
Interactive Extraction of
Minimal Unsatisfiable Cores
Enhanced By Meta Learning

Lehrstuhl Algorithmik
Wilhelm-Schickard-Institut für Informatik
Eberhard Karls Universität Tübingen

Johannes Dellert

Thesis submitted for the degree of
Informatik Diplom

First Examiner :

Prof. Dr. Michael Kaufmann

Supervisors :

MSc Bioinform. Christian Zielke
Dipl.-Inform. Stephan Kottler

Tübingen, January 2013



Hiermit versichere ich, dass ich die vorgelegte Arbeit selbständig und nur mit den angegebe-
nen Quellen und Hilfsmitteln (einschließlich des WWW und anderer elektronischer Quellen)
angefertigt habe. Alle Stellen der Arbeit, die ich anderen Werken dem Wortlaut oder dem
Sinne nach entnommen habe, sind kenntlich gemacht.

(Johannes Dellert)

Acknowledgements

First and foremost, I would like to express my gratitude to my main supervisor Christian
for the encouragement during the many difficult phases and setbacks in the course of the
evolution of the ideas for this thesis, and his careful reading of various chapter drafts. Many
little errors would have slipped my attention without his precise thought and keen eye. The
inevitable errors that remain are of course entirely mine. I am also indebted to Christian
for providing me with new extensions to MiniSat whenever I needed one, along with swift
support, in particular the last-minute fix of a bug that would almost have prevented me
from running my benchmarks.

As the main supervisor in the initial phase of my work on this thesis, Stephan Kottler has
done a lot to channel my ambitions onto fertile grounds. Some of the initial ideas fleshed
out in this work arose as results of the very interesting discussions we had.

Further thanks go to Kilian for the years we spent working together on the Kahina system,
which has once again proven to be a surprisingly versatile, yet stable environment for rapid
prototyping and testing out interesting ideas.

I am also indebted to Martin Lahl for providing me with his implementation of deletion-
based MUS extraction as a starting point for my own code, and thoroughly answering all
the questions I had to get me started with the practical aspects of MUS extraction.

Thanks are also due to my friends who from time to time forced me out of my cocoon for
a refreshing and invigorating walk in the woods, and to my family for providing the stable
and secure environment in which I have been able to cultivate my academic interests.

Finally, I would like to thank my wife Anna for her love and allround support throughout
the past two exhausting years of preparing for final exams and writing two theses. I shall
be happy to return the favour now that she has the more stressful job.



Contents

1 Introduction 1

2 Preliminaries 3
2.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 CNF and Definitional CNF . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 SAT Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3.1 The SAT Problem . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3.2 SAT Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3.3 A Custom Variant of MiniSat . . . . . . . . . . . . . . . . . . 7

2.2 Minimal Unsatisfiable Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Minimal Unsatisfiable Subsets of CNF Formulae . . . . . . . . . . . . 8
2.2.2 GMUSes for Group CNF . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Minimal Unsatisfiable Cores in Non-Clausal Formulas . . . . . . . . . 9

2.3 Basic MUS Extraction Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 MUS Extraction and the Powerset Lattice . . . . . . . . . . . . . . . . 11
2.3.2 Deletion-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Insertion-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 A Recent Hybrid Approach . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Advanced Concepts in MUS Extraction . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Model Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Classification of Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2.1 Necessary and Unnecessary Clauses . . . . . . . . . . . . . . 16
2.4.2.2 Potentially Necessary and Never Necessary Clauses . . . . . 17
2.4.2.3 Usable and Unusable Clauses . . . . . . . . . . . . . . . . . . 17

2.4.3 Autarkies and Autarky Reduction . . . . . . . . . . . . . . . . . . . . 17
2.4.3.1 Autarkies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3.2 Finding Maximal Autarkies . . . . . . . . . . . . . . . . . . . 18
2.4.3.3 Reduction to the Lean Kernel . . . . . . . . . . . . . . . . . 19

3 Interactive MUS Extraction 21
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Basic Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 The Kahina Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Interface to MiniSat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Representing Reduction States . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 Storing and Propagating Reducibility Information . . . . . . . . . . . 24

3.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Overall Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii



CONTENTS

3.3.2 The Reduction Graph View . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 US Inspection and Reduction . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.4 Model Rotation and Autarky Reduction . . . . . . . . . . . . . . . . . 31

3.4 Automated Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 Reduction Agents & Parallelized Architecture . . . . . . . . . . . . . . 33
3.4.2 Agent Traces in the Reduction Graph . . . . . . . . . . . . . . . . . . 35
3.4.3 Interface for Plugging Heuristics . . . . . . . . . . . . . . . . . . . . . 36
3.4.4 Comparing the Behaviour of Deletion Heuristics . . . . . . . . . . . . 37

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Introducing Meta Learning 41
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 What Can We Learn? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Unsuccessful Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1.1 Model Rotation . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1.2 Unsuccessful Simultaneous Reduction . . . . . . . . . . . . . 46

4.2.2 Successful Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2.1 Successful Simultaneous Reduction . . . . . . . . . . . . . . . 48

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 Representing and Maintaining the Meta Problem . . . . . . . . . . . . 48
4.3.2 Retrieving Transition Clauses . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.2.1 Using the Modified SAT Solver . . . . . . . . . . . . . . . . . 52
4.3.2.2 Using a Java Implementation of Unit Propagation . . . . . . 53

4.3.3 Full SAT Solving Against Meta Constraints . . . . . . . . . . . . . . . 54
4.3.4 Integrating the Meta Instance into the Interface . . . . . . . . . . . . 55
4.3.5 An Example of Meta Learning in the Prototype . . . . . . . . . . . . . 55

4.4 Additional Meta Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Inclusion or Exclusion of Specific Clauses . . . . . . . . . . . . . . . . 57
4.4.2 Expressing and Generalizing GMUS Extraction . . . . . . . . . . . . . 58
4.4.3 Enforcing Desired MUS Size . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Block-Based Meta Learning 61
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Efficiency Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.2 Conspiracies and the Role of Refutations . . . . . . . . . . . . . . . . 62
5.1.3 Dependencies Between Blocks . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Block Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Interactive Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.3 Application to GMUS Extraction . . . . . . . . . . . . . . . . . . . . . 71

5.3 Block Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Interactive Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.3 Application to Non-CNF Instances . . . . . . . . . . . . . . . . . . . . 79

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Evaluating Interactive MUS Extraction 83
6.1 General Issues of Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 The Test Case: CFG Parsing for NLP . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Parsing Natural Language . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.2 Context-Free Grammars as a Grammar Formalism . . . . . . . . . . . 87
6.2.3 Encoding CFG Parsing in SAT for Grammar Debugging . . . . . . . . 88
6.2.4 Generating Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . 91

iv



CONTENTS

6.3 Properties of the Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.1 Problem Sizes and Basic Measures . . . . . . . . . . . . . . . . . . . . 92
6.3.2 Number and Size of MUSes . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.3 Unusable and Necessary Clauses . . . . . . . . . . . . . . . . . . . . . 95
6.3.4 Comparison to Other Benchmark Sets . . . . . . . . . . . . . . . . . . 95

6.4 Defining the Relevant Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4.1 A Filter For Don’t-Care Clauses . . . . . . . . . . . . . . . . . . . . . 96
6.4.2 Structure and Size of Relevant Clause MUSes . . . . . . . . . . . . . . 97

6.5 Interactive MUS Extraction for CFG Debugging . . . . . . . . . . . . . . . . 98
6.5.1 Interpreting MUSes for Grammar Engineering . . . . . . . . . . . . . 98
6.5.2 Observations concerning Interactive Reduction . . . . . . . . . . . . . 98
6.5.3 Displaying Symbolic Information . . . . . . . . . . . . . . . . . . . . . 98
6.5.4 Interpreting Blocks with Respect to the Grammar . . . . . . . . . . . 99

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Conclusion and Outlook 103
7.1 Interactive MUS Extraction as a Paradigm . . . . . . . . . . . . . . . . . . . 103

7.1.1 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.1.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Shortcomings of the Prototype Implementation . . . . . . . . . . . . . . . . . 105
7.2.1 Architectural Limitations and Performance Issues . . . . . . . . . . . . 105
7.2.2 Weaknesses of the User Interface . . . . . . . . . . . . . . . . . . . . . 105

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3.1 Further Investigation of Meta Constraints . . . . . . . . . . . . . . . . 106
7.3.2 Extensions and Improvements to the Prototype . . . . . . . . . . . . . 106
7.3.3 Exploring SAT-based Grammar Engineering . . . . . . . . . . . . . . . 106

Bibliography 107





Chapter 1
Introduction

In many areas of technology and science, relevant questions can be conceived as the search
for solutions to sets of formal constraints. The applications for which formal methods are
used are manifold, ranging from formal verification and automated configuration of hard-
ware or software to planning problems and other areas of artificial intelligence.

