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Making sense of spoken plurals
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Distributional semantics offers new ways to study the semantics of
morphology. This study focuses on the semantics of noun singulars and
their plural inflectional variants in English. Our goal is to compare two
models for the conceptualization of plurality. One model (FRACSS)
proposes that all singular-plural pairs should be taken into account when
predicting plural semantics from singular semantics. The other model
(CCA) argues that conceptualization for plurality depends primarily on the
semantic class of the base word. We compare the two models on the basis of
how well the speech signal of plural tokens in a large corpus of spoken
American English aligns with the semantic vectors predicted by the two
models. Two measures are employed: the performance of a form-to-
meaning mapping and the correlations between form distances and
meaning distances. Results converge on a superior alignment for CCA. Our
results suggest that usage-based approaches to pluralization in which a
given word’s own semantic neighborhood is given priority outperform
theories according to which pluralization is conceptualized as a process
building on high-level abstraction. We see that what has often been
conceived of as a highly abstract concept, [+plural], is better captured via a
family of mid-level partial generalizations.

Keywords: plural semantics, distributional semantics, FRACSS, Cosine
Class Average, sound-meaning mapping, spoken word recognition

1. Introduction

Distributional semantics (Boleda, 2020; Firth, 1968; Günther, Rinaldi, & Marelli,
2019; Harris, 1954; Landauer & Dumais, 1997; Mikolov, Chen, Corrado, & Dean,
2013; Wang, Wang, Chen, Wang, & Kuo, 2019) offers new opportunities for
understanding the semantics of word formation (see, e.g. Kisselew, Padó, Palmer,
& Šnajder, 2015; Marelli & Baroni, 2015) and inflection (see, e.g., Baayen &
Moscoso del Prado Martín, 2005). Given corpus-based semantic vectors (known
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as embeddings in computational linguistics and natural language processing) for
pairs of base words and corresponding complex words, several methods have
been proposed that take as input the semantic vector of the base word, and that
produce as output the vector of the complex word.

One such method is illustrated in Figure 1. Given the semantic vectors for two
pairs of singulars and plurals (table/tables and pen/pens), and given the semantic
vector for banana but no semantic vector for its plural, the semantic vector for
bananas is obtained by first calculating the vectors that start at a singular and
point to the corresponding plural (represented by blue vectors), and averaging
these, resulting in an average shift vector (in red). This shift vector can then be
applied to the vector of banana, resulting in the semantic vector for bananas
(lower panel). Kisselew et al. (2015) calculated the average shift vector for each of
a large set of German derivational affixes, and showed that this results in high-
quality estimates of the meanings of derived complex words.

Another method for modeling word formation processes is offered by Marelli
and Baroni (2015). They used matrix multiplication to obtain predicted semantic
vectors for derived words, and showed that this method generated quantitative
predictors that help explain variance in measures of lexical processing such as
reaction times in visual lexical decision.

The abovementioned studies associate each derivational exponent with one
conceptualization function that predicts the complex word from its base word.
However, recent research on plural inflection has shown that the semantics of
plurality can be too complex semantically to be adequately represented by a single
shift vector. Chuang, Brown, Baayen, and Evans (2022) observed that for Russian,
a fusional language, the shift vector for a singular to a plural noun embedding
varies systematically by each of the six cases. Nikolaev, Chuang, and Baayen
(2022) report that also for Finnish, an agglutinative language, plural shift vectors
are different for each of the 14 cases. Furthermore, Shafaei-Bajestan, Moradipour-
Tari, Uhrig, and Baayen (2022) report that in English, shift vectors are condi-
tioned on the semantic class of the base word.

Figure 2 illustrates this phenomenon, highlighting three clusters of shift
vectors in a two-dimensional plane constructed with the t-SNE dimension reduc-
tion technique (van der Maaten & Hinton, 2008). T-SNE is designed such that
if observations cluster in a high-dimensional space, these clusters are (with high
probability) optimally visible and distinct in its two-dimensional re-
representation of this space. In Figure 2, words denoting people (e.g., president)
are found predominantly in the lower right (in blue), words for communication
(e.g., language) cluster in the center-left (in green), and words for animals (e.g.,
rabbit) are found in the upper right of the t-SNE plane (in red). The grey dots
represent nouns that belong to other semantic classes. Shafaei-Bajestan et al.

[2] Elnaz Shafaei-Bajestan, Peter Uhrig, and R. Harald Baayen
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(2022) broke down the set of nouns into some 400 semantic classes,1 derived
from WordNet (Miller, 1995). In this way, overlap between clusters is reduced, and
plural vectors constructed by adding a class-specific shift vector to the vector of
the singular are more similar to the empirical vectors. Following their approach,
class-specific average vectors are visualized with arrows in Figure 2 for the three
example clusters.

Figure 1. The average of the shift vectors for given singular-plural pairs (table/tables,
pen/pens) is used to calculate the semantic vector of the unknown plural vector of banana

We note here that in a t-SNE plane constructed for singular and plural
embeddings, plurals tend to occur very close to their singulars, and semantically
similar words tend to be relatively close together. What the t-SNE analysis of the
shift vectors shows is that how plural vectors are positioned with respect to their
singular vectors varies considerably and systematically by semantic class.

In English, words belonging to a semantic class are not overtly marked by a
specific exponent. However, there are languages that have grammaticalized class-
conditional plural semantics. Swahili, a Bantu language, makes use of a large
number of noun classes, many of which are semantically motivated (Polomé,
1967). For instance, the m-wa class is used for persons, the ma-ji class comprises
words for objects that occur in clusters such as fruits, and the ki-vi class covers
artifacts and tools. The Kiowa language from the Tanoan language family, has

1. See the complete list of classes at https://osf.io/h6ck3/files/osfstorage
/645fd97560fc5d2261ca098f.
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Figure 2. A projection of shift vectors (calculated from word2vec embeddings, Mikolov
et al., 2013) onto a two-dimensional plane using the t-SNE dimension reduction
algorithm reveals semantic clustering (N =11749). Each dot represents a shift vector, one
for each singular-plural pair. Three semantic classes (based on WordNet) are highlighted:
Animals (red), persons (blue), and communication words (green). The arrows represent
the average shift vector for each of the three highlighted groups. Because there are many
outliers far away from the main clusters, the arrows point towards the clusters but do not
reach their centers. If the semantics of pluralization were identical for all words, a single
cluster with its centroid at a distance from the origin would have emerged from the
analysis. An interactive version of this plot can be found at https://quantling.org
/MentalLexicon/English/English-shift-space-w2v-3categories.html

nine semantically motivated noun classes (Harbour, 2008, 2011). In contrast to
English, Swahili and Kiowa have grammaticalized interactions of semantic class
and plurality, indicating that speakers of these languages have made explicit in
their grammars some perceived differences in what it means to be a plural.

