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How direct is the link between words
and images?

Hassan Shahmohammadi, Maria Heitmeier,
Elnaz Shafaei-Bajestan, Hendrik P.A. Lensch, and
R. Harald Baayen
University of Tübingen

Günther et al. (2022) investigated the relationship between words and
images in which they concluded the possibility of a direct link between
words and embodied experience. In their study, participants were presented
with a target noun and a pair of images, one chosen by their model and
another chosen randomly. Participants were asked to select the image that
best matched the target noun. Building upon their work, we addressed the
following questions. 1. Apart from utilizing visually embodied simulation,
what other strategies subjects might have used? How much does this setup
rely on visual information? Can it be solved using textual representations?
2. Do current visually-grounded embeddings explain subjects’ selection
behavior better than textual embeddings? 3. Does visual grounding improve
the representations of both concrete and abstract words? For this aim, we
designed novel experiments based on pre-trained word embeddings. Our
experiments reveal that subjects’ selection behavior is explained to a large
extend on text-based embeddings and word-based similarities. Visually
grounded embeddings offered modest advantages over textual embeddings
in certain cases. These findings indicate that the experiment by Günther et
al. (2022) may not be well suited for tapping into the perceptual experience
of participants, and the extent to which it measures visually grounded
knowledge is unclear.

Keywords: visual grounding, word embeddings, grounded cognition

1. Introduction

How do knowledge and specifically the knowledge of word meanings emerge? For
more than 2000 years, it was thought that mental representations of meanings
at least resemble the perceptual states producing them (Barsalou, 1999; Zwaan

https://doi.org/10.1075/ml.22010.sha | Published online: 11 January 2024
The Mental Lexicon ISSN 1871-1340 | E‑ISSN 1871-1375
Available under the CC BY 4.0 license. © John Benjamins Publishing Company

https://doi.org/10.1075/ml.22010.sha
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  G
ue

st
 (

gu
es

t)
 IP

:  
13

4.
2.

72
.2

41
 O

n:
 S

at
, 0

3 
F

eb
 2

02
4 

10
:1

6:
51

and Madden, 2005). Though heavily debated in the early to mid 20th century
(overview in Barsalou, 1999), grounded cognition has regained acceptance over
the last decades (Barsalou, 2010) and is especially prominent in cognitive linguis-
tics (e.g. Lakoff, 1987; Langacker, 1999). It is supported by a range of empirical
studies reporting evidence in favour of an embodied view of cognition (e.g.
Simmons et al., 2005; Martin, 2007; Goldstone, 1995; Solomon and Barsalou,
2001, 2004; Barsalou, 2008).

Nevertheless, over the last 30 years, computational models of meaning called
Distributed Semantic Models (DSM) have emerged, which derive meaning repre-
sentations entirely from text corpora, i.e., from language alone. They are based on
the hypothesis that words occurring in the same context are semantically related
(Harris, 1954). Prominent examples are Latent Semantic Analysis (LSA; Landauer
and Dumais, 1997), word2vec (Mikolov et al., 2013) and GloVe (Pennington et al.,
2014). DSM have been applied widely and successfully not only in Natural
Language Processing (NLP; e.g. Wang et al., 2019), but also in cognitive science
(overview in Günther et al., 2019). For example, they have been shown to be able
to predict aspects of brain imaging data such as fMRI and EEG (Bulat et al.,
2017; Hollenstein et al., 2019; Anderson et al., 2015), explain variance in a range
of behavioural data (Mandera et al., 2017; Westbury, 2014; Westbury and Hollis,
2019; Marelli and Amenta, 2018), and even reflect relations between colours and
geographical locations respectively (Abdou et al., 2021; Louwerse and Zwaan,
2009).

All these purely text-based methods, while providing a practical way for
dealing with largescale data, suffer from an obvious limitation often referred
to as the symbol grounding problem (Harnad, 1990). That is, the meanings of
words are solely based on other words without links to the outside world. More-
over, they also have practical problems; for example, because of the fundamental
assumption of DSM, antonyms belonging to the same topical class (e.g., small and
big) typically end up very close together in purely text-based vector spaces (see,
e.g., Shahmohammadi et al., 2021, and references cited there). As a consequence,
applications for, e.g., sentiment analysis, cannot well distinguish between “it was
a good movie” and “it was a bad movie”.1

These issues, as well as the empirical findings regarding embodied views of
cognition, have sparked interest in grounding word meaning in experience. One
approach to gain insight into speakers’ conceptual knowledge and to obtain such
representations is to simply ask participants what they associate with a number
of concepts. McRae et al. (2005) and Buchanan et al. (2019), among others, asked
participants to provide perceptual, functional, and encyclopedic features for a

1. For recent progress for sentential negation, see Anschütz et al. (2023).

[2] Hassan Shahmohammadi et al.
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range of target words, resulting in so-called feature norms. Lynott et al. (2020)
targeted the sensorimotor experience with words more specifically by asking
participants to rate words on 11 sensorimotor dimensions, including auditory,
visual, and interoceptive experience, but also the extent to which they involve
body parts such as arms, legs, or heads. Both of these norms have been useful
in cognitive science and used to, e.g., capture the semantic richness of concepts
in memory (e.g. Grondin et al., 2009; Buchanan et al., 2019). Nevertheless, such
norms do not necessarily mirror mental representations exactly, as only especially
salient features may be recalled or only the features of a particular memory might
be elicited (e.g. Cree and McRae, 2003; Barsalou, 2003; Buchanan et al., 2019).

A second approach has been to utilise image data to integrate visual infor-
mation into word embeddings. Visual information can be extracted from images
by means of image classification models. From these models, features can be
extracted representing a condensed, distributed representation of an image.
Baroni (2016) differentiates between two methods of grounding textual informa-
tion in vision: multimodal fusion and cross-modal mapping.

Multimodal fusion methods range from simple concatenation (Kiela and
Bottou, 2014; Rotaru and Vigliocco, 2020a; Utsumi, 2022), to projecting both
into a shared space (Silberer and Lapata, 2014; Hasegawa et al., 2017; Kiela et al.,
2018; Chrupaɫa et al., 2015), or aligning textual embeddings with image infor-
mation (Shahmohammadi et al., 2021; Bordes et al., 2019). Multimodal fusion
approaches are successful in NLP (Bruni et al., 2014; Shahmohammadi et al.,
2021; Bordes et al., 2019), as well as showing some promise when it comes to
predicting cognitive phenomena (e.g. Bulat et al., 2017; Lazaridou et al., 2016,
2017; De Deyne et al., 2021; Anderson et al., 2015; Rotaru and Vigliocco, 2020a;
Utsumi, 2022). However, there remain a number of open questions, such as how
much image information should be allowed to be fused into textual embeddings,
whether image information should be linked to individual words or words in
context, and how much grounding helps when a lot of textual training data is
available. These questions have been explored extensively in Shahmohammadi
et al. (2023, henceforth Shahmohammadi et al.). They propose a new method
for grounding textual embeddings in vision. This method, a multimodal fusion
model (Baroni, 2016), is trained on full image descriptions instead of single
words. Hence, it leverages both the textual context and all visual information.
After the training phase, the algorithm can be used to obtain a visually grounded
representation of any single target word even if it has not been seen during
training (so-called “zero-shot”). Accordingly, we will refer to this model as “ZSG”,
Zero-shot Grounded, for the remainder of this paper. In Shahmohammadi et al.,
ZSG was evaluated on a range of different tasks. This allowed the authors to
investigate several questions related to how much visual information should be

How direct is the link between words and images? [3]
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allowed to fuse into textual embeddings, how much training on full sentences
instead of single words benefits the grounding process, and finally, how the
amount of textual training data available for a particular task influences the
benefit of visual grounding.