Among the large variety of possible formalisms for expressing such constraints, propositional
logic is the most basic and at the same time one of the most successful ones. Informally,
propositional logic talks about atomic facts which can be either true or false. A formula
of propositional logic models logical relations between such facts, and can therefore be seen
as a constraint over possible combinations of truth values for these facts. The question
whether there is a combination of atomic facts for which a propositional formula holds is
called the satisfiability (SAT) problem. The SAT problem is of central importance to many
branches of computer science as the prototypical NP-complete problem to which many other
hard combinatorical problems can be reduced. While NP-completeness implies that there
is probably no polynomial-time algorithm which is able to solve every instance of the SAT
problem, modern SAT solvers can solve many large theories as they occur in applications,
even some that express constraints over millions of facts.

While stating application problems directly in propositional logic can be cumbersome, many
more expressive types of constraints can be encoded in and solved as SAT instances. As a
result, many tools for automated reasoning about more complex types of constraints build
on today’s highly developed SAT solving technology as their computational backbone, fur-
ther increasing the central importance of SAT solving for the field of formal methods.

A currently very active branch of research in formal methods focuses on the case where sets
of constraints are unsatisfiable, i.e. when it can be proven by formal means that no solution
exists. In many applications, such unsatisfiable constraint sets arise from design errors which
we wish to detect. A fruitful approach to gaining information about such errors is to try to
extract from a set of conflicting constraints some sort of minimal explanation that explains
which constraints or which interactions between constraints are problematic.

For the case of propositional satisfiability, a straightforward possibility is to define the de-
sired minimal explanations as Minimal Unsatisfiable Subsets (MUSes) of a constraint set.
One of the standard approaches to extracting MUSes starts with some unsatisfiable subset
(US) and tries to remove constraints until no constraint can be removed any longer without
making the subset satisfiable.

1



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

This thesis explores how this process of MUS extraction, which has so far only been im-
plemented in command-line tools without any interface for user interaction, can be made
interactive. A range of additional techniques for processing and displaying the relevant in-
formation about a MUS extraction process is developed in this context. A meta learning
technique is developed for reusing information derived from previous reduction attempts in
order to provide only reduction options that will actually lead to new information.

The thesis is divided into six chapters. It begins by presenting the central concepts and the
state of the art in MUS extraction in Chapter 2. The exposition starts with the basic defini-
tions for propositional logic, then discusses different definitions of minimal unsatisfiable cores
and presents the most recent algorithms for MUS extraction. The last section of the chap-
ter introduces some relevant advanced concepts that some of the work in this thesis relies on.

Chapter 3 then motivates the paradigm of interactive MUS extraction, explaining the cen-
tral ideas and describing the core elements of a prototype implementation. The prototype
is centered around an explicit visualization of the explored parts of the search space and
allows to select any point in it as a starting point for US reduction operations. The system
architecture also supports the parallel execution of automated search agents on a common
search space, and includes a plug-in interface for custom reduction heuristics.

In Chapter 4, we introduce a meta instance which stores the determined connections be-
tween the presence or absence of individual clauses in USes. The search space for the MUS
extraction problem is analysed under the aspect of reducibility knowledge that can be shared
between derived USes. A general scheme for extracting and distributing this information is
developed, which is partially implemented in the prototype. The chapter concludes with an
outlook on possible further applications of the meta instance concept.

Chapter 5 sets out to find efficient compression schemes for large meta instances, and the
two block inference mechanisms it develops for this purpose turn out to infer and represent
relevant additional knowledge about MUS structures. The block definition schemes are also
examined as generalizations of the meta instance concepts which yield natural extensions of
the prototype for interactively extracting other types of minimal unsatisfiable cores.

In Chapter 6, an attempt is made to evaluate the concept of interactive MUS extraction on
industrial data. The unavailability of suitable test sets leads to the development of a SAT
encoding for the debugging of context-free grammars in natural language processing. The
instances thus generated turn out to have very interesting properties that set them apart
from other benchmark sets and potentially make them a valuable contribution to the SAT
community. At the same time, these properties limit the validity of the observations made
using the interactive MUS extraction prototype for other applications.

A final chapter summarizes the theoretical and practical results of this work, describes the
current state of the prototype implementation, and presents possible directions for future
research about interactive MUS extraction.

2



Chapter 2
Preliminaries

This chapter lays the theoretical and technical foundations for the work presented in this
thesis. It also contains the bigger part of the discussion of previous work. Starting with
a concise recapitulation of basic facts about propositional logic and SAT solving, further
sections present relevant parts of the theory behind minimal unsatisfiable cores as well as
basic algorithms for their extraction. The last section presents a few more advanced concepts
and current results from the field of MUS extraction which are also used in this work.

2.1 Propositional Logic

This section contains definitions of the core concepts as well as some basic properties of
propositional logic, to the extent that will be needed in the following chapters. Since some
familiarity with the basic concepts of logic must be presupposed, the main purpose of this
part is to introduce the notational conventions adopted in this thesis.

2.1.1 Syntax and Semantics

For any formal method, we first need to formally specify the syntax and the semantics of
the logical formalism we build upon. The syntax defines how expressions of our logical
language are structured, and the semantics is a formal description of the way in which
such expressions are evaluated with respect to our domain of interest.

To define the syntax of propositional logic, we first need a countably infinite set of variables
V , whose elements we will normally denote by v, v1, v2, . . . . To this we add two constant
symbols > and ⊥ and a set of operators symbols {¬,∧ and ∨}. ¬ is called negation, ∧
conjunction, and ∨ represents disjunction. To indicate the order of execution of these
operators, we will furthermore need bracket symbols ( and ). With these symbols in place,
we define the set of formulae of propositional logic as follows:

Definition 2.1.1. (Syntax of Propositional Logic)

• The constants > and ⊥ are formulae.

• Each variable symbol v ∈ V is a formula.

• For each formula φ, ¬φ is a formula.

• For formulae φ and ψ, (φ ∧ ψ) and (φ ∨ ψ) are formulae.

• Nothing else is a formula.

3



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Variables and constants are also called atoms. A literal is an atom or an atom preceded
by the negation symbol ¬. Literals will usually have the names l1, l2, . . . , whereas the Greek
letters φ and ψ, often with subscripts, will be used for formulae. We will generally handle
brackets liberally, based on the conventional operator precedence ordering ¬ ≺ ∧ ≺ ∨. For
instance, we will interpret a formula φ1 ∨ ¬φ2 ∧ φ3 as φ1 ∨ ((¬φ2) ∧ φ3).