Further evidence for the grammaticalization of number by semantic class is
provided by languages with classifiers such as Mandarin Chinese (see, e.g. Yip &
Rimmington, 2006). Constructions with numerals such as ‘two snakes’ require a
classifier before the noun, as in èr tíao shé, ‘two classifier snake’, and èr zhī niăo,
‘two birds’. The classifier tiao is often found preceding long and flexible objects,
such as snakes and rivers. By contrast, zhī is described as the classifier “for birds

[4] Elnaz Shafaei-Bajestan, Peter Uhrig, and R. Harald Baayen
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and certain animals, one of a pair, some utensils, vessels, etc.”2 Mandarin classi-
fiers thus group multiples of objects together by their shape, size, or classes of arti-
facts (such as vehicles), among many others.

Grammaticalization of number by semantic class is perhaps unsurprising as
for many concrete plural nouns, referents tend to occur in markedly different
configurations. This is illustrated in Figure 3. Oranges and apples appear in group-
ings that are entirely different from the configurations in which cats and dogs are
typically found. It is remarkable that configurational properties of multiples of
objects are so well captured by word embeddings.

Figure 3. Multiples of different kinds of objects typically occur in different
configurations. The images for oranges and dogs are obtained without modification from
Vyagov (2021) and Gallice (2012). The images for apples and cats, obtained from
Khursheed (2014) and Park (2013), have been cropped

The Kiowa noun system led Harbour (2008, 2011) to argue for a morphose-
mantic theory of number. The studies by Nikolaev et al. (2022); Chuang
et al.(2022), and Shafaei-Bajestan et al. (2022) provide first steps in the formula-
tion of such a theory. Focusing on noun inflection in English, the finding that
plural semantics vary systematically by semantic class raises the question of how
to formalize the conceptualization process that underlies the use of singular and

2. https://chinese.yabla.com/chinese-english-pinyin-dictionary.php?define=zhi.

Making sense of spoken plurals [5]
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plural nouns in English. Given a semantic vector vSG for the singular of a given
lexeme, we can ask what kind of conceptualization operation Φ is needed to map
this singular onto the corresponding plural vPL:

(1)Φ (vSG) = vPL

Shafaei-Bajestan et al. (2022) investigated two alternative implementations of
Φ. The first implementation straightforwardly builds on the observed clustering
in the original high-dimensional shift vector space.

(2)Φ(vSG) = vSG+ vshift|semantic class

For plurals that are ‘known’ to the algorithm, i.e. for which semantic vectors
are available, a plural vector is semantically decomposed in the following way:

(3)vPL= vSG+ vshift|semantic class+ ϵ

In other words, known plurals are composed of the singular semantic vector,
a shift vector appropriate to the semantic class of their base words, and a residual
error vector that specifies the semantics that are specific to a given plural form.
As first pointed out by Sinclair (1991), regular inflected words often have their
own collocational profiles, which are part of native speakers’ knowledge of the
lexis of their language (see also Milin, Filipović Durdevic, & Moscoso del Prado
Martín, 2009; Moscoso del Prado Martín, Kostić, & Baayen, 2004). In (3), this
word specific knowledge that is not predictable from the semantic class is repre-
sented by the error vector ϵ.

For ‘out-of-vocabulary’ plurals, i.e., plurals on which the conceptualization
function Φ has not been trained, the semantic vector predicted for these plurals
simplifies to:

(4)vPL = vSG+ vshift|semantic class

This approach, which applies the approach to derivation of Kisselew et al.
(2015) and extends it to the English plural, was laid out in Shafaei-Bajestan et al.
(2022). Following their terminology, we henceforth refer to this method as Cosine
Class Average (CCA).

An alternative approach to plural conceptualization builds on the FRACSS
model of Marelli and Baroni (2015), which was originally developed for deriva-
tional morphology. When all singular semantic vectors are brought together as
the row vectors of a matrix S, and all corresponding plural vectors are bundled
together as the row vectors of a matrix P, a linear mapping M can be obtained by
solving

SM = P.

[6] Elnaz Shafaei-Bajestan, Peter Uhrig, and R. Harald Baayen
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Given M, the conceptualization function Φ is given by

(5)Φ(vsg) = vsg M,

the embedding of a plural is decomposed as

(6)vpl= vSG M + ϵ,

and for plurals for which an embedding is not available, the plural vector is
estimated by

(7)vpl= vsgM

The conceptualization functions Φcca and Φfracss implement two different
ways of thinking about the conceptualization of plural nouns. The perspective
taken by Φfracss is global in nature: to predict a plural meaning, one needs to
take into account the systematicities that govern all singular and plural pairs. In
contrast, the perspective taken by Φcca is local in nature, the hypothesis being that
it is only the systematicities between singulars and plurals within the semantic
class to which the lexeme belongs that are relevant.

However, although Φcca straightforwardly implements the structure that is
revealed by the t-SNE analysis to be present in the high-dimensional space of
embeddings, precisely because it builds on semantic classes, it is actually a
complex theory: semantic classes are not straightforward to define, and we there-
fore built on previous work done within the WordNet project (Miller, 1995).
FRACSS, by contrast, is a theory that takes as its point of departure that there
is a single plural operation. Because linear transformations are quite powerful, it
is possible that the linear transformation of FRACSS will actually capture in its
stride the semantic conditioning that is revealed by the t-SNE analysis.

Shafaei-Bajestan et al. (2022) observed that the plural vectors predicted by
Φfracss and Φcca are in general very similar. The former plural vectors were
somewhat more similar to the word2vec gold standard plural vectors in terms of
angle, the latter vectors were somewhat more similar in terms of vector length. In
order to assess the relative merits of the two conceptualization functions, Shafaei-
Bajestan et al. therefore investigated the relation between plurals’ semantics and
their forms. Different approaches to exploring this relation have been proposed
in the literature. For example, Shillcock, Kirby, McDonald, and Brew (2001);
Tamariz (2008), and Monaghan, Shillcock, Christiansen, and Kirby (2014)
compared distances in the form space to distances in a distributional semantic
space. Levy et al. (2021) employed methods from network science to build a
multi-layer network that connects a phonological network to a semantic network.
Lexical measures such as orthography-semantics consistency (Marelli, Amenta,

Making sense of spoken plurals [7]
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& Crepaldi, 2015; Siegelman et al., 2022) and phonologysemantics consistency
(Amenta, Marelli, & Sulpizio, 2017) are now available for capturing the effects
of form-meaning associations on lexical processing. Shafaei-Bajestan et al. used a
different method, described in the following paragraph.