Cross-modal mapping, on the other hand, involves mapping between visual
and textual information, for instance, to model how visual concepts can be trans-
lated into language. One example of such a model is proposed in a study by
Günther, Petilli, Vergallito, and Marelli (2020), henceforth GPVM, who employ a
simple linear mapping to map from textual to visual information. Their model is
designed to account for the grounding of both concrete and abstract nouns. They
trained a linear mapping to map from language-based textual embeddings to
visual embeddings of concrete nouns. Then, they mapped the text embeddings of
a set of target nouns, including unseen concrete and abstract nouns, to the vision
domain. They selected the image that was most similar to the generated image
vector as the image that corresponds to the target noun. Thus they could predict
images also and critically for unseen abstract nouns. In the following experiments,
the images provided by this setup were compared with random control images
by asking participants to select the image which best represented the target noun.
They concluded that their model was able to account for the visual grounding of
abstract words but that concreteness was nevertheless a significant predictor of
model performance, i.e. the model performed much better on concrete than on
abstract words.

GPVM’s model and subsequent behavioural experiments raise a number of
questions and issues of how textual representations should be grounded in vision,
which deserve further investigation. The model shows how knowledge based on
language can be translated into knowledge based on vision. However, previous
work suggests that rather than mapping from one modality to the other,
combining the two sources of information into a multimodal representation
might be preferable. Notably, Shahmohammadi et al. conducted various experi-
ments comparing cross-modal mapping accounts such as the one by GPVM to
more sophisticated ones of multimodal fusion and found that a simple linear
mapping from language to vision (which they call a “Word-Level” model) results
in representations which are much worse at predicting human relatedness and
similarity judgments compared to a number of different multimodal fusion archi-
tectures (compared to ZSG, their best model, the Word-Level model was on
average less accurate by 30 percentage points). In other words, the vision repre-
sentations predicted from textual embeddings in a model similar to the one in
GPVM do not perform well in tasks assessing words’ semantic similarity and
relatedness (as perceived by human raters, such as the MEN task, Bruni et al.,
2014).

[4] Hassan Shahmohammadi et al.
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Nevertheless, the behavioural data collected by GPVM provides insights into
speakers’ semantic representations of words, specifically highlighting the role of
visual information available in their experiments. In the present study, we there-
fore take the behavioural experiment by GPVM as point of departure and conduct
novel computational experiments to evaluate the multimodal embeddings by
Shahmohammadi et al. compared to a baseline of simple textual embeddings.
This is especially worthwhile since both the model underlying the behavioural
experiment of GPVM and the ZSG model claim to be able to ground unseen
abstract words into vision. Using current multi-modal embeddings to model
participants’ behavior provides useful insights for analyzing the interplay between
vision and language in human cognition.

In contrast to GPVM, who used their behavioural experiment as a simple
verification of their model, we want to model participants’ responses. As a first
step, we need a task analysis, working out what participants might actually be
doing in the experiment. GPVM explicitly state that their model is not a
processing model, i.e., they do not describe how and whether participants in their
experiment actually access visual information. For instance, it is unclear whether
GPVM infer from their experimental results that abstract words evoke images in
the mind, which subsequently might influence lexical processing. However, their
mapping model appears to suggest that participants translate language represen-
tations to visual representations in order to solve the task of which presented
image better matches the presented target word.

A number of both behavioural and neuropsychological studies has explored
to what extent humans actually generate mental images in knowledge retrieval. It
was found, for example, that perceptual characteristics (e.g., size) best accounted
for verification times and errors. This has been taken to indicate that participants
simulated concepts visually to verify their properties (Solomon and Barsalou,
2004). Further evidence comes from lesioning studies: it was found that damage
to certain areas in the brain increased the probability of losing categories relying
on that area. For example, if visual areas are damaged, patients are more likely
to lose the animal category since it relies on visual processing (overview in
Barsalou, 2008). However, this is rarely interpreted as providing evidence for
concrete images being created “inside the brain”. “[T]he claim is not that there
are pictures in the mind. Rather, the claim is that traces of visual and other
experiences are (partly) reactivated and recombined in novel ways by associated
words” (Zwaan and Madden, 2005, p. 242). Or, in the words of Barsalou (1999,
p. 582), “[perceptual symbols] are records of the neural states that underlie
perception”. And indeed, Solomon and Barsalou (2004) found that participants
only used perceptual simulation in a feature verification task if the task could not
be solved based on association alone (but see Barsalou et al. (2008, p.267): in a

How direct is the link between words and images? [5]
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task where participants were presented with words for 5 seconds, and only then
asked whether the word applied to an image that was next presented, involve-
ment of the simulation system was found).

In the present paper, therefore, we aim to answer three questions:

1. How can we explain the data of GPVM without assuming that participants
generate mental images?
Specifically, we propose that rather than actually translating textual repre-
sentations into visual representations, as suggested by the model of GPVM,
participants might identify the objects in the images and associate the object
names with the target word. The image with closer associations to the target
word would then be selected as the image that better fits the target word. In
GPVM, similarity judgments appear to take place at the level of visual simi-
larity only. We on the other hand propose that rather than at the visual level,
similarity judgments occur within a semantic space influenced by our under-
standing of words through their co-occurrence and potential visual attrib-
utes. For example, in one of the examples by GPVM (see Table 1), the model
prediction shows an image with three children, while the other random image
depicts a green plant. The target word is “childhood”. Based on the objects
“children” and “plant” it can be predicted that participants will choose the
image depicting “children”, as it is clearly more associated with “childhood”
than “plant”. Solving the task at hand can therefore in principle be accom-
plished without ever generating an internal image of “childhood”.

2. As discussed above, previous research nevertheless indicates that word
embeddings grounded in vision are better at predicting behavioural data
than purely textual embeddings (e.g. Bruni et al., 2014; Shahmohammadi
et al., 2023). Our understanding of the task still warrants participants to make
comparisons between words (albeit in semantic rather than in visual space),
and here, it will be interesting to see whether their responses are best
predicted by purely textual (GloVe/Word2Vec; Pennington et al., 2014;
Mikolov et al., 2013) or by the multimodal embeddings of Shahmohammadi
et al. (2023).
Thus, assuming that the alternative explanation proposed above finds
support, a central question remains: Is participants’ behaviour best accounted
for by purely textual or multimodal word embeddings?

3. The last question relates to the treatment of abstract words in the process
of visual grounding. Abstract words are differentiated from concrete words
by the (un)availability of their denotations to the human senses. Concepts
become gradually more abstract as they are separated further from sensible
physical entities and become more associated with mental states (Barsalou,

[6] Hassan Shahmohammadi et al.
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2003). Evidently, obtaining images for an abstract word such as malice is
much more difficult, if at all possible, than for a straightforwardly concrete
word such as apple. Accordingly, image corpora usually provide images exclu-
sively for common concrete objects. Nonetheless, some abstract concepts can
be elicited from the contextual situations in which these objects occur.
In the grounding approach by Shahmohammadi et al. (2023), initial
grounding takes place for concrete words, after which other words, including
abstract words, can also be grounded using zero-shot learning. They show
that zero-shot learning of visual grounding is highly effective, not only for
concrete words but also for abstract words. In this study, we ask: (1) Does
this finding replicate using the data of GPVM? If so, (2) Does the indirect
grounding of abstract words afford a better understanding of the experi-
mental results reported by GPVM?
These results are particularly interesting given the extensive evidence from
case reports and behavioral and neural studies suggesting that abstract and
concrete words are processed differently, involving overlapping but distinct
brain regions (see Montefinese, 2019; Mkrtychian et al., 2019, for reviews).

The rest of the paper is structured as follows: in Section 2 we first introduce in
detail the model and experiment presented by GPVM, followed by a descrip-
tion of the grounding model of Shahmohammadi et al. Subsequently, in Section 3
we model the experiment utilizing both textual and grounded word embeddings,
aiming to answer the three questions formulated above. In Section 4 we discuss
our results.

2. Methodology

This section details the model and the behavioral experiment by GPVM and and
briefly explains the ZSG grounding approach proposed by Shahmohammadi et al.