The semantics of propositional logic is defined relative to an assignment ϑ : V → {0, 1} of
variables to the numbers 0 and 1, where 0 represents the truth value “false”, and 1 “true”.
We will encounter both partial and complete assignments in this thesis. The truth value of
a formula φ under a complete assignment ϑ is defined recursively via an evaluation function
eval(φ, ϑ):

Definition 2.1.2. (Semantics of Propositional Logic)
For a complete assignment ϑ and formulae φ, ψ, we define the evaluation function eval by

• eval(⊥, ϑ) := 0 and eval(>, ϑ) := 1

• ∀v ∈ V : eval(v, ϑ) := ϑ(v)

• eval(¬φ, ϑ) := 1− eval(φ, ϑ)

• eval(φ ∧ ψ, ϑ) := min{eval(φ, ϑ), eval(ψ, ϑ)}

• eval(φ ∨ ψ, ϑ) := max{eval(φ, ϑ), eval(ψ, ϑ)}

A complete assignment is also called a model, as it can be taken to represent a state
of affairs. Via the evaluation function, a formula encodes a set of truth conditions for a
model, thereby giving a description of all possible states of affairs where that formula is
true. Some additional terminology is commonly used for talking about the relationships
between formulae and assignments:

Definition 2.1.3. (Satisfaction, Entailment and Equivalence)

• A complete assignment ϑ satisfies or is a model of a propositional formula φ iff φ
evaluates to “true” under the assignment, i.e. eval(φ, ϑ) = 1 holds.

• A formula φ entails another formula ψ if for every complete assignment ϑ with
eval(φ, ϑ) = 1, eval(ψ, ϑ) = 1 holds as well. In this case, we write φ � ψ.

• Two formulae φ and ψ are (semantically) equivalent iff both φ � ψ and ψ � φ hold,
i.e. φ and ψ entail each other. Semantic equivalence is written as ψ ≡ φ.

Note that ψ ≡ φ means that any model of φ must also be a model of ψ, and vice versa.

2.1.2 CNF and Definitional CNF

A range of syntactic transformations can be applied to propositional formulae without de-
stroying semantic equivalence. For instance, the distributivity laws allow nested conjunctions
and disjunctions to be flattened, and De Morgan’s laws can be used to move negation sym-
bols inwards. This syntactic freedom can be exploited to restrict oneself to formulae which
possess certain syntactic properties that facilitate processing.

Some such formula classes with particularly simple structure and useful properties have
received the status of normal forms. Here we will only introduce the normal form which
is most relevant to our purposes, because it is the form that many standard algorithms of
automated reasoning expect their input to be provided in.

4



CHAPTER 2. PRELIMINARIES

Definition 2.1.4. (Clauses and CNF)

• A clause is a formula of the form (l1 ∨ l2 ∨ · · · ∨ lk), i.e. a disjunction of literals. k is
called the size of the clause. We will designate clauses by C1, C2, . . . , and will often
write them as sets of literals C = {l1, . . . , lk}.

• A formula is said to be in Conjunctive Normal Form (CNF) if it has the form
(C1 ∧C2 ∧ · · · ∧Cm), i.e. a conjunction of clauses. We will often treat a CNF formula
as a clause set {C1, C2, ..., Cm}, and use Latin capital letters F and G, possibly with
subscripts, to refer to clause sets.

While it is possible to transform any propositional formula into an equivalent formula in
CNF, during the process the transformed formula can grow exponentially, quickly becoming
intractably large. It can be shown (see [1]) that this problem necessarily occurs in the worst
case of any algorithm which tries to maintain semantic equivalence while transforming ar-
bitrary formulae into CNF.

In our context, however, we will mostly be interested in the question whether a formula is
satisfiable at all, and not whether it has exactly the same models as some other formula. In
this situation, a weaker form of equivalence is sufficient:

Definition 2.1.5. (Equisatisfiability) Two formulae φ1 and φ2 are called equisatisfiable
if φ1 is satisfiable whenever φ2 is.

If maintaining equisatisfiability is enough, we can circumvent the exponential blowup during
CNF transformation using a method which is originally due to Tseitin [2], but is today most
often used in the variant by Plaisted & Greenbaum [3]. The method introduces additional
variables as shortcuts for representing subformulae, but only enforces one direction of the
equivalence conditions used to define these variables:

Definition 2.1.6. (Tseitin Transformation to Definitional CNF)
The Tseitin encoding of a propositional formula φ is a clause set defined as the output of
a function tseitinPos(φ) which is computed recursively as follows:

• var(ψ) := l for a literal ψ = l, and a unique new variable for non-literals

• tseitinPos(l) := tseitinNeg(l) := {} for each literal l

• tseitinPos(¬ψ) := tseitinNeg(ψ) for any formula ψ

• tseitinPos(φ1 ∧ φ2) := {{¬var(φ1, φ2), var(φ1)}, {¬var(φ1, φ2), var(φ2)}}
∪ tseitinPos(φ1) ∪ tseitinPos(φ2) for any two formulas φ1, φ2

• tseitinPos(φ1 ∨ φ2) := {{¬var(φ1, φ2), var(φ1), var(φ2)}}
∪ tseitinPos(φ1) ∪ tseitinPos(φ2) for any two formulas φ1, φ2

• tseitinNeg(φ1 ∧ φ2) := {{var(φ1, φ2),¬var(φ1),¬var(φ2)}}
∪ tseitinNeg(φ1) ∪ tseitinNeg(φ2) for any two formulas φ1, φ2

• tseitinNeg(φ1 ∨ φ2) := {{var(φ1, φ2),¬var(φ1)}, {var(φ1, φ2),¬var(φ2)}}
∪ tseitinNeg(φ1) ∪ tseitinNeg(φ2) for any two formulas φ1, φ2

Plaisted & Greenbaum give the proof that this algorithm transforms any formula to CNF
while maintaining equisatisfiability for the more general case of first-order logic. A variant
of the Tseitin Transformation will be used later when an interactive MUS extraction method
for formulae in CNF is generalized to arbitrary propositional formulae.

5



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

2.1.3 SAT Solving

With the syntax and semantics of propositional logic in place, we can now turn to the
computational aspects that the work in this thesis builds on. We start by formally defining
the SAT problem, followed by a short overview the field of SAT solving. Then, the custom
variant of the SAT solver MiniSat by Christian Zielke, which the implementations builds
on, is described in some detail.

2.1.3.1 The SAT Problem

Definition 2.1.7. (Satisfiability and Validity) A propositional formula φ is satisfiable
if it is satisfied by at least one model. If no model satisfies φ, we say that φ is unsatisfiable,
and we write 2 φ. If φ is satisfied by every model, we say it is valid, and we write � φ.

Definition 2.1.8. (The Propositional Satisfiability Problem (SAT))
The SAT problem is the problem of deciding whether a propositional formula φ is satisfiable
or unsatisfiable. Any formula φ for which we want to solve the SAT problem, especially in
the context of benchmark sets, is commonly called a SAT instance.

Unlike in the case of more expressive logics, the number of possible models over the set of
variables occurring in some formula is finite. Furthermore, by induction over the formula
size it is clear that eval terminates after a finite number of steps on each model. These two
observations already imply that the SAT problem is decidable, so there exists a procedure
which can decide in a finite number of steps whether an arbitary propositional formula is
satisfiable or unsatisfiable. Such a procedure is called a SAT solving algorithm.

The SAT problem is of central importance to computer science because it is the prototyp-
ical case of an NP-complete problem. Many NP-complete problems can very directly be
translated to SAT, and SAT has been reduced to many problems in order to prove their
NP-completeness. Since it is still unknown whether efficient procedures for NP-complete
problems exist, we must assume that it is impossible to develop a SAT solving algorithm
which is polynomial in the worst case.