Shafaei-Bajestan et al. (2022) addressed the systematicities between form and
meaning of English plural nouns using the Discriminative Lexicon Model (DLM)
proposed by Baayen, Chuang, Shafaei-Ba jestan, and Blevins (2019). This compu-
tational model approximates comprehension with a linear mapping from numeric
form representations to semantic vectors. A core assumption of the DLM is that
the form space and the semantic space are so similar and well calibrated to each
other that simple linear mappings are sufficient for obtaining high-quality (albeit
not perfect) predictions for meanings given forms (in comprehension), and for
forms given meanings (in production). Given that according to this model the
mappings between form and meaning are extremely simple, the quality of the
model’s predictions is critically dependent on the representations of form and
of meaning. Within this modeling framework, it is therefore important to deter-
mine which of the available methods produces semantic vectors that are best
aligned with the form vectors. Using form representations that encode which
triphones are present in a word’s form, Shafaei-Bajestan et al. found that plural
vectors obtained with Φcca could be predicted more precisely from their forms
than plural vectors obtained with Φfracss, especially when the model was tested
on held-out data. However, form vectors derived exclusively from (tri)phones do
not do justice to either the richness or the enormous variability of spoken words.

The goal of the present study is not to provide improved semantic repre-
sentations for plurals, but rather to address the shortcoming of Shafaei-Bajestan
et al. (2022), where phone-based form representations were used. In the present
study, we will replace phones with less abstract measurements to explore how
well Φcca and Φfracss are aligned with the audio signal itself. In what follows,
we report two experiments addressing this goal. The first experiment follows
Shafaei-Bajestan, Moradipour-Tari, Uhrig, and Baayen (2021) and makes use of
a version of the Discriminative Lexicon Model that was developed specifically
for auditory comprehension: the LDL-AURIS model. As this model derives form
vectors for word tokens from the audio files of these tokens, it is well-suited to
addressing the relation between words’ speech audio and their meanings. The
second experiment follows in the footsteps of Shillcock et al. (2001); Tamariz
(2008), and Monaghan et al. (2014). These studies make use of distance measures,
which for words’ forms are based on orthographic or phonebased representations.
In contrast, the present study uses distances between form vectors extracted from
the audio files of word tokens, and compares these with the distances between
semantic vectors for the corresponding word types. Our question of interest is

[8] Elnaz Shafaei-Bajestan, Peter Uhrig, and R. Harald Baayen
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whether distances in ‘audio space’ are more similar to distances in semantic space
when plural meanings are estimated with Φfracss or with Φcca.

In what follows, we first introduce the dataset on which our analysis is based.
We then report the study using LDL-AURIS (Section 3), followed by the study
using distances (Section 4). We conclude with a discussion in Section 5.

2. Data

Our data are taken from the NewsScape English Corpus 2016 (Uhrig, 2018, 2021).
This corpus is based on the US-American English-language recordings in the
UCLA Library Broadcast NewsScape. The corpus contains TV news, including
traditional newscasts and political talk shows as well as late-night shows and
daytime talk shows. The vast majority of the language recorded can thus be
assumed to be Standard English with a Network English accent. Overall, male
speakers contribute much more than half of the words. In a sample of shows from
broadcaster CNN for which transcripts were available online, about 80% of the
words were uttered by male speakers (Uhrig, 2021). In terms of age distribution,
younger speakers, especially children and teenagers, are underrepresented. The
initial audio quality is usually quite good because much of the audio comes from
recording studios, but the corpus also includes footage from outside reporters.
There are also programs with audiences, who cheer and applaud, all reducing the
quality of the audio signal.

For the year 2016, these recordings amount to more than 35,000 hours with
around 269 million tokens of subtitles. Directly after subtitle extraction, the
recordings are compressed to 240 MB/hour, using H.264 for the video stream
and the Fraunhofer FDK library to produce an AAC audio stream at 96 kbit/
sec. The subtitles are processed with Stanford CoreNLP (Manning et al., 2014)
version 3.7.0, i.e. annotated for part of speech with the Penn Treebank tagset using
CoreNLP’s caseless model.

Subtitles are not intended to be accurate transcripts of the words spoken. For
the sake of readability, they usually omit false starts, often leave out words and
phrases – in particular in fast dialogue – and are not designed to cope with over-
laps. Commercials often do not have subtitles at all. We thus expect a certain error
in the forced alignment, which is designed to align a transcript with the corre-
sponding audio recording. Due to the transcript quality and the length of the
recordings, most forced alignment systems are not suitable for this use case.

The phonemic transcriptions that are provided in the NewsScape English
Corpus 2016 were obtained with a slightly modified version of Gentle (Ochshorn
& Hawkins, 2015), which markets itself as a “robust yet lenient forced aligner

Making sense of spoken plurals [9]
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built on Kaldi”.3 Gentle runs an automatic speech recognition process with a
bigram language model created from the transcript in the background. It is based
on Kaldi ASR (Povey et al., 2011), which uses a purpose-built version of the
CMUDict machine-readable pronunciation dictionary (https://github.com
/cmusphinx/cmudict) that comes without stress information. Note that our
dataset inherits the pronunciation variants offered by CMUDict, i.e. the word
either will be represented either as [aIðәr] or as [i:ðәr], depending on the pronun-
ciation of the speaker. However, not all pronunciation variants typically found in
American English are listed in the version of CMUDict used here. Thus don’t is
transcribed as [doʊnt] or as [doʊn], but vowel reductions that are typical of fast
speech in combinations such as don’t know, often rendered orthographically as
dunno, are not covered. Thus we have to be aware that while our dataset offers
some variation in pronunciation, which makes it more ecologically valid than
purely dictionary-based approaches without speech recognition, it will contain
instances where the transcript does not correspond to the spoken form because
the transcription of the spoken form was not available in CMUDict.

