, *flood*) [46]. Priming studies show that the combination of overlap in form and overlap in meaning leads to facilitation that tends to exceed the facilitation obtained for form or meaning alone [47]. Interestingly, such superadditive facilitation is obtained not only for ‘bona fide’ complex words like *walked*, but also for *flow* and *float* [46], and *float* and *boat* (M.J. Pastizzo, Multiple dimensions of relatedness among words, unpublished dissertation, SUNY at Albany), for which no decomposition into a sequence of discrete **MORPHEMES** is possible. In order to account for these graded effects of morphological structure, the **MORPHEME** is too coarse a theoretical notion.

It is an open question to what extent bound stems, affixes, and phonaesthemes develop independent form and/or meaning representations. Experimental evidence is often interpreted as supporting ‘decomposed’ morphological representations (see, e.g., [41]). However, the inference that effects observed for shared lexical structure reflect independent representations, although possible and attractive in its simplicity, is logically not compelling. We are inclined to think that, while independent representations may indeed develop, they depend for their existence on the degree of continuing probabilistic support received from paradigmatic analogy.

Given the combined evidence for full forms and their parts, a question arises about how the whole relates to its parts. For comprehension, it is clear that, as elsewhere in cognition [48], the whole often takes precedence over its parts. Figure 3 illustrates this point by means of an analogy with letter perception. The percept in Figure 3 is that of the letter **A**, albeit an **A** composed of tools. The ‘meanings’ of the tools themselves don’t contribute to the ‘meaning’ of the letter they form. Many complex words similarly contain elements that themselves do not contribute to the meaning of the
The whole takes precedence over the parts [48]. The monkey wrench representing the horizontal bar of the A has blurred edges (‘well-formed junctural phonotactics’), which make it less salient as a part in the whole compared to the diagonal ring spanners with fully distinct edges (‘low-probability phonotactic junctures’).

Such spurious elements are co-activated during the comprehension process, but the meaning that normally becomes available for further processing is that of the whole [9, 49, 50, 51].

Many studies have attempted to clarify factors influencing the relative contribution of the whole versus the parts [52, 53, 54]. One factor affecting this balance is the ratio of the frequency of the word and that of its base. The more frequent the complex form is relative to its base (e.g. illegible is more frequent than legible), then the more salient the whole is, relative to its parts. Affixed forms which have a high frequency relative to their bases are rated less complex than forms which are less frequent than their bases, and they are significantly more prone to semantic drift [13, 14]. Furthermore, such forms tend to contain fewer phonetic cues to juncture.

A word’s junctural phonotactics concern the probability of the sequence of sounds spanning the juncture between its parts. Low probability, ill-formed, junctural sequences create sharper boundaries and more salient parts (e.g. inhumane - [nh] never occurs in simple words in English). Words with higher probability phonotactics across the morphological boundary (e.g. insincere, c.f. tinsel) have less salient parts [14, 44]. With reference to Figure 3, we could say that the monkey wrench representing the horizontal bar of the A has blurred (well-formed) junctures, which makes it less salient as a part in the whole than the diagonal ring spanners, which meet in a more distinct (less well-formed) juncture.

The more the parts ‘stand out’ in the whole, the stronger the paradigmatic relations that the whole entertains. Affixes represented by more words which are infrequent relative to their bases, and
which contain low probability phonotactics, are not only the most likely to be more highly segmentable and to develop stronger independent representations, they are also more readily available for use in new words. They tend to be more productive.

**Morphological productivity**

Some affixes (e.g., *-ness* as in *sadness*) are more likely to be used to create new words than others (e.g., *-th* as in *warmth*). The suffix *-ness* is said to be productive, and *-th* to be unproductive. While there is some discussion as to whether an affix is ever truly and totally unproductive [55], most morphologists agree that affixes actually display very different degrees of productivity [56].

An initial challenge to understanding the source of these degrees of productivity rests with finding a measure of productivity itself. Measures which formalise the notion of degree of productivity in terms of conditional probabilities that go back to Turing are now available [55, 57]. These measures provide tools which can rank affixes according to different aspects of productivity, and have opened the door to studies probing the question of the source of differences in productivity. While affixal productivity cannot be straightforwardly predicted by an affix’s frequency of use, it can be predicted from the degree of paradigmatic support that the affix receives. The reason that simple frequency counts fail is that not all words ‘contain’ the affix to the same degree. The relative salience of the whole and the parts, as gauged by their relative frequencies and junctural phonotactics, are significantly correlated with affixal productivity. In other words, the degree of productivity of an individual affix is co-determined by the degrees to which the various words containing that affix (its affixal paradigm, see also Figure 2), are morphologically complex [14, 58].

**Affix-ordering**

The hypothesis that morphological structure emerges gradiently from paradigms allows considerable insight into restrictions on English affix-ordering. Most languages have restrictions on the order in which affixes can occur with respect to one another. In English, for example, the affix *-ity* is not attached to the affix *-less*. The nature of the restrictions on affix-ordering has been a long-standing debate. One common approach to the problem has been to characterize affixation as occurring on different ‘levels’, with level 1 affixes attaching before level 2 affixes. The ungrammaticality of *cluelessity* then follows from a level 2 affix (*-less*) inappropriately nested within a level 1 affix (*-ity*). Many languages have received level-ordered treatments of affix-ordering, see [59] for a review.