2.1.3.2 SAT Solving

Although SAT solving is NP-complete, SAT instances derived from real-world problems
are often a lot more easily solvable than one would expect from this theoretical result. In
fact, modern SAT solvers such as Glucose [4], PrecoSAT [5], and SATzilla [6] can solve many
SAT instances from industrial applications, often with millions of clauses, in reasonable time.

A variety of SAT solving algorithms and strategies have been proposed and implemented
during the past decades. The single most successful paradigm builds on the classic DPLL
algorithm (see [7] for the original exposition) enhanced by conflict-directed clause learning
in a variant first introduced by Marques-Silva and Sakallah [8]. The basic mechanisms of
these algorithms, such as unit propagation and refutation proofs by resolution, must be
presupposed here for reasons of brevity. For a good overview of these topics, the reader is
referred to the discussion in [9].

The standard input format for SAT instances is the DIMACS format, a simple plain text
format for representing propositional formulae in CNF which arose in connection with the
international SAT competition [10], a biannual event where SAT solvers are compared and
evaluated on a variety of benchmarks. A SAT solver minimally outputs whether the input
instance is satisfiable or not. In the satisfiable case, most SAT solvers optionally specify a
satisfying assignment for the input formula. Some SAT solvers are also able to print out
some sort of explanation in the unsatisfiable case, e.g. a refutation proof trace or a list of
the new clauses derived during conflict-directed clause learning.

6



CHAPTER 2. PRELIMINARIES

2.1.3.3 A Custom Variant of MiniSat

The prototype implementation of interactive MUS extraction described in this thesis builds
on the solver MiniSat by Niklas Eén and Niklas Sörensson [11], which is one of the most
popular freely available SAT solvers because it is small, extensible, and well-documented
[12] while still displaying competitive performance.

Since some of the algorithms we will employ require us to analyse proofs in the unsatisfiable
case, we build on a custom variant of MiniSat version 1.14 as the most recent version for
which a variant with support for proof logging is available. Christian Zielke has extended
this version by three additional features in order to fulfil the requirements posed to a SAT
solver by the prototype implementation.

Most importantly, Zielke’s version allows to specify an additional input file with a vector of
so-called freeze literals, which can be seen as a predefined partial assignment the solver
may not modify while searching for a model. This mechanism makes it possible to deactivate
clauses in a SAT problem enhanced by selector variables, i.e. an additional variable for
each clause whose negation is appended to the clause it selects. If the selector variable is set
to false in the freeze file, the corresponding clause instantly evaluates to true, with the same
consequences as if we had created a new input file with that clause missing. Temporarily
cutting away parts of a SAT instance using the selector variable mechanism is a lot faster
than it would be to copy the entire SAT instance into a new file each time we want to select
a different subproblem.

The second extension concerns the proof format. By default, the proof logging option of
MiniSat version 1.14 produces a list of learned clauses along with references to the clauses
that took part in deriving each new clause. Zielke extended this proof output by a list of the
resolution variables used in these derivations, which was needed for a new MiniSat-based
implementation of the autarky finding algorithm discussed in Section 2.4.3.2.

The third extension adds support for a separate output of learned literals. Whereas in the
unsatisfiable case, these could also have been extracted from the existing proof logging out-
put, the adapted version also prints out the units which are derived and unit-propagated in
the satisfiable case. In later chapters, this output of learned units is used as one alternative
for implementing the meta-learning enhancement to interactive MUS extraction.

Many of the algorithms presented in this thesis build on calls to a SAT solver. In pseu-
docode, a call to the custom variant of MiniSat will be written 〈res, proof,model, units〉 :=
sat(F, frzLits) for a CNF formula F and a set of freeze literals frzLits. res will receive
one of the values sat or unsat to represent satisfiability and unsatisfiability. In the unsat
case, proof will represent a proof object, on which we can execute a function used clauses
to retrieve the subset F ′ ⊆ F which was used by MiniSat to prove unsatisfiability, and a
function used vars to retrieve the resolution variables. In the sat case, model will be a
non-empty set of literals representing a total assignment which satisfies F . In both cases,
units contains the unit clauses derived during the solver run.

2.2 Minimal Unsatisfiable Cores

As mentioned in the introduction, the main contribution of this thesis is the development
of an interactive approach to the extraction of minimal explanations for the unsatisfiability
of propositional formulae. The most popular and direct approaches to generating such
explanations are based on extracting what is called a minimal unsatisfiable core (MUC),
which in most general terms can be defined as a subproblem of the original problem that

7



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

is still unsatisfiable, but only has satisfiable subproblems. There are quite a few different
possibilities to formally define such cores, depending on the scenario and on the form in which
the SAT problems are given. Three types of MUCs which are of particular importance to
our purposes are motivated and formally defined in this section.

2.2.1 Minimal Unsatisfiable Subsets of CNF Formulae

The intuitive notion of a MUC is easiest to define if the unsatisfiable formula is already
represented as a set of constraints from which we can select arbitrary subsets. This is of
course the case for propositional formulae in CNF. In this context, we can define MUCs in
the obvious way as minimal unsatisfiable subsets of a clause set:

Definition 2.2.1. (Minimal Unsatisfiable Subset) A subset F ′ ⊆ F of an unsatisfiable
clause set F is a minimal unsatisfiable subset (MUS) of F if it is unsatisfiable, and
every subset F ′′ ⊂ F ′ is satisfiable.

In propositional logic, conjunction is monotonic with respect to unsatisfiability, meaning
that an unsatisfiable clause set cannot be made satisfiable by adding additional clauses, and
that a satisfiable clause set stays satisfiable when we remove clauses from it. This leads to
an important local property of MUSes, which can also act as an alternative definition that
is a lot easier to check algorithmically:

Property 2.2.2. (Alternative Characterization of MUSes) An unsatisfiable clause
set F is a MUS iff it is unsatisfiable, and for every clause C ∈ F , F\{C} is satisfiable.

SAT instances which occur and need to be solved in applications often consist of a general
part describing some well-tested software or hardware system which stays the same across
instances, and a particular part encoding one specific combination of settings or inputs which
is different for every instance. In such a situation, one often desires minimal explanations in
terms of clauses from the particular part only, since the clauses from the general part tend
to only extend the MUS size without explaining much.

The standard way to axiomatize the desired type of MUS in such a situation is to partition
the instance into a set of relevant clauses (often corresponding to the part that changes
across instances) and a set of don’t-care clauses containing all the clauses that wouldn’t
explain much if they were part of a MUS. If we then want to find unsatisfiable subsets which
are minimal in terms of a set of relevant clauses, we use the following definition, which
simply includes all don’t-care clauses into every US, but does not count them:

Definition 2.2.3. (MUS with respect to relevant clauses) Let F be an unsatisfiable
clause set, and R ⊂ F be a set of relevant clauses. A subset R′ ⊆ R of the relevant clauses is
a MUS of F with respect to R if R′∪F\R is unsatisfiable, and for every subset R′′ ⊂ R′,
R′′ ∪ F\R is satisfiable.

This definition can also be expressed (and implemented) in terms of clause removals from
the set R, in full analogy with the characterization of standard MUSes.

2.2.2 GMUSes for Group CNF

In many applications, some parts of a system are best treated as blackboxes, as we are often
not interested in the internal workings of well-tested simple components, but only in the
behaviour and the interactions of such components. For instance, in hardware verification,
the behaviour of an adder or a multiplexer will be described by a set of clauses encoding the
boolean function it computes. If we want to locate some error in the wiring between such
components, having many clauses from the internal representations of these components as
part of a MUS will make the relevant higher-level problem much harder to spot.

8



CHAPTER 2. PRELIMINARIES

The existence of groups of clauses within a CNF formula which belong more closely together
was formalized by Alexander Nadel [13] in the notion of a group SAT instance, and a
type of MUS which only enforces minimality with respect to the contained groups is then
straightforwardly defined:

Definition 2.2.4. (Group SAT instance) A group SAT instance is a SAT instance
F which is partitioned into (i.e. the disjoint union of) a set of don’t care clauses D, and a
number of clause sets G1, . . . , Gk which are called groups.