2.1 Materials from Günther et al. (2022)

GPVM proposed a grounding model that combines vision and language infor-
mation. It maps textual representations (obtained from a pre-trained Word2Vec-
cbow model, Mikolov et al., 2013) onto image vectors (obtained from VGG-F, a
pre-trained image classification model, Chatfield et al., 2014) via a single linear
mapping (see Figure 1a). It is first trained on a set of isolated words for which
images are available in ImageNet (Deng et al., 2009) and later tested on both
concrete and abstract words which did not occur in the training set. For instance,

How direct is the link between words and images? [7]
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a. Cross-modal mapping model by Günther et al. (2022)

b. Multimodal fusion model by Shahmohammadi et al. (2023)
Figure 1. Comparison of the cross-modal mapping model by Günther et al. (2022) and
the multimodal fusion model proposed by Shahmohammadi et al. (2023). The latter
model takes the context into account and first applies the mapping matrix M to the
textual embeddings of all words in the context. Then, it applies a contextualized sentence
encoder to predict the image vector

it is first trained to predict an image vector of a dog, given a word vector of
dog. The trained model is then used to generate visual representations for unseen
words including abstract words such as jealousy or childhood.

GPVM trained two versions of their model: a prototype model, where for
each word, the image representations of 100 to 200 images (depending on how
many were available in ImageNet, Deng et al., 2009) were averaged to obtain a
“prototype” representation, and an exemplar model, for which the model was
trained on 20 different image representations per word.

GPVM tested their model by predicting image representations for a range of
both abstract and concrete nouns. Since the model is not able to actually generate
images, they simply selected existing images whose representations were as close
as possible to the predicted image representation. For the exemplar model, they
straightforwardly selected the image from the set of training images closest to the
predicted image representation. For the prototype model, on the other hand, they
first selected the prototype image vector closest to the predicted representation

[8] Hassan Shahmohammadi et al.
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a. Prototype model

b. Exemplar model

Figure 2. Training and retrieval procedures in the prototype and exemplar models in
Günther et al. (2022). t indicates textual embeddings, v image representations as
generated by VGG-F (Chatfield et al., 2014) and p prototype image representations.
Images are for illustration purposes only

How direct is the link between words and images? [9]
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and then selected the training image closest to this prototype image vector. The
two training and retrieval strategies are visualised in Figure 2. Examples of gener-
ated (selected) images can be seen in the center column of Table 1.

In their first two experiments, GPVM asked participants to select one of two
images for each of the abstract and concrete nouns: either the image predicted
by the model, or a random control image (see Table 1 for examples of predicted
and random control images). Two variables were controlled for: the concreteness
(concrete vs. abstract) of the nouns (Brysbaert et al., 2014), as well as the number
of semantic neighbours which had an associated image in ImageNet (visual neigh-
bours). Visual neighbours are divided into no ( far condition), few (near) and
many visual neighbours (maximum).

The participants selected the predicted images above chance level for
concrete nouns and abstract nouns with many visual neighbours, and for the
exemplar model also for abstract nouns with no visual neighbours. Both concrete-
ness and visual neighbours are correlated, and they were both found to be predic-
tive of the participant’s performance only in the prototype model: the more
concrete the noun, and the more visual neighbours it had, the more likely the
participants were to pick the image predicted by the model. These two variables
failed to be predictive for the exemplar model. GPVM propose that a possible
reason for this is that the exemplar model, being presented with many images
for each word instead of just a single average representation as in the prototype
model, is able to pick up more “idiosyncratic visual information” than the proto-
type model in the abstract and far conditions, thereby removing any effect of
concreteness and visual neighbours. By further disentangling the variables of
visual neighbours and concreteness in a third experiment with the prototype
model where both were represented as continuous variables, the authors found
that only concreteness was significant at predicting participants’ accuracy, but not
the number of visual neighbours. They, therefore, concluded from their exper-
iment that (a) it is possible to predict image representations for unseen words
from a purely language-based representation even for abstract words, and (b) that
concreteness is a significant, graded predictor of model performance. This result is
interesting insofar as the model relies on visual neighbours for predicting images
for unseen words but its performance is nevertheless not significantly influenced
by the number of visual neighbours.

In the present study, we restricted ourselves to data from experiments 1 and 2.
They included 53 and 57 participants, respectively. In both experiments, partici-
pants were presented with 115 items (5 conditions with 23 items each). Addition-
ally, they included ten catch trials where the target and random control images
were selected manually. Target images were generated by their prototype and
exemplar models as described above, while the control images were picked

[10] Hassan Shahmohammadi et al.
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Table 1. Examples of predicted (by the prototype model) and random control images for
target words from various conditions of concreteness and visual neighbours. Table adapted
from Günther et al. (2022), all images replaced by visually similar public domain images

Condition
Target
word predicted image Random control image

concrete/
maximum

stallion

concrete/
near

scout

concrete/far aspirin

How direct is the link between words and images? [11]
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Table 1. (continued)

Condition
Target
word predicted image Random control image

abstract/
near

childhood

abstract/far jealousy

randomly from a set of images not included in the target images. Further details
on the experimental materials can be found in Günther et al. (2022).

2.2 Model from Shahmohammadi et al. (2023)

Contrary to GPVM, the model from Shahmohammadi et al. takes the textual
context of words into account in the grounding process. As illustrated in
Figure 1b, they use image-caption pairs from an image captioning dataset (Lin
et al., 2014). This dataset contains images paired with multiple human-annotated
descriptions in the form of sentences. For example, instead of having the word dog
associated with different pictures of dogs, they have access to multiple descrip-
tions of scenes depicting dogs in various situations. Example sentences from their
training data are a dog leaping into the air to catch a frisbee and two dogs poking
their heads through curtains at windows. In the process of visually grounding,
Shahmohammadi et al. use all the words in such sentences. As a consequence,
words are still ‘aware’ of their textual co-occurrence patterns, allowing the model
to predict the image vectors with higher fidelity. In what follows, we describe their
proposed model in more detail.

For any textual word vector ti (e.g., from GloVe, Pennington et al., 2014),
the goal is to train a linear alignment/mapping M to visually ground ti as gi =
ti · M, where gi denotes the visually grounded version of ti. The alignment M
ideally should: (a) preserve the essence of the statistical semantics captured from

[12] Hassan Shahmohammadi et al.



  G
ue

st
 (

gu
es

t)
 IP

:  
13

4.
2.

72
.2

41
 O

n:
 S

at
, 0

3 
F

eb
 2

02
4 

10
:1

6:
51

textual corpora, and (b) align the textual word vectors with their corresponding
visual features in images (Shahmohammadi et al., 2021, 2023). Given the proper-
ties of linear transformations, the grounded word vector gi still respects the textual
vector space while being informed about its corresponding perceptual properties
in images.

The Microsoft_COCO_2017 dataset (Lin et al., 2014) was used to train such
an alignment. This dataset is split into 118k train and 5k validation samples,
with each sample consisting of a single image along with five different captions
describing the image. Unlike many previous approaches (Collell Talleda et al.,
2017; Günther et al., 2022), according to which a single textual word vector is
mapped into its associated image features, Shahmohammadi et al. argue that
textual context should be taken into account and not discarded, as it contains
valuable information about the specific properties of images. For instance, instead
of learning a model to map from the word dog to an image vector of a dog, their
model maps a whole sentence such as a dog is playing in the grass into its asso-
ciated image features. By taking the context the grass in the image caption into
account, the model is given the opportunity to learn about the grass and to disso-
ciate the dog from the grass. Each word vector is, therefore, aware (connected) of
(to) its textual context while being aligned with its visual features. Here, we note
that also the images are complex and seldom contain only a single isolated object.
We also note that when presented with photographs, human viewers typically
fixate at many different locations (Castelhano and Rayner, 2008). For complex
pictures presented for 12 ms, the mean number of fixations can be as large as 32
(Cronin et al., 2020). Instead of taking human image interpretation as wholistic
and undifferentiated, we take image understanding to be a rich and diversified
process in which multiple objects in an image are scanned and interpreted.

For training the linear alignment/mapping M, first, all the textual word
vectors are piped through the alignment M. Then, a contextualized Encoder
(e.g., LSTM, Hochreiter and Schmidhuber, 1997) produces a single representation
vector for the whole sentence while taking all the words and their relative order
into account. The contextualized encoder is trained to map the representation of
the whole sentence to the image features. In this setup, the encoder provides feed-
back on how words co-occur and how they should be rearranged to be aligned
with the image features. After training the model, the trained alignment M is used
to ground all the textual word vectors, including the word vectors of abstract
words. That is, given any textual word vector ti, its visually grounded version gi is
easily computed as gi = ti· M. In this way, they created a visually grounded version
of a given textual word embedding model.