Although the forced alignment of the corpus is reported to have a success
rate of somewhere between 90% and 95% on average, we were able to select for
inclusion only those files where Gentle’s self-reported success rate was at least 97%
because we only needed a much smaller dataset than the entire corpus. From this
well-aligned part of the corpus, we selected the first 500 hours of programs in
order of broadcast time and extracted a total of 750,816 audio word tokens of 2062
orthographic word form types that are either singular or plural nouns. A word
form type was selected with the constraints that its token frequency was at least 70
in the 500-hour corpus and that a word2vec semantic vector was available for it.
Proper names, plurals endings with anything other than an -s, and named entities
were excluded from the dataset.

3. Study 1: Assessing the isomorphy of form and meaning with LDL-
AURIS

3.1 Representations

For our investigations into the relation between spoken noun singulars and
plurals and their semantics, we set up three sets of 300-dimensional semantic
vectors. The first set of vectors based on pre-trained word2vec (Mikolov et al.,
2013) embeddings (for both singulars and plurals) was retrieved from Mikolov

3. https://lowerquality.com/gentle/

[10] Elnaz Shafaei-Bajestan, Peter Uhrig, and R. Harald Baayen
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(2013, Jul 30).4 For the compilation of the other two sets, the vectors for singular
words are identical to those of the first set. For set 2, the plural vectors were calcu-
lated using Φcca, and for set 3, using Φfracss. The semantic classes for the Φcca
conceptualization function are taken from WordNet (Ciaramita & Johnson, 2003;
Fellbaum, 1998; Miller, 1995). For further details on the granularity of the concep-
tual classes used, see Shafaei-Bajestan et al. (2022).

To represent the speech signal of singular and plural nouns, we made use
of the Continuous Frequency Band Summary Features (C-FBSF) developed by
Shafaei-Bajestan et al. (2021). Figure 4 illustrates, for one example audio token
which can be accessed through the QR link in the upper right of the figure, how
these features are calculated. The algorithm takes the digital signal of a word as
input (top panel) and divides it into temporal chunks delimited by the maxima
of the periodic parts of the signal. The MEL spectrogram (middle panel) for each
chunk is divided into 21 frequency bands, mirroring the frequency bands of the
cochlea. For each frequency band of each temporal chunk, an order-preserving
random sample of length 20 is taken from the list of log mel energy values and
included in the C-FBSF vector (lower panel). Within each temporal chunk, corre-
lation coefficients of the log mel energy values at the current frequency band with
those of the following bands are calculated and appended. These numeric vectors
are concatenated first within chunks and then between chunks.

The dimensionality of the auditory space is determined by the number of
chunks in the longest word in the dataset, which is 13 for the present data. The
algorithm stores 651 numbers per chunk. As a consequence, the auditory space
is 8,463-dimensional. All C-FBSF vectors are zero-padded to match the 8,463
dimensions. For the audio token apple portrayed in Figure 4, which has a dura-
tion of 0.32 seconds, an initial 1953-dimensional vector is thus padded with 6510
trailing zeros.

3.2 Mapping audio vectors onto semantic vectors

The form vectors derived from the audio files were brought together as the row
vectors of a form matrix C. The corresponding semantic vectors were bundled as
the row vectors of three semantic matrices S: one with the word2vec gold stan-
dard vectors, one replacing word2vec plural vectors with FRACSS vectors, and
one replacing word2vec plural vectors with CCA plural vectors.

4. In this study, we accept the embeddings of word2vec as ground truth. A question we leave
to further research is whether multi-modal embeddings (see, e.g., Kiela, Bulat, & Clark, 2015;
Kiela & Clark, 2017; Shahmohammadi, Lensch, & Baayen, 2021, for olfactory, auditory, and
visual grounding of embeddings) will help enhance the modeling of the conceptualization of
plurality in English.

Making sense of spoken plurals [11]
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Figure 4. C-FBSF extraction for an audio rendition of the word apple (duration of 0.32
s). Click http://go.redhenlab.org/pgu/0120 or scan the QR code to listen to the audio. The
top panel presents the waveform in dark gray, and the smoothed Hilbert amplitude
envelope of the signal in orange. The red vertical lines indicate chunk boundaries, located
at the local maxima of the Hilbert envelope at 0.07 s and 0.23 s. The mid panel presents
the corresponding log MEL spectrogram (using an FFT window size of 0.005 s) that
depicts log energy values as colors over time (shown on the x-axis) split at 21 auditory
filter banks according to the MEL scale (shown on the y-axis). The upper and mid panels
are time-aligned. Lower panel: A segment of the output C-FBSF vector that corresponds
to the first 7 sampled energy values from the 17th frequency band of the first chunk. The
length of the C-FBSF vector compiled from all three chunks and 21 frequency bands
before zero-padding is 1953

LDL-AURIS calculates a mapping F from the form matrix C to a semantic
matrix S by solving

CF = S.

We used the normal equations (Faraway, 2005) for the multivariate multiple
regression model to estimate F, using the Moore-Penrose algorithm (Moore, 1920)
for matrix inversion. Once F has been estimated, we obtain the predicted semantic
matrix Ŝ as follows:

(8)Ŝ= CF

[12] Elnaz Shafaei-Bajestan, Peter Uhrig, and R. Harald Baayen
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We write Ŝ rather than S because, just as in regression one cannot draw a
straight line through all the data points in an ellipsoid cluster, the predicted row
vectors ŝ of Ŝ cannot be identical to the gold standard row vectors s of S. A specific
predicted semantic vector ŝi is judged to be accurate when it is closer to the corre-
sponding gold-standard vector si than to any other semantic vector sj, j ≠ i. As a
measure of semantic proximity, LDL-AURIS uses the Pearson correlation.

3.3 Training data and test data

To evaluate the quality of a mapping F, we split the data described in Section 2
into training and test sets using a stratified 10-fold cross-validation design with
respect to the word form types. Cross-validation is a standard procedure in
machine learning for model evaluation. In 10-fold cross-validation, the dataset is
split into 10 parts (henceforth folds). Ten models are fitted on nine of the folds,
each with a different fold held out, and are tested on the remaining fold. Stratifica-
tion ensures that each fold is appropriately representative of the whole dataset. We
made sure that all word form types appear in every training and test set and that
the relative frequencies of audio tokens for each word form type are preserved
across training and testing. Note that the plural form of a singular word or the
singular form of a plural word might be absent from the data. Table 1 reports the
number of word form types and the number of audio tokens averaged over the 10
folds for singular and plural words, broken down by whether the corresponding
plural or the corresponding singular appears in the training set.