Definition 2.2.5. (Group MUS) A group MUS (GMUS) of a group SAT instance
F = D∪

⋃
G with G = {G1, . . . , Gk} is a subset G′ ⊆ G such that D∪

⋃
G′ is unsatisfiable,

but for every G′′ ⊂ G′, D ∪
⋃
G′′ is satisfiable.

Because of the high relevance of GMUS extraction for practical applications, the SAT com-
petition, which introduced a MUS track for the first time in 2011, now features separate
subtracks for plain MUS extraction and GMUS extraction.

2.2.3 Minimal Unsatisfiable Cores in Non-Clausal Formulas

Whereas most current work on MUC finding concentrates on the development of efficient
methods and tools for MUS and GMUS extraction, there are some applications for which
other types of MUCs are potentially more interesting. Though any propositional formula
can be transformed into an equivalent (or equisatisfiable) clause set, much of the structure
of the original formula tends to get lost in the process. A formula may originally have a
modular and often human-readable structure, but the clauses resulting from CNF conversion
are barely interpretable in isolation, and often impossible to group into meaningful subsets,
because the application of distributivity laws tends to spread variables all over the clause
set which were formerly only used in one small part of the formula.

One idea to approach this problem is to define unsatisfiable cores not in terms of clause
subsets, but in terms of subformulae. The obvious approach is to view non-clausal formulae
as syntactic trees, and to define a minimal unsatisfiable formula as an unsatisfiable formula
that becomes satisfiable as soon as we remove an arbitrary subtree. Viktor Schuppan [14]
presents a formalization of this approach for formulae of the temporal logic LTL. He pro-
poses to distinguish the cases of subtree removal under conjunctive and disjunctive nodes.
The definition of conjunctive and disjunctive nodes refers to the polarity of a node, defined
as positive if the number of negations above that node is even, and negative if it is odd.
By De Morgan’s laws it is clear that a conjunction node of negative polarity needs to be
treated as disjunctive, and vice versa. Schuppan’s definition of tree-based MUCs now builds
on replacing disjunctive subtrees by ⊥, and conjunctive subtrees by >. Note that this is
semantically equivalent to simply removing the respective disjunct or conjunct, although
syntactically, it retains some of the structure of the input formula.

The problem is that this definition lacks an important desirable property of clause-based
MUSes. Removing a disjunct from a disjunctive node makes the formula more instead of
less constrained, meaning that a satisfiable formula can become unsatisfiable again when a
subtree is removed, i.e. we lose the desired monotonicity. Unsatisfiable formulae which are
minimal according to this definition therefore tend to reduce all disjunctive nodes to just
one child, often leaving only a meaningless skeleton around a pair of complementary literals
that occurred at arbitrary positions in the original formula, which does not at all explain
the original formula’s unsatisfiability.

As part of their comprehensive work on the theory of MUS extraction [15], Hans Kleine
Büning and Oliver Kullmann give an alternative definition of minimal unsatisfiable formulae
with nicer properties. They circumvent the need to consider polarities by operating only on

9



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

formulae in negation normal form (NNF), where negation may only occur immediately
in front of atoms. They then define an or-subtree of the formula tree to be a subtree whose
root is either a disjunction node or a literal immediately below a conjunction node. The
or-subtrees are exactly the subtrees which can be removed without any risk of making a
satisfiable formula unsatisfiable again. This leads to the following definition:

Definition 2.2.6. (Minimal Unsatisfiable Formula) A propositional formula φ in NNF
is called minimal unsatisfiable if φ is unsatisfiable, and eliminating an arbitrary or-subtree
from its formula tree makes φ satisfiable.

This definition is of course trivial to extend to non-NNF formulae by re-introducing the
concept of polarity. An or-subtree is then simply defined as having a disjunction root of
positive polarity or a conjunction root of negative polarity, or being a literal immediately
below a conjunction root of positive or a disjunctive root of negative polarity. Nevertheless,
we will use the NNF variant in Chapter 5 for our discussion of interactive MUC extraction
in non-CNF formulae.

2.3 Basic MUS Extraction Algorithms

The notion of a MUS leads to several different algorithmic tasks, which considerably differ in
complexity and achievable performance, but also in the methods used for approaching them.

The easiest task is to find a single MUS, and is commonly just called MUS extraction.
Note that a minimal unsatisfiable subset is not required to be the smallest in the sense that
no smaller unsatisfiable subsets exist. This reduces the task to an essentially linear traversal
of the search space until we arrive at a subset which fulfills the definition. This task can be
solved quite efficiently in practice, and the most popular methods and techniques to achieve
this are the main subject of this section.

A more ambitious goal is to find a MUS of minimum cardinality, which is also called a
smallest MUS (SMUS) or a minimum unsatisfiable subset. Algorithms in this field
first relied on non-chronological backtracking [16], but a branch-and-bound approach [17]
has turned out to be a lot more efficient. The practical relevance of this problem seems to
be quite limited, as a MUS of minimal size is a lot harder to find than an arbitrary MUS,
but often does not contain a significant amount of additional information.

Finally, the most ambitious task is to exhaustively enumerate all MUSes of an unsatisfiable
clause set. Existing approaches to this problem rely on clever enumeration to economize
the checking of subset candidates [18], or on exploiting the duality of MUSes and maxi-
mal satisfiable subsets in an interleaved [19] or a two-level [20] approach to a hypergraph
transversal problem. Given the fact that a clause set can contain exponentially many dif-
ferent MUSes, no efficient general method for finding all MUSes can exist. Even in large
industrial instances, however, the number of different MUSes is often surprisingly low, giving
some practical relevance to the existing tools for finding all MUSes, because the set of all
MUSes contains comprehensive information about an error’s nature.

While the work in this thesis builds on the existing algorithms for extracting a single MUS,
some degree of non-determinism will be added by the interactive search interface. In prin-
ciple, the interface will make the entire search space accessible to the user, although it will
of course be impractical to exhaust it.

10



CHAPTER 2. PRELIMINARIES

2.3.1 MUS Extraction and the Powerset Lattice

In the experience of the author, it helps to explicitly conceive the task of MUS extraction
as a search task in the powerset lattice, i.e. the set of all subsets connected by the subset
relation. As our running example for our discussion of MUS extraction, we will take a set
of three clauses {C1, C2, C3}, causing our search space to look like this:

{C1, C2, C3}

{C1, C2} {C1, C3} {C2, C3}

{C1} {C2} {C3}

{}

For navigating such powerset lattices, by convention we will speak of downward movement
when we remove elements to arrive at smaller subsets, and of upward movement to talk
about the addition of elements, shifting to larger subsets. Note that before the search pro-
cess starts, we know that the top node of the lattice represents an unsatisfiable set, and
that the bottom node is trivially satisfiable. Between these two extremes, we find a vast
unexplored landscape of satisfiable and unsatisfiable subsets.

Monotonicity implies that no subset of a satisfiable clause set can be unsatisfiable, so there
will always be a transition boundary between unsatisfiable subsets in the upper part,
and satisfiable subsets in the lower part of the powerset lattice. In some unsatisfiable subset
F ′, a clause C ∈ F ′ such that F ′\{C} becomes satisfiable is called a critical clause or a
transition clause. According to Property 2.2.2, a MUS is therefore an unsatisfiable subset
where all clauses are critical, meaning that the minimal unsatisfiable subsets are positioned
along the transition boundary. The task of finding one or more MUSes can thus be conceived
as efficiently traversing the powerset lattice in search of this boundary. Assuming that our
clause set has the two MUSes {C1} and {C2, C3}, the powerset lattice with the critical
clauses and the transition boundary marked in red would look like this:

{C1, C2, C3}

{C1, C2} {C1, C3} {C2, C3}

{C1} {C2} {C3}

{}

Another important fact about the search space is that above the transition boundary, crit-
icality is monotonic under clause removal, and non-criticality is monotonic under clause

11



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

addition. This means that during the search, whenever we find out that some clause is crit-
ical in an US, we know that it will stay critical in all its unsatisfiable subsets, and whenever
some clause isn’t critical in some US, it means that it will not have been critical in any US
on the path from the current US up to and including the original clause set.