The level-ordering perspective has received vast criticism [60, 61, 62]. One reason for this is that there tend to be restrictions on ordering among affixes within a single level, which a level-ordered account cannot capture [60, 61]. While many contemporary theories maintain a distinction between level 1 and 2 for independently motivated phonological reasons, most have abandoned an explicit level-ordered account of affix-ordering [63].
Interestingly, level-ordering achieved some success, not because there are actually two discrete levels, but rather because there is a systematic relationship between degree of structure and ordering restrictions. The generalization turns out to be that as we move outwards from the stem in a multiply suffixed word, the suffixes encountered are progressively less ‘fused’ with their host in terms of relative frequency and junctural phonotactics [14, 64]. In other words, morphological structure fades as we move in towards the stem, a phenomenon that has been observed for inflection as well [65]. As shown in [66], there is a remarkable isomorphism between this graded structural constraint and the notional constraints governing affix selection.

**Phonological and Phonetic Implementation**

Languages display strong preferences for formatives in a paradigm to be highly similar — both phonologically and phonetically. For example, in American English, t tends to be flapped (i.e., becomes ‘d’-like) in *capital*, but not in *military*. This is because flapping doesn’t occur preceding stressed syllables. However, this difference is also carried over to other members of the paradigm, where the syllable stress is no longer different — t is flapped in *capitalistic* but not *militaristic*. The precise details of the phonetic implementation of affixed words is affected by the other words present in the paradigm [67].

Another example concerns the devoicing of final obstruents in Dutch. In their infinitive forms the two Dutch verbs *verwijden* and *verwijten* differ in the identity of the medial consonant (d versus t). However, when the -en suffix is omitted, both words are produced with a t: *verwijt*. This is traditionally understood as a process which turns a discrete voiced (d) into its discrete voiceless counterpart (t). However, experiments have revealed that the process of devoicing is incomplete — the *verwijt* which relates to *verwijden* actually contains some d-like characteristics, which, furthermore, are functional for the listener [68].

The gradient morphological structure which emerges from paradigms is also reflected in details of sound structure. For example, words such as *swiftly* (which is more frequent than *swift*, and so only moderately segmentable) are pronounced with less of a t sound than matched words such as *softly* (less frequent than *soft*, and so highly segmentable) [14]. That is, words containing less support for their affixedness are associated with more phonetic reduction at the morphological boundary. An example from phonology comes from the use of intrusive r in New Zealand English — the insertion of r between base and suffix, as in *draw-r-ing*. This process is sensitive to the gradience of morphological structure, with affixes which receive more paradigmatic support more likely to attract r [69].

**Gradedness and (ir)regularity**

One of the central claims of the entries plus rules model is that English learners would get by with a single default rule for regular verbs. However, there appear to be ‘islands of reliability’ within regular verbs which affect the probability of the regular past tense being used for novel verbs [70].
Another central claim of the entries plus rules model is that rules of inflection (such as the past tense) are sensitive only to the properties of a word’s form, and blind to a word’s meaning. After all, words like *shrink* and *drink* have the same kind of irregular past tense (*shrank*, *drank*), yet differ in meaning. And words with similar meanings like *slap* and *strike* can have very different past tense forms (*slapped*, *struck*). Recent studies [33, 71], however, show that when irregular verbs are compared with regular verbs, irregular verbs turn out to have more semantic neighbors, and these semantic neighbors themselves are more likely to be irregular. The greater semantic density of irregulars is reflected in association norms, familiarity ratings, and chronometric measures of lexical processing, and points to a potential confound of (ir)regularity and semantic density in the brain imaging literature on regular and irregular verbs.

**Conclusions**

Is morphological structure inherently graded? The question is controversial, but the evidence that is currently accumulating in the literature suggests an affirmative answer. Advances in theoretical morphology have led many scholars to reject the morpheme as a unit of analysis. Advances in statistics, data mining, and computational morphology have made it possible to develop formal models for paradigmatic analogy. Advances in linguistic data analysis have led to improved insight into the relation between (ir)regularity and semantics, and into the relation between graded structure on the one hand, and productivity, affix order, and phonetic realisation on the other. Advances in auditory word recognition have documented listeners’ sensitivity to fine phonetic detail in the acoustic form of simple and complex words, and its role in biasing the listener towards the correct meaning [49, 72]. In short, recent developments suggest that the true complexity and, we would say, the true beauty of morphological structure can only be appreciated in full from a probabilistic perspective.

Accepting gradedness as part and parcel of the grammar entails a paradigm shift for linguistics. Especially generative linguistics has known a long history of antagonism with respect to the role of probability in the grammar. But the graded nature of morphological structure also challenges experimental approaches to lexical processing to develop models that are predictive not only for factorial extremes, but for the full range of intermediate cases as well.

The conclusion that morphological structure is indeed inherently graded does not necessarily imply that a subsymbolic, connectionist approach is called for. What makes the work of Rumelhart and McClelland and subsequent connectionist modeling exciting from a morphologist’s point of view is that these are the first rigorous mathematical models for gradience in morphology. But artificial neural networks are but one of many currently available statistical tools for coming to grips with gradient structure [70, 73, 74, 75]. The challenge for future research is to develop biologically plausible inductive models that do full justice to the — graded — structural intricacies of morphological complexity.
Questions for further research

1. How should analogical similarity be constrained, and what factors drive these constraints?

2. What empirical evidence can establish whether stems and formatives develop independent representations?

3. Most studies addressing morphological processing and representation have scrutinized words in isolation. How does context affect the balance of memory and exemplar-driven computation?

4. To what extent does the evidence for gradedness generalize beyond experimental tasks?

5. What empirical evidence can decide between subsymbolic generalization in neural networks and exemplar-driven symbolic generalization?

6. How can semantics be realistically modelled in analogical models.

7. To what extent can relative frequency and junctural phonotactics explain affix ordering in other languages?

8. How do paradigms form between multiply-affixed words?

9. If structure emerges gradiently from paradigms of encountered words, then an individual’s social networks and personal linguistic experience could considerably affect the degree to which they represent and process specific words as morphologically complex. To what extent is this the case?

References