Table 1. The number of word form types and the average number of audio tokens (and
standard deviation) across 10 stratified folds

Dataset Word form types Average audio tokens (SD)

Train 2062 675734 (1.26)

singular with plural  475 273893 (6.26)

singular without plural  979 243630 (9.10)

plural with singular  499 141214 (7.95)

plural without singular  109  16996 (4.81)

Test 2062  75082 (1.26)

singular with plural  475  30433 (6.26)

singular without plural  979  27070 (9.10)

plural with singular  499  15690 (7.95)

plural without singular  109   1888 (4.81)

Making sense of spoken plurals [13]
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3.4 Procedure

To evaluate the three kinds of predicted plural semantic vectors, we constructed
the gold standard semantic matrices Scca, Sfracss, and Sword2vec, each of which
contains row vectors for both singulars and plurals. The CCA and FRACSS
vectors for plurals were estimated with Equations (4) and (7), respectively. Using
the form matrix C, we calculated three mappings Fcca, Ffracss, and Fword2vec.
Applying (8), we then obtained the estimated vectors Ŝcca, Ŝfracss, and Ŝword2vec.

It is worth keeping in mind that the rows of the form matrix C are all distinct,
and that the total number of rows in the C matrix equals the number of audio
tokens in our dataset. In contrast, many rows of the semantic matrix S are dupli-
cated, with as many duplicates for a given noun type as there are tokens for that
noun type. As the estimated semantic vectors are estimates, the row vectors of Ŝ
are again all unique. However, if the mappings are of good quality, the estimated
semantic vectors for the audio vectors of the same word type are expected to be
highly similar.

We also note that because mappings are estimated for singulars and plurals
jointly, changing the semantic vectors of plurals will affect the value of F in Equa-
tion (8) and will therefore affect the semantic vectors predicted for singulars. In
other words, even though the form and meaning vectors of singulars are iden-
tical across the three datasets, the estimated singular vectors will be somewhat
different, depending on the quantitative properties of the plural semantic vectors.

We evaluated the quality of the estimated semantic vectors in two ways. First,
we calculated accuracy on both the training data and the test data. The top-N
accuracy of the model is defined as the percentage of the test items for which the
predicted vector is among the top-N vectors in terms of strength of correlation
with the targeted output vector.

Since the word types have highly unequal frequencies with a Zipf-like proba-
bility distribution, we also used the F1 score (the harmonic mean of precision and
recall) to gauge the quality of the mappings F and the different semantic vectors
for plurals that these mappings predict.

3.5 Results

3.5.1 Recognitions
Figure 5 presents top-N accuracy (for N =1, 2, …, 5) for training data (dark blue)
and test data (light yellow), for Φcca (left) and Φfracss (right). Unsurprisingly,
accuracy increases as the criterion for accuracy is relaxed by increasing N. For
N =5, Φcca is successful for up to 25% of the training tokens and 22% of the test

[14] Elnaz Shafaei-Bajestan, Peter Uhrig, and R. Harald Baayen
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tokens. For N =1, accuracy on training is 15% and around 13% for held-out data.
The drop in accuracy for test data as compared to training data is as expected.
What is important is that the reduction in accuracy is relatively small, an indica-
tion that the mappings are not severely overfitting the data.

Figure 5. Top-N accuracy of word recognition on the training set (dark blue) and on the
test set (light yellow) for CCA (left) and FRACSS (right). The small 1SE error bars
indicate that there is very little variability across the 10 cross-validation folds

Recognition accuracies are low. This is unsurprising, for various reasons.
First, it is worth noting that standard deep-learning speech recognition systems
also do not perform well on the task of isolated word recognition.5 It is for the
recognition of connected speech that deep learning models show truly impressive
performance.

Second, the audio tokens used in the present study have all been cut from the
corpus automatically based on the word boundaries identified during the forced
alignment process (see Section 2). There are many instances in which these cut-
points do not coincide with the exact word boundaries, even if the identification
of such boundaries was possible at all.

Third, the models are trained and tested on auditory data spoken by
numerous speakers, with no prior speaker normalization. The speakers come

5. Comparing the performance of LDL-AURIS with the performance of two Automatic Speech
Recognition (ASR) systems, DeepSpeech2 and Kaldi, on 98,883 audio tokens from the NewsS-
cape 2016 corpus, Shafaei-Bajestan et al. (2021) found that pre-trained Kaldi and pre-trained
DeepSpeech2 performed at 22% and 20%, respectively, while LDL-AURIS trained on far fewer
data performed at 12%.

Making sense of spoken plurals [15]
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from different age groups and genders in diverse environments, some of which
have background noise.

For the purposes of the present study, the relative performance for plural
semantic vectors of the Φfracss and Φcca is at the center of interest. A comparison
of the left and right panels of Figure 5 shows that Φcca outperforms Φfracss for
both training and test data.

Figure 6 spotlights the top 1 accuracy measure across 10 cross-validation folds
evaluated on the training sets and on the test sets for the three mappings Fcca,
Ffracss, and Fword2vec, using box and whiskers plots. The mapping using CCA
reaches a median accuracy of 14.91% on the training sets and 12.95% on the
test sets, very close to the mapping that uses the semantic vectors provided by
word2vec for plurals (15.05% and 12.95% for training and test respectively). The
mapping using FRACSS plural vectors falls behind the CCA plural vectors by a
4.34 and a 3.83 percentage-point difference in median accuracy on the training
and the test sets, respectively.

Figure 6. Comparison of the accuracy of CCA (blue), word2vec (light yellow), and
FRACSS (red), evaluated with a stratified 10-fold cross-validation design on the training
and the test sets. The left panel shows the box plots for all datasets crossed by methods.
The panels on the right zoom in on individual plots for improved readability. Each data
point represents one fold

[16] Elnaz Shafaei-Bajestan, Peter Uhrig, and R. Harald Baayen
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As shown in Figure 7, when the performance of the mappings is evaluated
with weighted average F1 scores,6 the mapping using CCA outperforms the
mapping using word2vec, which in turn outperforms mappings based on
FRACSS on the training and the test sets of all folds.