2.3.2 Deletion-Based Approaches

Many of the most performant algorithms for MUS extraction from CNF instances can be
classified as deletion-based. In such algorithms, starting from some unsatisfiable subset,
we gradually try to remove clauses while making sure that the candidate set stays unsat-
isfiable. When the candidate set cannot be further reduced, we have arrived at a MUS by
the alternative definition. In the powerset lattice, this corresponds to starting at the top
and moving down towards the transition boundary, testing for and detecting the transition
clauses from above.

The advantage of deletion-based approaches is that we can make larger reduction steps by
analysing the refutation proofs produced by the SAT solver. If we generate such a proof
and only select those clauses which were used in it as axioms, we are guaranteed to receive
an unsatisfiable subset smaller or equal to the reduced clause set.

This technique is often referred to as clause set refinement in the literature. It was made
popular by Alexander Nadel [13], who uses it in the following simple, but very efficient
algorithm for deletion-based MUC extraction:

Algorithm 1 Deletion-Based MUS Extraction Using Selector Variables

Input: an unsatisfiable SAT instance F = {C1, . . . , Cm} in CNF
Output: some minimal unsatisfiable subset S ⊆ F
F ′ := {} . stores the problem extended by meta variables
for each clause Ci ∈ F do

F ′ := F ′ ∪ {Ci ∨ ¬si} for a new selector variable si
end for
〈res, proof, ϕ, units〉 := sat(F ′, {s1, . . . , sm})
for each Cj /∈ used clauses(proof) do . clause set refinement

F ′ := F ′ ∪ {{¬sj}}
end for
US := {i | Ci ∈ used clauses(proof)} . the clauses of unknown status
MUS := {} . collects critical clauses
while (US is not empty) do

k := select one index ∈ US\MUS
US := US\{k}
〈res, proof, ϕ, units〉 := sat(F ′, {si | i ∈ US ∪MUS}) . reduction attempt
if res = sat then . unsuccessful reduction, so k is critical

MUS := MUS ∪ {k}
else

US := {i | Ci ∈ used clauses(proof)} . clause set refinement after successful
reduction

for each Cj /∈ used clauses(proof) do
F ′ := F ′ ∪ {{¬sj}}

end for
end if

end while
return S := {Ci | i ∈MUS}

12



CHAPTER 2. PRELIMINARIES

In the pseudocode, MUS collects the indices of clauses known to be critical, and US con-
tains the indices representing the current candidate US. The complexity of MUS extraction
algorithms is commonly measured in the number of necessary SAT calls. Obviously, the
number of SAT calls for this algorithm is in O(m), i.e. linear in the size of the input problem.

For the prototype implementation of interactive MUS extraction, parts of an implemen-
tation of this algorithm by Martin Lahl [21] were reused. For the purposes of interactive
reduction, the implementation had to be extended by explicit representation and storage
of the intermediary USes as well as the collected criticality information. Furthermore, the
algorithm’s data structures and the interface to MiniSat were adapted to allow for running
several deletion-based MUS extraction processes concurrently. The resulting parallel system
architecture is detailed in Section 3.4.1.

Note that Nadel’s algorithm can trivially be adapted (and was in fact originally designed)
for the case of GMUS. We simply introduce only one selector variable for each group, and
construct F ′ by extending all clauses of the same group by the same selection variable. This
ensures that the clauses of one group are always removed from the candidate set together.
As the work in this thesis will show, the underlying idea of steering and modifying deletion-
based MUS extraction by manipulating the selector variables can also be exploited in other
interesting ways.

2.3.3 Insertion-Based Approaches

A second class of MUC extraction algorithms works in a manner dual to the deletion-based
approach. In insertion-based algorithms, we start with a satisfiable subset of the con-
straint set, gradually expanding it by additional clauses until our candidate set becomes
unsatisfiable. In the powerset lattice, we therefore start at the bottom and move up towards
the transition boundary, testing for and detecting transition clauses from below.

While they tend to require a higher number of solver calls, an advantage of insertion-based
approaches is that they profit immensely from the use of incremental SAT solving. An
incremental SAT solver can store the data it derived while processing a clause set, and use
it to process further input problems more efficiently if each problem only differs from the
previous problem by the addition of clauses. In an insertion-based approach which gradually
adds more clauses to a candidate set, the individual calls to a SAT solver can therefore be
performed incrementally at a much lower cost.

The first algorithm for insertion-based MUS extraction was presented by Hans van Maaren
and Siert Wieringa [22]. Their algorithm operates in rounds, repeatedly inflating a sat-
isfiable under-approximation until a new transition clause is found. During the inflation,
redundant clauses are detected and pruned away for the next iteration. For detecting redun-
dant clauses, the algorithm makes use of the observation [23] that a clause C is redundant in
a CNF formula F if F\{C}∪¬C is unsatisfiable, where ¬C for a clause C = {l1, . . . , lk} is a
shorthand for the set of unit clauses {{¬l1}, . . . , {¬lk}} obtained by negating C. This result
can be exploited to create a more constrained SAT instance without losing any satisfying
assignments, often considerably reducing the time needed for each SAT solver run.

The last non-redundant element that could be added during inflation before F ′′ becomes
unsatisfiable, is identified as a transition clause. Note that the outer while loop terminates
when lastAppended stays empty, i.e. as soon as during inflation, every element remaining
in F ′\MUS was found to be redundant. If k is the size of the MUS we find, the number of
SAT solver calls is in O(k ·m), since each iteration of the outer while loop adds an element
to MUS, and the inner for loop needs to iterate through the entire input clause set in the
worst case. In practice, F ′\MUS will clearly be much smaller than that.

13



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Algorithm 2 Insertion-Based MUS Extraction

Input: an unsatisfiable SAT instance F = {C1, . . . , Cm} in CNF
Output: some minimal unsatisfiable subset S ⊆ F
MUS := {} . MUS under construction, collects transition clauses
F ′ := F . candidate transition clauses
while (|MUS| < |F ′|) do

F ′′ := MUS
lastAppended := {}
for Ci ∈ F ′\MUS do
〈res, proof, ϕ, units〉 := sat(F ′′ ∪ ¬Ci, {}) . incremental redundancy checking
if res = sat then

F ′′ := F ′′ ∪ {Ci}
lastAppended := {Ci} . remember the last non-redundant element

end if
end for
MUS := MUS ∪ lastAppended
F ′ := F ′′

end while
return MUS

Marques-Silva and Lynce [24] present a variant which improves the number of SAT solver
calls to O(m) for this paradigm as well, showing that insertion-based approaches are not
necessarily slower than deletion-based ones. The savings are due to the use of relaxation
variables, which work just like selection variables except that a ≤ 1 constraint over them
ensures that only one clause is added to MUS in each iteration. If more than one relaxation
variable is needed to achieve satisfiability, this implies that we are exploring the search space
towards more than one MUS, so one is selected and the other one explicitly blocked.