Shahmohammadi et al. evaluated their grounded embeddings on word simi-
larity/relatedness benchmarks, which have been commonly used for evaluation

How direct is the link between words and images? [13]
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of multi-modal embeddings (Park and Myaeng, 2017a; Kiros et al., 2018; Kiela
et al., 2018; Collell Talleda et al., 2017). These benchmarks measure the related-
ness/similarity of word pairs based on human-annotated scores. They used the
following datasets for evaluation: WordSim353 (Finkelstein et al., 2001), MEN
(Bruni et al., 2014), SimLex999 (Hill et al., 2015), Rare-Words (Luong et al., 2013),
SimVerb3500 (Gerz et al., 2016), and MTurk771 (Halawi et al., 2012). Even though
each of these benchmarks evaluates words’ meaning from a particular perspec-
tive, their grounded embeddings boosted the mean score of GloVe (Pennington
et al., 2014) textual embeddings across all benchmarks by almost 7 percentage
points (56.7% to 63.6%). They further explored the benefit of grounding in further
detail, leveraging from the SimLex999 dataset. This dataset categorizes words
into different categories, such as ‘highly abstract’ and ‘highly concrete’. Their
grounding approach is beneficial for both concrete and abstract words and boosts
results in other categories (e.g., verbs and adjective) as well (see Shahmohammadi
et al., 2023, for further details).

While both Shahmohammadi et al. and GPVM apply a linear mapping to the
textual embeddings, the former argues that bridging the gap between language
and vision solely using a linear transformation is not ideal. They carried out
multiple experiments with increasing complexity in terms of technique and
network architecture. They concluded that the right balance is necessary to obtain
high-quality embeddings that perform well on word similarity tasks. Their
simplest approach, which they refer to as ‘Word-Level’, is similar to the model
by GPVM in which textual word vectors of words in isolation (e.g., dog) are
mapped to corresponding image vectors through a linear transformation. The
grounded embeddings are then constructed by mapping the textual word vectors
through the trained linear mapping. Evaluation on various word similarity bench-
marks (e.g., MEN, Bruni et al., 2014), revealed that embeddings obtained in this
way underperform severely (by > 30 percentage points) compared to purely
textual embeddings. Applying very deep and complex models (e.g., applying
multiple layers of LSTMs or transformer-based models (Kenton and Toutanova,
2019) for the mapping M) also resulted in a drop in performance. The right
balance in terms of the depth and complexity of the network is therefore neces-
sary. For further implementation details about their model and analysis, see
Shahmohammadi et al. (2023).

2.3 Procedure

In order to clarify whether participants associated the target noun with object
names depicted in the images rather than generating mental images and basing
their decisions on comparisons of these images, we first extracted the names of

[14] Hassan Shahmohammadi et al.
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Figure 3. In Günther et al. (2022), participants are presented with two images (predicted
and random control image) and a target word (here: childhood). They then have to select
the image which better fits the target word. We calculate five measures: First, we use a
CNN to automatically extract the object names visible in the predicted and random
images and count them (Predicted Image #Objects and Random Image #Objects). Then we
compute the average cosine similarity between the embeddings of the target word and the
object names respectively (Predicted Image Similarity and Random Image Similarity). We
also calculate the cosine similarity between the image embeddings of the two images
(Inter-image similarity)

the objects (or labels) in both the predicted image and the random control image,
using a pre-trained CNN model (Tan and Le, 2019). We then used the object
names to obtain the corresponding word embeddings. In other words, our goal
here is to retrieve the semantics of the objects in the images, and not to extract
their orthographic written forms. The cognitive process that we are approxi-
mating with an engineering solution is the process of understanding what the
objects in an image are. Note that empirical studies using eye-tracking to trace
image interpretation show that images are typically scanned with many fixations
at many different image locations (Castelhano and Rayner, 2008; Cronin et al.,
2020).

More specifically, for each image, we extracted the names of the top 10 classes2

predicted by the CNN model. Examples of predicted classes for a particular
image are ‘bagel’, ‘plate’, ‘pretzel’, ‘dough’, ‘bakery’, ‘butternut_squash’, ‘cheeseburger’,
‘spaghetti_squash’, ‘chocolate_sauce’, and ‘acorn_squash’. Here, the underscore
represents a space character. For most of these very specific subcategories, no

2. The CNN classes include the true classes for all the images used by GPVM as they both
utilized the same image database.

How direct is the link between words and images? [15]
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embeddings are available. As a result, the number of objects detected by our algo-
rithm closely follows the number of objects in the images.

Then we modelled participants’ behaviour using two approaches. In our first,
very simple baseline approach (called “Max” in the remainder of this paper),
we used the average cosine similarity between the embedding of the query (i.e.,
target) word and the embeddings of all the object embeddings detected in the
predicted image, and in the control image, presented to a participant at a given
trial. The average cosine similarity for a given image provides a measure of the
likelihood of selecting that image for the given query word. This resulted in two
measures:

– Predicted Image Similarity: The mean cosine similarity of the target word’s
embedding with the embeddings of the objects in the image predicted by the
model of GPVM (henceforth the GPVM image);

– Random Image Similarity: The mean cosine similarity of the target word’s
embedding with the embeddings of the objects detected in the random
control image.

To model human selection behavior, the image with the higher image similarity
was selected as our model’s choice. For example, if in trial 1, Predicted Image Simi-
larity was higher than Random Image Similarity, we selected the GPVM image.
We did this for the prototype and exemplar models separately. This cognitively
rich model of how participants solve the experimental task contrasts with the
lean, vision-only model of GPVM, who assume that a target query word makes
contact with its corresponding embedding. That, in turn, generates an internal
image (using a pre-trained mapping from word embeddings to images) that is
subsequently compared with the two images presented to a participant, without
any further involvement of higher cognitive processes evaluating what the objects
present in images actually are.

In our second approach (in the following called GAM), we used the following
additional predictors:

– Inter-Image Similarity: The mean cosine similarity between the GPVM image
and the random control image vectors;

– Predicted Image #Objects: The number of object labels (e.g., dog, tree, ...) in
the GPVM image for which word embeddings were available in the set of
embeddings;

– Random Image #Objects: The number of objects labels in the random control
image for which word embeddings were available in the set of embeddings.

An overview of the extracted measures can be found in Figure 3. Additionally,
we used the two predictors provided by GPVM, which capture the number of

[16] Hassan Shahmohammadi et al.
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visual neighbours (Distance) and concreteness (WordType). All of these metrics
were used as predictors in a Generalised Additive Model (GAM) with a logistic
link function, as implemented in the mgcv package (Wood, 2011) in R. GAMs can
model non-linear relationships between independent and dependent variables.
We tested a range of different GAMs with these predictors, which we compared
using the Akaike Information Criterion (AIC). While models with interactions
between predictors (using tensor product smooths) gave a substantially better
fit to the data, they also proved to be much harder to interpret. Therefore, we
selected GAMs with main effects only for both the prototype and the exemplar
models. We compared two sets of GAMs inspecting both AIC and predictions,
one based on grounded vectors and one based on purely textual embeddings.3

3. Results

3.1 Q1: Can we model participant behaviour without assuming participants
generate mental images?

3.1.1 Max models
Our hypothesis is that participants compare the meanings of the objects in the
two images with the meaning of the target noun (using the respective embed-
dings), and select the image with the higher similarity. This idea is operationalized
in our Max approach. We test Max using both textual and grounded GloVe and
a version of (textual and grounded) Word2Vec (Mikolov et al., 2013) that was
used by GPVM. The first minimal evaluation criterion for our approach is that it
is able to differentiate the GPVM image from the random control image with a
higher-than-chance probability. We found that this is indeed the case for the Max
approach based on both textual and grounded, GloVe and Word2Vec embeddings,
and prototype and exemplar setups (proportions test; p< 0.0001). This shows that
our approach provides at least a theoretical possibility of how to solve the task.