We also compared the accuracy of these mappings with mappings that were
set up with semantic matrices for which the row vectors were randomly permuted,
breaking the relationship between words’ forms and meanings. As variability
in model performance turned out to be very small (see Figure 5), models were
trained and tested on just the first fold. The reduction in accuracy and F1 scores on
the training and the test sets are reported in Table 2. Consistent with the previous
results, the reduction in performance under random permutation is larger for
CCA as compared to FRACSS for all dataset-metric pairs.

As a final check on the quality of the two implementations of plural concep-
tualization, we examined accuracy for four subsets of the data, defined by the
combinations of the singular and plural forms that were available to the model for
training. Figure 8 shows that accuracy was highest for singular tokens the plural
token of which also was encountered during training. The group with the second-
highest accuracy comprises plural tokens that have a singular token in the training
set. Accuracies are substantially lower for singular and plural tokens that were
not accompanied by a corresponding plural or singular token during training.
(For the counts of auditory tokens within each group, see Table 1 above). For
both conceptualization methods, recognition accuracy benefits from training on
tokens of both numbers. Comparing CCA (left panel) with FRACSS (right panel),
we can conclude that CCA accuracies are greater than those for FRACSS, except
for held-out plurals that have no corresponding singulars in the training dataset.

Table 2. Reduction in accuracy and in weighted averaged F1 score of LDL-AURIS on one
cross-validation fold when the relation between form and meaning is broken by
randomly permuting the rows of the semantic matrix

Model

Reduction in accuracy Reduction in F1 score

Training Test Training Test

FRACSS 0.091 0.088 0.074 0.073

CCA 0.135 0.126 0.093 0.088

6. A weighted averaged F1 score is the average of the F1 scores for all word types weighted by
the number of true instances for each word type.

Making sense of spoken plurals [17]
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Figure 7. Comparison between the weighted average F1 scores for the mappings using
CCA (blue), word2vec (light yellow), and FRACSS (red), evaluated with a stratified
10-fold crossvalidation design on the training and the test sets

In summary, higher accuracies and higher higher average F1 scores were
obtained with CCA compared to FRACSS, across both training and test data.

Figure 8. Within-group accuracy for different word groups. In group names, sg stands
for singular, pl for plural, w for with and w/o for without. A word in the sg w/o pl group is
a singular word whose plural form is not in the training set. CCA accuracies are greater
than those for FRACSS, except for held-out plurals that have no corresponding singulars
in the training dataset

[18] Elnaz Shafaei-Bajestan, Peter Uhrig, and R. Harald Baayen
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3.5.2 Errors
The confusion matrices in Figure 9 summarize the predictions of the models for
the items in the training set.7 Rows correspond to the number feature for the
target word: singular words are counted in the first row and plural words in the
second row of each matrix. The columns group words by the four combinations
of number and whether the lexeme is properly predicted. Errors are highlighted
in red and correct recognitions are highlighted in blue. In addition to the absolute
number of tokens, the percentage with regard to the sum of the row is given in
each cell. Training with plural vectors obtained with CCA gives rise to larger
numbers of correctly predicted target words in the plural as well as in the singular
group.

The two models rarely confuse number when they correctly predict the
lexeme. However, when a lexeme is not recovered correctly, the two models make
remarkably different kinds of errors. For plural vectors generated with CCA, the
predicted and targeted word types tend to match in terms of number. In contrast,
when plural vectors are generated using FRACSS, the model mostly predicts
plural forms irrespective of the target word’s number.

Overall, 81% of the predictions of the mapping using CCA match the target
in terms of number. This percentage reduces to only 50% for models with plurals
generated by FRACSS.8 Apparently, FRACSS introduces a bias for plural seman-
tics. From a methodological perspective, these findings point to the importance of
considering predicted plural vectors not just in isolation, but within the full noun
system that in addition to plurals also contains singulars.

Apparently, plural vectors generated by Φcca are better aligned with informa-
tion about number in the audio signal than is the case for plural vectors generated
by Φfracss. This suggests that the global perspective of FRACSS, which takes all
singular-plural pairs into account, rather than just those singular-plural pairs that
belong to a conceptual class and that share a shift vector, is suboptimal.

It is surprising that the FRACSS method, which is quite powerful as the
underlying linear algebra allows for various geometric modifications such as
scaling (stretching or shrinking) and rotation, performs somewhat less well than
CCA, a method that from a geometric perspective only implements shifts
between vectors. On the other hand, CCA needs to be informed about semantic
classes and assumes that these are given, but setting up these classes is not trivial.

7. The results on the test set are very similar and reported in the supplementary materials.
8. The estimated difference in proportions between groups at 0.308 is supported by a propor-
tions test (95% confidence interval of 0.306 and 0.309, x2(1)=140897, p≪ .0001).

Making sense of spoken plurals [19]
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Figure 9. Confusion matrices for the performance of LDL-AURIS with CCA (top) and
FRACSS (bottom) vectors on the training set. Correct predictions appear in blue and
wrong predictions appear in red. Percentages are normalized to the sum of rows.
Nsg = 517, 529, Npl =158, 204 for both matrices

3.6 An alternative approach

The models so far were built on the assumption that error vectors ϵ in Equa-
tions (3) and (6) are all measurement noise and reducible. Thus, audio-to-
semantic mappings were trained and evaluated using plurals predicted by the
CCA or the FRACSS conceptualization methods, which build plural vectors
without the error term.

Alternatively, one might assume that the error vectors in Equations (3) and
(6) are entirely word-specific semantic information and irreducible.9 In this case,
it would be appropriate to train the audio-to-semantic mappings using the plurals
predicted by CCA or FRACSS but to evaluate the mappings using the corpus-
extracted word2vec vectors, which include the error term. Accordingly, we eval-
uated the mappings by employing the corpus-extracted word2vec embeddings as
gold standard, and comparing the gold standard with semantic vectors predicted

9. We actually believe that the error term comprises both measurement noise and word-
specific knowledge.

[20] Elnaz Shafaei-Bajestan, Peter Uhrig, and R. Harald Baayen
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by the previously obtained form-to-meaning mappings Fcca and Ffracss. For this
evaluation, we used the data of Section 3.3. The word2vec vectors are brought
together as the rows of a matrix Sword2vec. We estimated plural vectors for the test
set for each of the ten models described in Section 3.3, and defined a plural vector
to be accurate if it was most correlated with the corresponding vector of Sword2vec.