2.3.4 A Recent Hybrid Approach

In [24], Marques-Silva and Lynce emphasize that unlike SAT solvers, algorithms for MUC
extraction have not yet reached industrial strength. As a first step towards a remedy of
this situation, they present a novel hybrid approach to MUC extraction, which integrates a
great variety of ideas from earlier approaches. Apart from being the state of the art, this
hybrid algorithm is of further interest to our discussion here because it blurs the distinc-
tion between the previous two paradigms. While the general layout of the algorithm is still
insertion-based, techniques from the deletion-based approach such as clause set refinement
are used to efficiently manage a set of candidate transition clauses. The method remains
heavily inspired by van Maaren and Wieringa in that it adapts their efficient redundancy
check. A disadvantage of the hybrid approach is that it cannot make use of incremental
SAT solving any more.

Note that unlike in the purely deletion-based approach, we cannot use clause set refinement
every time we managed to throw out a candidate transition clause. The reason for this is
that the redundancy check extends the SAT instance by additional unit clauses which cause
a spurious unsatisfiability if Ci was redundant, but it can happen that the clause was only
redundant under the condition that some other elements of F ′ were part of the checked in-
stance, which are however not needed for the unsatisfiability proof as long as the unit clauses
are there. Only if none of these unit clauses was involved in proving the unsatisfiability can
we be sure that the reduced set was still unsatisfiable in the sense needed for clause set
refinement, i.e. without needing additional elements of F ′.

14



CHAPTER 2. PRELIMINARIES

Algorithm 3 Hybrid MUS Extraction

Input: a trimmed unsatisfiable SAT instance F = {C1, . . . , Cm} in CNF
Output: some minimal unsatisfiable subset S ⊆ F
MUS := {} . MUS under construction, collects transition clauses
F ′ := F . candidate transition clauses
while (F ′ is not empty) do

Ci := selectClause(F ′)
F ′ := F ′\{Ci}
〈res, proof, ϕ, units〉 := sat(MUS ∪ F ′ ∪ ¬Ci, {}) . redundancy checking
if res = sat then

MUS := MUS ∪ {Ci}
else if used clauses(proof) ∩ ¬Ci = ∅ then

F ′ := used clauses(proof)\MUS . clause set refinement
end if

end while
return MUS

Concerning the complexity, it is clear that each clause from the input formula is analysed
exactly once, which means that the number of SAT solver calls is in Θ(m). In the practical
experiments conducted by Marques-Silva and Lynce [24], their hybrid algorithm performs
significantly better than all previous approaches on a range of benchmarks.

2.4 Advanced Concepts in MUS Extraction

In the last section of this introductory chapter, we turn our attention to three further relevant
branches of current research on MUS extraction. The first is an important algorithmic
technique which represents a breakthrough in better exploiting the information returned by
the SAT solver during MUS extraction, the second consists of a very useful classification of
clauses in unsatisfiable clause sets, and the third concerns some deeper theoretical results
about the nature of the MUS extraction problem.

2.4.1 Model Rotation

Marques-Silva and Lynce [24] present an additional very useful technique for speeding up
deletion-based or hybrid MUS extraction, which uses the model returned by the SAT solver
to get a lot more information out of unsuccessful reduction attempts. We present a variant
called recursive model rotation because it continues to flip assignments in the model and
then checks whether each model variant satisfies all but a single isolated clause, which is
thereby found to be critical:
Model rotation can and should be executed after each unsuccessful reduction attempt in
deletion-based or hybrid MUS extraction, and it significantly decreases the number of SAT
solver calls necessary to arrive at a MUS. Intuitively, the procedure works because a critical
clause Cj in an unsatisfiable clause set F is characterized by having an associated assign-
ment, i.e. an assignment ϕ which satisfies F\{Cj}, but not Cj . Model rotation exploits
this property by cheaply deriving from an associated assignment other assignments which
can quickly be tested for associatedness with other clauses. A formal proof of the fact that
a clause is critical iff it has an associated assignment can be found as a prerequisite of the
correctness proof for recursive model rotation by Belov & Marques-Silva [25].

Siert Wieringa [26] gives an alternative description of recursive model rotation based on
traversals of the flip graph, achieves further improvements to the algorithm based on these
insights, and provides some analysis of benchmark instances which (partially) explain its

15



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Algorithm 4 Recursive Model Rotation

Input: unsatisfiable F = {C1, . . . , Cm}, critical clause Ck ∈ F , model ϕ of F\{Ck}
Output: a set of further critical clauses Crit ⊆ F
Crit := {}
for each variable v in Ck do

ϕ(v) := 1− ϕ(v) . flip the variable in the model
nSat := {Ci | ϕ(Ci) = 0} . collect clauses not satisfied by model
if nSat = {Cj} for some 1 ≤ j ≤ m then . ϕ is an associated assignment for Cj

Crit := Crit ∪ {Cj}
Crit := Crit ∪modelRotation(F,Cj , ϕ) . recursive case with new critical clause

else
ϕ(v) := 1− ϕ(v) . flip the variable back

end if
end for
return Crit

high usefulness in practice. Marques-Silva and Lynce [24] as well as Lahl [21] determine in
benchmarks that recursive model rotation is the single most effective technique for speeding
up MUS extraction, motivating its implementation and use for this thesis.

2.4.2 Classification of Clauses

Careful inspection of the structure of typical MUS extraction problems shows that all the
different MUSes of an unsatisfiable SAT instance tend to overlap, containing a common
core set of clauses, which is satisfiable on its own. To arrive at some MUS, this common
core must be made unsatisfiable by adding some combination of further clauses. Kullmann,
Lynce and Marques-Silva [27] build on this observation to formally distinguish three degrees
of necessity for clauses with respect to MUSes, each with a corresponding dual notion of
clause redundancy. These definitions give us some very useful vocabulary for talking about
the role of different clauses in interactive MUS extraction. In the entire section, we use F
for some unsatisfiable SAT instance, and MU(F ) for the set of all the MUSes of F .

2.4.2.1 Necessary and Unnecessary Clauses

Definition 2.4.1. (Necessary Clause) A clause C ∈ F is called necessary if every
resolution refutation of F must use C as an axiom. This is the case iff F\{C} is satisfiable.

The set of necessary clauses forms the mentioned core that every MUS must contain, and
can therefore be written as

⋂
MU(F ). Given m clauses in F ,

⋂
MU(F ) is trivial to compute

by m calls to a SAT solver, since we can simply check if F\{C} is satisfiable for each clause
C. Using model rotation in the satisfiable and proof analysis in the unsatisfiable case, this
process can of course be enormously accelerated.

The dual to this strongest notion of necessity is a very weak notion of redundancy of a clause,
only demanding that unsatisfiability is maintained when it is the single clause we remove
from the original F, but not ensuring that any two unnecessary clauses can be removed at
the same time:

Definition 2.4.2. (Unnecessary Clause) A clause C ∈ F is called unnecessary if there
is some resolution refutation of F which does not use C as an axiom. By completeness of
resolution, this is the case iff F\{C} is still unsatisfiable.

16



CHAPTER 2. PRELIMINARIES

2.4.2.2 Potentially Necessary and Never Necessary Clauses

Definition 2.4.3. (Potentially Necessary Clause) A clause C ∈ F is called potentially
necessary if there exists an unsatisfiable F ′ ⊆ F such that C is critical in F ′.

Potentially necessary clauses are thus all clauses which are either necessary, or become crit-
ical when some other clauses are removed. Since MUSes are USes in which all clauses are
critical, this means that all clauses in a MUS must be at least potentially necessary in
the original formula, so we can write the set of all potentially necessary clauses in F as⋃
MU(F ). This set could serve to define the problem of finding an explanation of infeasibil-

ity in a canonical way, since it contains everything that is needed to explain the infeasibility,
but has exactly one solution. Unfortunately,

⋃
MU(F ) appears to be very hard to compute,

although the complexity is still unknown. According to Kullmann et al. [27], the best ap-
proaches do not go much beyond employing an efficient algorithm for computing all MUSes,
and then directly computing their union.