Secondly, to investigate how well the Max approach approximates human
behaviour, we measure the proportion where Max selected the GPVM image. We
can thus view our four embedding types as virtual participants. If our hypothesis
for predicting participants’ selection behaviour holds true, we expect the virtual
participants to show a similar preference (compared to participants’ preference)
for the GPVM image.

3. Generated measures and analysis notebooks can be found in the Supplementary Materials
at https://osf.io/7rxde/.

How direct is the link between words and images? [17]
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The results of our experiments are reported in Table 2 for both the exemplar
and prototype setups. We observe that the mean scores of the virtual participants
are quite close to the mean scores of real participants (i.e., “Participants” in
Table 2). The absolute difference between the mean score of the virtual partici-
pants and that of the participants is reported and labeled as ∆ in the Table. Lower
∆ values indicate a better fit for modeling the participants’ preferences.

Viewing our four embedding types as “virtual participants” begs the question
of whether their performance fits into the distribution of human performance in
GPVM. Figure 4 shows that the performance of most of the embedding types falls
well within plausible participant performance across all categories of WordType
and Distance. The clearest outlier is the model with textual GloVe embeddings in
the abstract far category for the prototype setup. We will return to the question
of grounded vs. textual embeddings and differences across concreteness/visual
neighbour conditions below.

Thirdly, we expect our virtual participants to show the same effects of Word-
Type and Distance as human participants. Unfortunately, the low number of data
points per embedding type (114) made running individual, embedding-specific
logistic regression models akin to the one by GPVM for human participants
impossible. However, we do note that the (all nonsignificant) effects pointed in
the same directions as for human participants for all embedding types for the
prototype setup: both higher concreteness and more Distance lead to a higher
probability of selecting the GPVM image. When combining the data of all four
embedding types into one logistic regression model (without by-embedding
random effects, since they prevented the model from converging), the effects still
pointed in the same directions and were significant. In the exemplar setup, GPVM
did not find a significant effect of any of the conditions other than a significant
intercept (indicating that human participants generally performed above chance).
The combined logistic regression model for all four embedding types based on
the exemplar setup showed no effect of concreteness which is in line with findings
by GPVM but did find a positive effect of Distance which was not found in GPVM
(models in Supplementary Materials).

Fourthly, we can use the predictions of the Max model to directly predict
participants’ behaviour. The results for the prototype experiment are reported in
Table 3a. The bottom rows of both tables report the proportion of trials in which
participants select the GPVM image over the random control image across cate-
gories in the two experiments by GPVM. Participants tended to select the GPVM
image, the more concrete the target words were and the more visual neighbors
they had (see also Figure 4). Since here we are interested in predicting partici-
pant behaviour rather than trying to differentiate the GPVM image and random
control image, the numbers in the upper and lower parts of the two tables cannot

[18] Hassan Shahmohammadi et al.
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Table 2. Modeling participants’ preference for the predicted images. The numbers in the
top section of each table represent the percentage of trials in which each virtual
participant chooses the GPVM image over the random image. The numbers in the last
row of each table show the mean percentage of trials in which the GPVM image was
selected, averaged over all human participants. The best results are marked in bold in
each category. The absolute difference between the mean score of our model’s prediction
and that of the participants is reported and labeled as ∆ in the Table. Lower ∆ values
indicate a better fit for modeling the participants’ preferences

a. Prototype model

Embeddings A. far A. Near C. Far C. Near C. Max Mean (∆)

Max: GloVe 82.61 69.57 56.52 90.91 86.96       77.31 (07.06)

Max: ZSG-GloVe 52.17 60.87 69.57 81.82 91.30        71.15 (00.90)

Max: W2V 65.22 73.91 78.26 86.36 86.96       78.14 (07.89)

Max: ZSG-W2V 65.22 78.26 73.91 90.91 91.30       79.92 (09.67)

Participants 52.00 64.00 66.00 84.25 85.00 70.25

b. Exemplar model

Embeddings A. far A. Near C. Far C. Near C. Max Mean (∆)

Max: GloVe 65.22 91.30 73.91 77.27 91.30       79.80 (07.40)

Max: ZSG-GloVe 69.57 86.96 65.22 68.18 86.96       75.38 (02.98)

Max: W2V 73.91 86.96 60.87 77.27 78.26       75.45 (03.05)

Max: ZSG-W2V 60.87 82.61 60.87 72.73 86.96        72.81 (00.41)

Participants 62.00 74.00 73.00 76.00 77.00 72.40

be compared directly. Rather, we want our models to score as closely to 100%
accuracy as possible, indicating a complete matching to participants’ selections.
Focusing on the mean performance across all concreteness/distance categories,
Table 3a shows that participants’ preferences are predicted fairly well (Mean accu-
racies for Max models are 68%, 70%, 69%, and 71% for textual and grounded
GloVe and textual and grounded Word2Vec). Table 3b presents the results for
the exemplar experiment. Mean accuracy for Max models tends to be somewhat
lower compared to the prototype setup (70%, 66%, 67%, and 66% for textual and
grounded GloVe and textual and grounded Word2Vec).

We can therefore conclude that it is indeed possible to model the behavioural
experiment by GPVM without assuming that participants generate mental images

How direct is the link between words and images? [19]
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a. Prototype model

[20] Hassan Shahmohammadi et al.
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b. Exemplar model

Figure 4. Performance of the four embedding types compared to human participants in
Günther et al. for the prototype and exemplar setup. Boxplots are based on human data
points only. The performance of most embedding types is well within the range of human
participants

and that even meaning representations based on textual information only are able
to model participants’ behaviour fairly well.

3.1.2 GAM models
Thus far, our predictions for participants’ selection preferences have been based
on average similarity scores for the images. Accuracy can be improved by also
taking into account the similarity of the GPVM images and their controls, the
number of objects in these images, as well as the two factorial predictors consid-
ered by GPVM: Distance and WordType. As mentioned above, we use logistic
GAMs to obtain predictions for participants selection decisions. Using GAMs
also enables us to investigate what effects Predicted Image Similarity and Random
Image Similarity have on participant behaviour. In the prototype setup, accuracy

How direct is the link between words and images? [21]
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improved for all pairs of comparisons. For instance, the accuracy of Max: ZSG-
GloVe, 70.20, improved for GAM: ZSG-GloVe to an accuracy of 72.19.

The GAM (see Table 4a) indicated that prototype images for concrete words
were more often selected compared to abstract words, and that images for words
with more image neighbors were also selected more often. These effects mirror
those observed by GPVM.

The GAM also indicated (see Figure 5a) that a greater Predicted Image Simi-
larity comes with a higher probability of selection. This effect aligns with our
hypothesis that in this task, participants are scanning images for the visible
objects, basing their decision on the match between these objects and the printed
word stimulus.

A greater Random Image Similarity goes hand in hand with a lower prob-
ability of selection, but this effect is present only for higher similarity values.
Although Random Image Similarity is in general lower than Predicted Image Simi-
larity (ranges (−0.06, 0.19) and (−0.03, 0.42) respectively), Predicted Image Simi-
larity leads to higher selection rates in the interval (0.00.10) whereas Random
Image Similarity does not. This suggests that the objects in the GPVM images
are more tightly and consistently interconnected, so that even for low similarity
values they provide consistent evidence for selection.

A non-linear effect emerged for Inter-image Similarity. Setting aside the most
extreme values of the predictor, this non-linear effect reduces to a U-shaped effect
for where there is good data support. This U-shaped effect suggests that atypical
similarities (values away from the mean) induced higher ratings. Apparently, the
selection task induced an image scanning strategy that is based on whether the
degree of similarity of a pair of images is remarkable and surprising. Both highly
similar and very dissimilar images attract attention, resulting in more careful
selection in favor of the GPVM image.

Results are subtly but informatively different for the exemplar setup. We first
note that of the two factorial predictors, WordType was again supported, but
Distance was not. This is in line with participant behaviour in the two setups:
while they were more accurate for concrete target words than for abstract ones
in both setups, the difference is much stronger in the prototype setup. Changing
the kind of image – from prototype to exemplar – resulted in changed selection
behavior. Apparently, training the mapping on image exemplars instead of on an
averaged image results in more informative images in categories with less concrete
words with fewer visual neighbours.