Accuracies obtained from the second evaluation approach are reported in
Figure 10. They are slightly higher for FRACSS for Top 1 evaluation, and slightly
higher for CCA for Top 2–5 evaluation. Both of the trained mappings get approx-
imately equally close to the empirical word2vec plural vectors. This suggests that
neither CCA nor FRACSS plural vectors are very different from word2vec plural
vectors. The results provide further evidence for the observation by Shafaei-
Bajestan et al. (2022) that CCA and FRACSS vectors are generally similar to
word2vec vectors. In their study, plural vectors predicted by CCA and FRACSS
were compared with corpus-extracted plurals using cosine similarity as the
measure (a median cosine similarity of 0.71 for CCA and 0.75 for FRACSS).

These accuracies are within the range of accuracies observed in Figure 5,
which were obtained with CCA and FRACSS vectors as gold standard for eval-
uation. From this analysis, we conclude that the CCA, FRACSS, and empirical
vectors are all of very similar, and probably high quality. The low word recogni-
tion accuracy is not due to a lack of quality of these vectors, but to the enormous
variability in the speech signal and the noise in our data, which, as mentioned
above, also challenges state-of-the-art deep learning systems.

4. Study 2: Assessing the isomorphy of form and meaning with distance
measures

We have seen that within the framework of the DLM, by most of the measures
discussed in Section 3, semantic vectors conceptualized with Φcca enable a better
mapping between words’ audio and their meanings compared to Φfracss. In this
section, we compare the two conceptualization functions with a method that does
not depend on the assumptions of the DLM, including the assumption that the
form space and the semantic space can be transformed into each other simply
using linear mappings.

In what follows, we follow in the footsteps of Monaghan et al. (2014), and
investigate possible parallelism between the form space and the meaning space
using distance measures. Monaghan et al. reported that phone-based form simi-
larity (gauged with Euclidean distance and edit-distance measures) correlated
weakly (r ≈ 0.03) yet significantly with semantic similarity (gauged with the

Making sense of spoken plurals [21]
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Figure 10. Top-N accuracy (%) of mappings from audio to semantics, trained either with
CCA or FRACSS vectors, but evaluated with word2vec vectors as gold standard. The
small 1SE error bars indicate that there is very little variability across the 10 cross-
validation folds

cosine similarity measure between contextual co-occurrence vectors). They
observed correlations for monosyllabic words, uninflected lemmas, and
monomorphemic polysyllabic words.

We calculated, for all pairs of words, both phone-based and audio-based
measures of their form similarity. In parallel, we calculated the semantic similarity
for these pairs of words, using both the original word2vec vectors for plural
nouns, as well as plural vectors generated with FRACSS and generated with CCA.
For the calculations, the words from the test set of the first fold of the data
(see Section 3.3) for which phonemic information was also available were used
(N =60, 206, V =2057). Phone-based form similarities and semantic similarities
were calculated for pairs of word form types while audio-based form similarities
were calculated for pairs of audio tokens.

First, we calculated the Damerau-Levenshtein phone-based edit distance for
all pairs of word form types in our dataset, which unlike the dataset of Monaghan
et al. (2014), is restricted to singular and plural nouns. Thus, = 2,114,596

phone-based edit distance values were obtained. Second, the cosine distances10

10. The cosine distance zooms in on the angle between two vectors, ignoring differences in
length. The greater the angle between two vectors, the greater their cosine distance is.

[22] Elnaz Shafaei-Bajestan, Peter Uhrig, and R. Harald Baayen
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between the semantic vectors of these pairs of word form types were computed
using three different semantic vectors for plurals: the word2vec plural vectors,
the plural vectors obtained with FRACSS, and the plural vectors obtained with
CCA. We then calculated the Pearson correlations between these phone-based
edit distances on the one hand, and the cosine distances on the other hand.

Table 3. Correlations between phone-based and audio-based form distances and
semantic distances for three different semantic spaces: CCA, word2vec, and FRACSS. For
the audio-based analysis correlations averaged over many samples of audio tokens are
reported, with SD and the number of trials N in which the correlation was significant at
α =0.05

Form distances Statistic CCA Word2Vec FRACSS

phone-based r 0.061 0.041 0.038

audio-based r̄ 0.019 0.015 0.007

SD 0.003 0.003 0.005

N 1000 1000 908

The upper part of Table 3 presents the correlation r between the form and
meaning distances for all pairs of word form types. These correlations are smallest
for FRACSS, intermediate for word2vec, and greatest for CCA (all p< .0001). The
correlations observed for vectors are of the same order of magnitude as the corre-
lations reported by Monaghan et al. (2014). For a random permutation of the
word2vec vectors, the correlation was reduced by a factor of 10 to 0.004. Our
replication study shows, first, that there is indeed some isomorphism between
the form space and the semantic space; and second, that the observations of
Monaghan et al., which were based on uninflected words, generalize to plural
inflection. Importantly, this analysis shows that, consistent with the results
reported in the previous section, CCA-based semantic vectors provide stronger
correlations between form distances and semantic distances than FRACSS-based
semantic vectors.

To assess the isomorphy between the form space and the semantic space using
the speech signal instead of phone-based representations, we again compared all
pairs of words, assessing their semantic distance with the cosine distance, and
evaluated the dissimilarity of their speech signals by means of the Euclidean
distance between their C-FBSF form vectors, which were calculated from the

Making sense of spoken plurals [23]
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speech signal as described above in Section 3.1.11 As can be seen in Figure 11,
audio-based distance increases with phone-based edit distance. As expected, the
variability in the audio-based distance as a function of phone-based distance is
huge.

To avoid comparing audio tokens of the same word form type, which is
likely to inflate similarity compared to a phone-based analysis in which types
do not have non-identical replicates, we randomly sampled for each word type
one audio token and then calculated the form distance for each pair of the
selected tokens. Subsequently, the correlation between the form distances and
the semantic distances of all 2, 114, 596 pairs of word types was computed. This
procedure was repeated 1000 times. The lower part of Table 3 presents summary
statistics for the audio-based comparisons of form and meaning. The average
correlations across trials r̄, the standard deviations SD, and the number of trials N,
out of 1000 trials, for which the correlation was significant at α= 0.05 are reported.

Figure 11. Auditory Euclidean distance as a function of phone-based edit distance

11. By way of example, the list of the top 10 nearest neighbors of an audio token of the word
positions includes two other audio renditions of the same word form positions, one audio token
of the singular form position, four tokens with similar word-initial phones (protester, process,
procedures, and perspective), and three tokens with similar sounding word-final syllables (infor-
mation and conditions).