This has further consequences for participants’ selection behavior. Although
in the prototype setup, the number of objects in the generated image (i.e.
Predicted Image #Objects) was predictive, the number of objects in the random
image (Random Image #Objects) was not. However, in the exemplar experiment,

[22] Hassan Shahmohammadi et al.
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Table 3. Evaluation of two textual embeddings and their grounded versions on the
behavioural experiment by Günther et al. (2022). The numbers in the top section of each
table represent the percentage of trials in which the models correctly predict the
participants’ choices. The numbers in the last row of each table (labelled ‘Participants’)
show the mean percentage of trials in which the GPVM image was selected, averaged
over all human participants. A. and C. indicate abstract and concrete words respectively.
Far, near and max refer to the distance of visual neighbours

a. Prototype model

Embeddings A. Far A. Near C. Far C. Near C. Max Mean

Max: GloVe 52.56 62.66 56.44 84.74  83.46 67.97

Max: ZSG-GloVe 61.41 64.52 60.79 76.79 87.5 70.20

GAM: GloVe 45.42 71.35 61.41 87.99  85.02 70.24

GAM: ZSG-GloVe 53.96 69.49 62.03 87.99 87.5 72.19

Max: W2V 54.27 66.54 67.16 81.33  77.72 69.40

Max: ZSG-W2V 55.82 67.93 58.93 87.34 87.5 71.05

GAM: W2V 49.77 66.54 60.95 87.99  85.79 70.21

GAM: ZSG-W2V 55.98 65.45 62.19 87.99 87.5 71.82

Participants 52.00 64.00 66.00 84.25  85.00 70.25

b. Exemplar model

Embeddings A. Far A. Near C. Far C. Near C. Max Mean

Max: GloVe 57.71 72.73 68.30 70.33 81.5 70.11

Max: ZSG-GloVe 49.09 66.17 65.45 73.00  78.58 66.45

GAM: GloVe 58.02 72.73 73.28 74.63  81.50 72.03

GAM: ZSG-GloVe 62.85 68.93 74.31 75.87 73.7 70.94

Max: W2V 55.81 64.58 63.00 74.00  75.42 66.56

Max: ZSG-W2V 52.73 63.40 63.48 73.22  76.36 65.83

GAM: W2V 55.77 69.09 69.25 75.54  81.11 70.95

GAM: ZSG-W2V 57.23 67.27 70.91 75.21  79.13 70.00

Participants 62.00 74.00 73.00 76.00  77.00 72.40

the number of objects in not only the generated but also in the random image
were both significant predictors of selection behavior. For both, more objects in
the image corresponded to higher selection probabilities.

How direct is the link between words and images? [23]
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A possible explanation for the high variation in participants’ selection pref-
erences across highly concrete and abstract queries, between the exemplar and
prototype models, may be attributed to the distinct training schemes utilized in
each model. In the prototype setup, each noun is associated with the mean image
vectors of a specific class (e.g., horse), resulting in a feature vector conveying
a typical characteristic of a given class and thereby reducing the number of
feasible model outputs. Consequently, more distinct boundaries are established
for concrete words, which leads to greater discriminability between GPVM
images for concrete target words and random control images. In the Exemplar
model, on the other hand, each noun is linked with various image vectors that
contain the target class in different contexts (other classes). For example, the word
horse may be associated with multiple images of horses in distinct settings per
training sample. This results in the establishment of an association between the
target noun and a diverse yet related set of classes. Although the boundaries for
concrete words are not as distinct as those for the prototype model, as evidenced
by a lower rating for highly concrete words, participants are more inclined to
associate the target words with the different yet related set of words encountered
by the model during training. Hence, in the Exemplar setup, participants are
more likely to prefer the GPVM image for abstract words and concrete words
in the far category. Overall, the Exemplar model might retrieve images which
contain useful hints indicating its selection and encourage participants to deeply
analyse the semantics of the given images with the target word, whereas the proto-
type model seems to be less flexible in this regard.

Further evidence for a deeper processing of the random control images is
provided by the Random Image Similarity measure, which was predictive for a
larger range of values in the exemplar setup (0, 0.20), compared to the range (0.10,
0.20) observed for the prototype setup. For where Random Image Similarity has
dense data support, it predicted mostly a decrease in selection probability.

Finally, a greater Inter-image Similarity corresponded to lower selection prob-
abilities, although for large values its effect leveled off. Whereas in the prototype
setup, Inter-image Similarity revealed that unexpected similarity boosted the
selection of the generated image, in the exemplar setup, a greater similarity led to
the more frequent selection of the random image.

3.2 Q2: Is participants’ behaviour best accounted for by purely textual or
multimodal word embeddings?

The previous subsection discussed results for both purely textual and grounded
embeddings without further discussing any differences in their performance.

[24] Hassan Shahmohammadi et al.
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However, our second question is whether using visually grounded embeddings
instead of purely textual embeddings will improve prediction accuracy.

Similar to the previous subsection, we first focus on the Max approach
selecting the GPVM image or the random control image for each target word.
If participants generated visual images for the target word, then the grounded
vectors developed by Shahmohammadi et al. are expected to provide enhanced
prediction accuracy for participants’ behavior. Table 2 shows that using grounded
embeddings results in lower ∆ values for both grounded GloVe and grounded
Word2Vec embeddings in the exemplar model, and for grounded GloVe embed-
dings in the prototype model, suggesting that the grounded embeddings model
participants’ preference somewhat better compared to textual embeddings. We
conducted a sign test for both setups, comparing the average accuracy in each
WordType/Distance category between the textual and grounded version of each
embedding type, thus resulting in 10 comparisons overall. We counted a compar-
ison as a “success” if the average accuracy of the grounded embeddings was closer
to participants’ performance than the textual one. Interestingly, the sign test clar-
ified that actually the grounded embeddings were not significantly better than
their purely textual counterparts, neither in the prototype nor in the exemplar
setup.

Moving on to predicting participants’ behaviour directly, we find that for the
prototype setup (see Table 3a), using visually grounded vectors improves mean
accuracy by 2% for GloVe and 1% for Word2Vec (compare Max: GloVe with Max:
ZSG-GloVe, and Max: W2V with Max:ZSG-W2V). However, for the exemplar
setup (see Table 3b), accuracy decreased by 4% for ZSG-Glove and by 1% for
ZSG-W2V.

Turning to the results of the GAMs (rows denoted “GAM”, column “Mean”
in Table 3), we observe that the GAMs for the prototype models show better
accuracy (by 1–2 percentage points) when based on grounded rather than on
purely textual embeddings. In the exemplar setup, they do not show better results
in predicting human responses. In terms of AIC, the GAMs for both prototype
and exemplar models show a better model fit when based on grounded GloVe
embeddings than on textual ones (by 80.4 and 86.74 AIC points respectively) and
on grounded Word2Vec embeddings only in the prototype setup (by 123.1 AIC
points; in the exemplar setup the difference was −3.1 points), again compared to
textual ones.

In summary, in terms of numerical differences, the evidence of multimodal
embeddings improving prediction for participants’ behaviour is mixed. For
GPVM images in the prototype setup, both the Max and GAM evaluation
methods show a slight advantage for grounded embeddings. For exemplar images,
no such advantage is visible in neither the Max nor the GAM evaluation. We again

How direct is the link between words and images? [25]
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a. Prototype model

b. Exemplar model

Figure 5. Partial effects (using thin plate regression splines) of the predictors in GAMs
for prototype and exemplar models based on grounded GloVe vectors. Plots for textual
GloVe vectors as well as the Word2Vec vectors used by Günther et al. (2022) can be found
in the supplementary materials

ran a sign test for the prototype and exemplar setups respectively in the same way
as in the previous section (20 comparisons per setup, this time a comparison was
a “success” if the grounded version of the embeddings showed a larger accuracy).
The difference was again not significant in both setups.

The reason that the grounded embeddings by Shahmohammadi et al. are on
average, numerically, somewhat less effective for the exemplar model is likely
to be that grounded embeddings cluster by semantic similarity rather than by
semantic relatedness (Shahmohammadi et al., 2021, 2023). Since in the exemplar
model, due to the way in which images are processed, relatedness plays a much
stronger role than in the prototype approach (see Section 3.1), the grounded
embeddings are less effective for the experimental data obtained from the
exemplar-based set-up.

Considered jointly, these results lead us to conclude that participants’ behav-
iour appears to be equally well accounted for by purely textual vectors and multi-
modal vectors. This result raises doubts about participants actually generating
visual images of the target words.

[26] Hassan Shahmohammadi et al.
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Table 4. GAM summary tables for prototype and exemplar models for grounded GloVe.
Summary tables for textual/grounded W2V models can be found in the supplementary
materials

a. Prototype model

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) −0.0351 0.1869 −0.1878  0.8510

WordType=concrete  0.5216 0.0851  6.1271 < 0.0001

Distance=near  0.1866 0.0878  2.1247  0.0336

Distance=max  0.4936 0.1195  4.1296 < 0.0001

Predicted Image #Objects  0.0928 0.0188  4.9400 < 0.0001

Random Image #Objects −0.0078 0.0187 −0.4157  0.6776

WordType=concrete:Distance=near  0.4303 0.1392  3.0913  0.0020

B. smooth terms edf Ref.df F-value p-value

s(Random Image Similarity) 3.5038 3.8671 111.9450 < 0.0001

s(Predicted Image Similarity) 2.7066 3.2410 227.4596 < 0.0001

s(Inter-Image Similarity) 3.7710 3.9649  24.0678  0.0001

b. Exemplar model

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept)  0.1015 0.1689  0.6009 0.5479

WordType=concrete  0.3432 0.0906  3.7898 0.0002

Distance=near  0.1636 0.0931  1.7574 0.0789

Distance=max −0.1399 0.1139 −1.2286 0.2192

Predicted Image #Objects  0.0544 0.0202  2.6973 0.0070

Random Image #Objects  0.0704 0.0177  3.9813 0.0001

WordTypeconcrete:distance_near1 −0.1100 0.1399 −0.7859 0.4319

B. smooth terms edf Ref.df F-value p-value

s(Random Image Similarity) 3.8844 3.9923 132.6433 < 0.0001

s(Predicted Image Similarity) 3.2650 3.6982 184.3976 < 0.0001

s(Inter-Image Similarity) 2.7887 3.3389  25.7459 < 0.0001

How direct is the link between words and images? [27]
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3.3 Q3: Does the indirect grounding of abstract words afford a better
understanding of the experimental results reported by GPVM?

Is visual grounding beneficial not only for concrete words but also for abstract
words? On the basis of a series of human-annotated semantic similarity datasets,
Shahmohammadi et al. argued that indeed abstract words do benefit from indi-
rect visual grounding. Can the same conclusion be drawn for the data of GPVM?

Analogously to the previous two subsections we again first consider the
proportions of the Max approach selecting the GPVM image over the random
control image, this time broken down for each of the combinations of WordType
and Distance. Considering Table 2a, in the prototype experiment, participants’
scores are close to random for the abstract far condition, they are somewhat
higher for the abstract near and concrete far conditions, and they are highest
for the concrete near and concrete max conditions. Focusing on the best model,
Max: ZSG-GloVe, we find a very similar pattern. Comparing this model to the
predictions of Max: GloVe, we find that grounding moves the predictions close to
human performance in all conditions except the concrete max. The most notable
difference here can be found in the abstract far category, where Max: GloVe selects
the GPVM image far more often than human participants (see also Figure 4a).

Next, consider Table 2b, which concerns participants’ selection preferences
for the GPVM images in the exemplar setup. Compared to their performance
in the prototype setup, participants’ accuracy scores are down considerably for
Concrete Near and Concrete Max, and up considerably for Abstract Far and
Abstract Near. Performance for Abstract Far words clearly lags behind perfor-
mance for the other four subsets of words. The GPVM images in the exemplar
setup elicited flatter scores, consistent with our conclusion in the preceding
sections that in this setup participants scan the control images more carefully.
Both the Max:ZSG-GloVe and Max:ZSG-W2V models perform reasonably
similar to the participants’ preferences, but there are conditions where textual
embeddings capture their preferences better. However, it should be noted that all
models are well within the range of participants’ performance (Figure 4b).

Next, we turn to predict participants’ selection behaviour directly. First
consider Table 3a, which concerns the prototype setup. Focusing on the best
model, GAM:ZSG-GloVe, we find that prediction accuracy is clearly higher for
Concrete Near and Concrete Max compared to the Abstract and Concrete Far
conditions. Comparing this model with GAM:GloVe, we see that visual
grounding improves accuracies for 3 of the five subsets: Concrete Far, Concrete
Max, and Abstract Far. There is one subset where grounding leads to lower scores,
Abstract Near, and one where grounding does not change performance, Concrete

[28] Hassan Shahmohammadi et al.
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Near. Averaging over both subsets of abstract words, it seems that there is a
modest advantage overall for the visual grounding of abstract words.

Table 3b concerns the exemplar setup. The GAM:ZSG-GloVe model performs
reasonably similar to the participants. Compared to GAM:GloVe, for the abstract
words, the model shows an improvement of 4% in the Abstract Far category and
a reduction in accuracy of 4% for the Abstract Near category.

In summary, it appears that visual grounding aligns more closely with partic-
ipants’ selection behavior in the prototype setup, but its effect is somewhat mixed
for abstract words in the exemplar setup. A potential explanation for this finding,
same as in the previous section, is that visual grounding tends to create clusters
of similar words rather than clusters of related words (Shahmohammadi et al.,
2021, 2023). Given that the exemplar model establishes an association between the
target nouns and diverse yet related concepts, its behavior for abstract nouns may
be better explained by textual embeddings. Therefore, shifting the focus toward
similarity appears to benefit highly concrete words but has a negative impact on
modeling abstract words.

4. Discussion and conclusion

We started this investigation with three questions: first, can we predict the behav-
iour of participants in the experiments reported by Günther et al. (2022) without
assuming that they generated mental images? Second, is participant behaviour
predicted better by visually grounded or purely textual word embeddings? And
third, how does the visual grounding process affect performance on abstract
words?

Regarding the first question, we found that an approach taking into account
the objects present in the presented images is able to predict participants’ behav-
iour quite well. The covariates that we derived from the embeddings for the
objects in the images, random image similarity, predicted image similarity, and
inter-image similarity, all helped improve the logistic GAMs that we fitted to
predict participants’ choice behavior. This finding dovetails well with the eye-
tracking literature on image scanning: typically, images illicit multiple fixations,
reflecting attention being directed to different parts of images and different
objects in images (Cronin et al., 2020). From these findings, we infer that partic-
ipants probably based their decisions on comparisons in semantic space, and
not only in visual space. Our experiments suggest that it is unlikely that partici-
pants really generated mental images for the words presented to them. Although
eye-tracking experiments suggest that participants can get the gist of an image
within a time span of 40 ms (see Castelhano and Rayner, 2008, for a review),

How direct is the link between words and images? [29]
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understanding images usually requires a series of fixations. This finding does not
fit well with the assumption made by GPVM that the images presented to the
participants in the experiments of GPVM were processed holistically and were
compared with an equally holistic image projected from the target word. Further-
more, it is well-established that our perception of the world is shaped by the limi-
tations of our sensory organs and the constraints imposed by the cultures we live
in (see, e.g., Kant et al., 1999; Hoffman, 2019). The way in which Shahmoham-
madi et al. implement visual grounding – constraining the extent to which vision
can change embeddings from human texts – does justice, however crude, to this
insight.

Our conclusions are also in line with previous findings on mental imagery:
for example, Louwerse and Connell (2011) argue that modality-information (such
as visual information) is to some extent already included in linguistic information
and that only for more precise information embodied simulation is required
(thus arguing that both linguistic and embodied processes contribute to concep-
tual processing). According to their study, linguistic processes account for early
processing (short reaction times) and embodied ones for later processing (longer
reaction times). Our results also dovetail well with the views on grounding
proposed by Zwaan and Madden (2005) and Barsalou (1999) mentioned in the
introduction.