[24] Elnaz Shafaei-Bajestan, Peter Uhrig, and R. Harald Baayen
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Correlations are greatest when semantic vectors are estimated with CCA, and
weakest when they are estimated with FRACSS. Randomization of the word2vec
semantic vectors resulted in reduced correlations (M= 0.003, SD =0.003). The
number of trials in which a significant correlation was observed decreased from
1000 to 744.

The audio-based correlations are substantially lower than the phone-based
correlations. This is unsurprising, as the phone-based analysis does not take into
account the huge variability in the speech signal and the highly reduced forms
that speakers use in daily speech (see, e.g., Johnson, 2004). The small magnitudes
of these correlations show that evaluations of the similarities between form and
meaning run the risk of overestimating these similarities if form representations
are based on letters or phones. At the same time, it is surprising that significant
correlations, however small, can be detected with this method for real, highly
diverse, and noisy speech.

Importantly, our audio-based evaluation of the isomorphism between form
and meaning provides further support for the possibility that plural semantic
vectors conceptualized with Φcca provide a better match with plural forms
compared to Φfracss. Above, we showed that Φcca also does better than Φfracss at
predicting meaning from form, using a linear mapping within the framework of
the DLM. The present observations show that this result is unlikely to be an arti-
fact of this linear mapping. Plural vectors created with Φcca better mirror similar-
ities that exist in the form space.

5. General Discussion

Shafaei-Bajestan et al. (2022) showed that shift vectors, which represent the
change in meaning when going from a noun’s singular to its plural, cluster by the
semantic class of the base word. Apparently, modeling the semantics of plurality
in English with a single shift vector in semantic space, does not do justice to
the intricacies of the English noun plural. Likewise, formal accounts of plurality
based on abstract features such as [+plural] lack precision. From a typological
perspective, languages such as Swahili and Kiowa have grammaticalized
semantic-class-based differences in their noun classes, and languages such as
Mandarin Chinese, Japanese and Korean make use of classifiers that are often
linked to semantic classes, whereas in English, systematic differences between
words’ referents are present only in the semantics as ‘soft constraints’ (see also
Corbett, 2000).

The observations in the previous paragraph raise the question of how to
account for the conceptualization of plurals. Do we have to construct different

Making sense of spoken plurals [25]
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plural shift vectors for each semantic class (CCA)? Or is it possible to predict a
noun’s plural meaning from a general rule that is informed by all singular and
plural nouns in the language (FRACSS)?

Shafaei-Bajestan et al. (2022) addressed this question using the Discrimina-
tive Lexicon Model, and observed that semantic vectors for plurals generated
with CCA were better aligned with triphone-based form vectors than plural
vectors generated using FRACSS. The present study investigated whether this
result generalizes to spoken language. In Section 3, using the form vectors calcu-
lated from the speech signal of a large number of audio tokens extracted from the
NewsScape resource, we observed that the semantic vectors generated by CCA
can be predicted with greater precision from their audio than is possible for plural
vectors generated by FRACSS. This holds both for training data and test data.
Furthermore, random pairing of form and meaning vectors degrades accuracy
more for CCA than for FRACSS.

The superior alignment of the CCA vectors with the form space, compared
to FRACSS, received further support in Section 4 from a series of analyses that
do not depend on the linear mappings of the Discriminative Lexicon model, and
instead follow up on a study by Monaghan et al. (2014). For each pair of word
forms in our dataset, we calculated their distance from one another in semantic
space as well as their distance from one another in form space (using both phone-
based and audio-based distance measures). Correlations of the distances in form
and meaning were stronger for plural vectors obtained with CCA compared
to plural vectors obtained with FRACSS. We can conclude that approximating
the conceptualization of noun plurals in English with CCA likely offers a more
precise window on the processing of English noun singulars and plurals in the
mental lexicon, the reason being that a better alignment of form and meaning
implies greater regularity and hence facilitation of lexical processing.

It is surprising that FRACSS does not perform as well as CCA, as the linear
mapping that FRACSS makes use of is more powerful than the simple vector
addition that CCA employs. In fact, given the common assumption that plural-
ization is a unitary operation, a linear mapping as proposed by FRACSS makes
sense: A global singular-meaning-to-plural-meaning mapping is informed by all
the singular and plural nouns experienced by the language user, and can be
expected to make optimal use of the shared semantic similarities that are
supposed to exist between all singular nouns and between all plural nouns.
However, careful inspection of the distributional semantics of English noun
plurals shows that in this language, the semantics of pluralization is not as
uniform as previously supposed. Conceptualization of English plurals is much
more locally determined. It appears that, taking into account how nouns in
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distant semantic classes are pluralized is therefore detrimental to prediction accu-
racy.

When comparing FRACSS with CCA, however, it should be noted that CCA
takes for granted that information is available about which semantic class a
lexeme belongs to. As semantic classes are not straightforward to induce in a
bottom-up manner – we made use of WordNet – CCA is given much more refined
information to work with compared to FRACSS. In terms of model complexity,
CCA is therefore likely to be the more complex model. But this increased
complexity appears to be justified by greater prediction accuracy.

We conclude by placing the present study in the wider context of research on
spoken morphology. The data considered in our study are restricted to lexemes
that take {S} as the exponent for plurality. Recent studies on English word-final
/s/ have shown that the acoustic duration of /s/ varies systematically with the
semantics realized with the /s/ (Plag, Homann, & Kunter, 2017; Tomaschek, Plag,
Ernestus, & Baayen, 2019). In other words, an exponent that in standard theo-
ries is assumed to be realized in exactly the same way, independent of its func-
tion, is now known to be articulated in ways that reflect its function. One of the
functions of /s/ considered in these investigations is the realization of plurality
on nouns. The present study provides evidence that pluralization for English
nouns is not a monolithic and general semantic operation, but varies with the
semantic class of the base word. Importantly, we have shown that these differen-
tiated plural semantics are aligned with words’ audio signal. The way in which
plurals are articulated therefore depends on the semantics of their base words.
All that we have accomplished in the present study is demonstrate this fact. In
what way these different class-specific semantics are realized in the speech signal
is at present unknown, and is a topic for further research. A better understanding
of the phonetic realization of English plurals may further our understanding of
why deep learning models in natural language processing and artificial intelli-
gence, which are superbly tuned to the distributional statistics of language use,
are so successful. This, in turn, may contribute to enhancing models of lexical
processing in the mental lexicon.
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