As to question 2, we found that our models for predicting participants’ perfor-
mance are slightly, though not statistically significant, improved by using
grounded embeddings compared to purely textual embeddings for GPVM’s
prototype setup.

While there was a slight numerical improvement in the prototype setup,
Shahmohammadi et al.’s grounded embeddings were not able to improve on the
textual baseline in the exemplar model. Our interpretation of this result is that the
images predicted by GPVM in the exemplar setup are driven more by semantic
relatedness than by semantic similarity (by virtue of how the model is trained),
and as the visual grounding method of Shahmohammadi et al. enhances semantic
similarity rather than semantic relatedness, it is less effective for the experimental
data of the exemplar model.

GPVM argued that their exemplar model picked up more “idiosyncratic
information”, leading to a loss of predictivity of concreteness and number of visual
neighbors. The above comparison of the performance of textual and grounded
embeddings suggests that the exemplar model is not picking up just noise (idio-
syncatic information), but rather that it is more influenced by semantic relat-
edness, mediated by the objects that co-occur with the objects that are actually
targeted in the images used to train the models (e.g., a doctor co-occurring in
an image selected to depict a nurse). The employed visually grounded vectors,

[30] Hassan Shahmohammadi et al.
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by their design zoom in on semantic similarity, whereas standard textual vectors
are somewhat more sensitive to semantic relatedness. These considerations lead
us to conclude that in the experiments of GPVM, subjects’ decisions were guided
by both semantic similarity and semantic relatedness, and that the way in which
images were selected (prototype vs. exemplar) influenced the relative importance
of similarity and relatedness in participants’ decision making.

Here, it is important to stress the differences between the grounding model
proposed by GPVM and the one by Shahmohammadi et al. GPVM posit a simple
linear mapping from textual to visual embeddings. This model works as a proof of
concept that a connection between language and vision can be drawn. However,
it is not necessarily the best way to combine the two modalities. Shahmohammadi
et al. showed that the embeddings generated by such a simple linear mapping
perform much worse at predicting human ratings in a number of semantic simi-
larity and relatedness datasets. This indicates that it is not enough to show that
language and vision can be linked: the real challenge is to understand how
humans combine information from both modalities in order to form meaning
representations and make similarity judgments.

Regarding question 3, we observed that grounding tends to yield better
predictions of human judgments than textual embeddings for abstract words
at least in the prototype setup. This finding, together with previous results
suggesting that grounding improves performance on similarity/relatedness judg-
ment tasks even for abstract words (Shahmohammadi et al., 2023), begs the ques-
tion of why a grounding model trained only on concrete words for which images
were available in COCO improves performance also for abstract words. Our
interpretation of these results is that by improving the relative position of concrete
words in semantic space, the representations of abstract words are also improved.
In other words, the visual alignment trained on concrete words also benefits
abstract words by transferring them into a more precise semantic space. This view
is in line with conceptual metaphor theory which posits that abstract words are
understood in terms of concrete words (e.g. Lakoff and Johnson, 1980).

With respect to how abstract and concrete words are learned, Vigliocco et al.
(2018) conclude that only by the age of 10 children have sufficient experience
with their language to be able to start making use of distributional semantics
for learning abstract words. They argue that children are more likely to be using
the strong association between abstractness and emotional valence for learning
abstract words. Images come with emotional values that are visible in the EEG
even under scrambling (Rozenkrants et al., 2008). By visually grounding abstract
words, it is possible that the embeddings of abstract words are not only more
precisely profiled with respect to concrete words, but also that abstract words
are better grounded with respect to their emotional loadings. Empirical studies
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have provided extensive support for the significant role of emotion in human
cognition, especially in abstract concepts (see Dolan, 2002, for a review). It has
been shown that the addition of emotional representations to textual embeddings
improves classification tasks on datasets that contain mostly abstract words
(Rotaru and Vigliocco, 2020b). It is also possible that once visually grounded
embeddings are used, instead of purely textual vectors, children may turn out
to be sensitive to distributional aspects of their language at an earlier age than
reported by Vigliocco et al. (2018).

We finish with three comments: Firstly, with regard to other visually
grounded models: Despite the tremendous amount of work on the visual
grounding of textual embeddings, the common belief holds that grounding words
visually is beneficial for words with concrete meaning and has an adverse effect
on abstract words (Pezzelle et al., 2021; Kiros et al., 2018; Kiela et al., 2018; Park
and Myaeng, 2017b). Some new studies further suggest that visual grounding of
current sentence-level contextualized textual models does not add extra knowl-
edge for downstream NLP tasks (Yun et al., 2021; Tan and Bansal, 2020).
However, the common core idea among many previous grounded approaches
is fusing vision and language into a single modality. That is, image vectors and
word/sentence vectors are either 1. mapped to a common semantic space where
similar visual and textual concepts are forced to have similar representations,
most often using non-linear transformation, or 2. word vectors of concrete words
are replaced by image vectors during the training process.

Shahmohammadi et al. (2023) on the other hand showed that allowing the
complete fusion of both modalities, while benefiting the concrete words, is detri-
mental to modeling abstract words. They argue that language benefits from vision
the most once it is guided by perceptual knowledge as opposed to being merged
with it. Using this idea, Shahmohammadi et al. showed that visual grounding
is highly beneficial for modeling abstract words and further boosts the perfor-
mance on downstream NLP tasks when limited training is available. Even though
their model learns a linear alignment based on a limited number of captions
describing concrete scenes, it was used to indirectly generate grounded repre-
sentations for unseen abstract words. This is in line with the indirect grounding
perspective that implies the direct grounding of concrete words and indirect
grounding of abstract words via language (Howell et al., 2005; Louwerse, 2011).
The indirect grounding theory of abstract words has been recently shown effec-
tive at predicting abstract concepts using distributional semantic models (Utsumi,
2022). Indirect grounding, therefore, seems to be a plausible cognitive mechanism
for grounding abstract words.

Secondly, as a final conclusion regarding GPVM, we note that while their
experiment clearly highlights that a simple linear mapping is able to predict
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images that are chosen by participants above chance level, our work highlights
that the conclusions which can be drawn from this study are far from clear. Firstly,
we know from previous research (Shahmohammadi et al., 2023) that a simple
linear mapping as used by GPVM is not a good grounding model: vectors that
are grounded in such a way perform much worse than purely textual embeddings
on word similarity and relatedness datasets. Secondly, we are able to demon-
strate that the task which GPVM used to evaluate their embeddings can be solved
to a large extent without taking into account grounded meaning representa-
tions. Thus, it is unclear how much the experiment actually taps into aspects
of grounded meaning representations. In this study, we used grounded embed-
dings which have been shown to improve upon purely textual embeddings in
previous work (Shahmohammadi et al., 2023). We found a modest numerical,
though not statistically significant, improvement of these embeddings over purely
textual embeddings in the prototype setup and no major improvement in the
exemplar setup. This suggests to us that if at all, the effects of grounding are
more pronounced in the prototype setup. Thus, the method for grounding used
in GPVM may not provide the optimal method for generating grounded word
representations that can be utilized in psycholinguistics tasks, and the extent to
which their experiment is well-suited for detecting effects of grounded meaning
representations in human cognition remains somewhat uncertain.

Thirdly, what can we ultimately conclude from this about how humans repre-
sent meanings? On the one hand, the present paper together with the results
from Shahmohammadi et al. support the conclusion that meaning representa-
tions are not based on language alone, but also include information based on
vision.4 Moreover, both Shahmohammadi et al., as well as the present study, show
that this applies not only to concrete words, where such an effect may be expected
but also to abstract ones. On the other hand, however, Shahmohammadi et al.
found that if textual information is overwhelmed by image information, resulting
embeddings as predictors of human similarity ratings suffer. This dovetails well
with many previous studies which reported that representations based on textual
information alone can predict behavioural data very successfully (e.g. Mandera
et al., 2017; Westbury, 2014; Westbury and Hollis, 2019). These results underline
that human meaning representations are largely based on the experience humans
have with the world through language.

4. Note that we restricted ourselves to visual information here. It is very likely that other multi-
modal information such as auditory and olfactory information also plays a role, see Kiela et al.
(2015); Kiela and Clark (2015)
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