The corresponding notion of redundancy is already a lot stronger than that of an unnecessary
clause, as while still allowing that the clause be used in some refutation proof of F , it
demands that it must not be necessary for proving the unsatisfiability of any subset of F :

Definition 2.4.4. (Never Necessary Clause) A clause C ∈ F is called never necessary
if in all unsatisfiable subsets F ′ ⊆ F , C is unnecessary.

The definition implies that we can safely remove any combination of clauses known to be
never necessary, although this might make the unsatisfiability a lot harder to prove. Never
necessary clauses can thus safely be thrown away when looking for MUSes, although a little
caution is in order, because they can contribute to much shorter proofs of unsatisfiability,
which might be a lot easier to understand than the proof of a MUS. We will not explore this
issue further here, as it is a general problem with the approach of taking minimal subsets
as formal approximations to small explanations of infeasibility.

2.4.2.3 Usable and Unusable Clauses

Definition 2.4.5. (Usable Clause) A clause C ∈ F is called usable in F if there exists
some tree resolution refutation of F which uses C as an axiom.

This weakest notion of necessity states that the clause may be useful for shortening the
unsatisfiability proofs for some USes, but its addition does not make any satisfiable subset
unsatisfiable. The set of usable clauses of a clause set F is called its lean kernel Na(F ),
and a clause set F with F = Na(F ) is called lean. If a clause set is not lean, the clauses
outside its lean kernel are called unusable, which we define in the obvious way:

Definition 2.4.6. (Unusable Clauses) A clause C ∈ F is called unusable in F if there
exists no tree resolution refutation of F which uses C as an axiom.

The unusable clauses are those which cannot be part of any MUS, and they do not even
potentially help to explain the unsatisfiability of any US. A useful preprocessing technique,
especially if we are interested in finding more than one MUS, is to prune away all unusable
clauses by finding and only operating on the lean kernel. A reasonably efficient method of
extracting the lean kernel is presented in the following section.

2.4.3 Autarkies and Autarky Reduction

The most advanced current theory of minimal unsatisfiable subsets, chiefly developed by
Oliver Kullmann in a series of papers culminating and summarized in [15], builds on the
notion of autarkies, which can informally be viewed as partial assignments that satisfy all the
clauses they touch. Autarkies are a central concept for formalizing redundancies, and can

17



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

be used to detect clauses which are in some sense independent of an infeasibility. Some very
basic concepts and results about autarkies, along with the particularly useful application to
lean kernel extraction, are introduced in this section.

2.4.3.1 Autarkies

Definition 2.4.7. (Autarkies and autark subsets) A partial assignment ϕ is an au-
tarky of an unsatisfiable clause set F if any clause C ∈ F which contains variables assigned
by ϕ is satisfied by ϕ. A subset F ′ ⊂ F is called autark if there is an autarky ϕ such that
F ′ = F\(ϕ ∗ F ), where ϕ ∗ F denotes the result of applying ϕ to F .

Autarkies are closed under composition, giving rise to a submonoid Auk of autarkies in the
monoid of partial assignments. On the elements of this autarky monoid, a partial order
can additionally be defined through the subset relation. The maximal elements of this par-
tial order are called maximal autarkies. In general, there can be more than one maximal
autarky for a clause set F .

Dually, we can see the autark subsets as a partial order via the subset relation. The empty
set is an autark subset of F , and for autark subsets F1 and F2, the union F1 ∪ F2 is again
autark. This implies that there is a unique largest autark subset of F , which can be written
as F\(ϕ ∗ F ) for any maximal autarky.

2.4.3.2 Finding Maximal Autarkies

Building on his previous work on autarky theory, Oliver Kullmann [28] introduced a simple
algorithmic approach to determining a maximal autarky of a clause set. For a set of variables
V and a clause set F , the operation V ∗ F in the pseudocode is executed by removing from
all clauses in F all positive or negative occurrences of any variable from V , and ⊥ represents
the empty clause. Note that V ∗ F is not unit propagation, since literals of both polarities
are crossed out, and clauses are only removed if they become empty in the process.

Algorithm 5 Maximal Autarky Extraction

Input: an unsatisfiable SAT instance F = {C1, . . . , Cm} in CNF
Output: the maximal autarky ϕ for F
〈res, proof, ϕ, units〉 := sat(F, {})
while (res = unsat) do

V := used vars(proof)
F := V ∗ F \ {⊥}
〈res, proof, ϕ, units〉 := sat(F, {})

end while
return ϕ

The formal proof of the algorithm’s completeness and correctness relies on the comprehensive
theory elaborated by Oliver Kullmann [29]. Only some core observations can be discussed
here for reasons of brevity. The first is that if by repeatedly crossing out the resolution
variables used in a proof, we arrive at a satisfiable clause set, then any partial assignment
which only touches the remaining variables will be an autarky, so that the algorithm can
only return an autarky. Secondly, Theorem 3.16 in [29] says that F has no autarky left iff
every clause left in F can be used for some resolution refutation of F (i.e. every clause is
usable), showing that the result is maximal.

A very interesting alternative approach to finding a maximal autarky was presented by Mark
Liffiton and Karem Sakallah [30]. Their algorithm frames the task as an explicit optimiza-
tion problem in the space of partial assignments, and relies on a clever instrumentation

18



CHAPTER 2. PRELIMINARIES

scheme to give a SAT solver the ability to enable and disable both clauses and variables
during standard search. A maximal autarky is then extracted using AtMost constraints for
the assignment size as a sliding objective for optimization. This approach is reported to
outperform Kullmann’s algorithm, but it arguably is a lot more challenging to implement,
and autarky extraction is not time-critical in the context of this thesis.

2.4.3.3 Reduction to the Lean Kernel

A very important characterisation of the lean kernel Na(F ) is that it is the complement of
the unique largest autark subset of F . Recall that the lean kernel contains all the usable
clauses. Again, Theorem 3.16 [29] shows that the set of all unusable clauses F\Na(F ) is
identical to the largest subset that can be pruned away via autarky reduction, i.e. the largest
autark subset. This result means that we can reduce any unsatisfiable clause set to its lean
kernel by finding a maximal autarky ϕ and simply applying it. Note that by definition, the
application of an autarky prunes away all the clauses which contain variables it assigns, so
that we do indeed get a subset of unmodified clauses.

The only available implementation of the maximal autarky extraction algorithm builds on
Kullmann’s OKsolver [31], a highly experimental system which is distributed as part of a
giant software package with so many dependencies that it is very difficult to get to cooperate
with current versions of various system libraries. For the purposes of this thesis, autarky
reduction was therefore implemented from scratch on the basis of the customized MiniSat
variant provided by Christian Zielke.

Concerning the practical relevance of autarky reduction, Liffiton & Sakallah [30] show the
value of reducing to the lean kernel as a preprocessing step before starting any MUS ex-
tracting algorithm. On the other hand, Marques-Silva & Lynce [24] state that in their
experiments, autarky reduction on candidate sets at later stages of the MUS extraction was
not effective enough to warrant the additional investment of computation time, especially
since the much cheaper clause set refinement already reduced the largest part of these au-
tarkies.

Despite the limited practical relevance of autarky theory, the handle to automated clause
classification that it provides gives us some valuable measures for describing structural prop-
erties of unsatisfiable clausal SAT instances. In general, it is possible to say that the MUS
extraction task becomes the more interesting and demanding, the more the lean kernel, the
set of potentially necessary clauses, and the set of necessary clauses differ in size. These
three sizes are therefore interesting properties of benchmark instances. Kullmann et al. [27],
evaluate a set of MUS benchmarks derived from automotive product configuration data [32]
with respect to these and other figures. In the instances, the lean kernel is often substantially
larger than the set of potentially necessary clauses, but the set of necessary clauses is not
much smaller than that set. This implies that the MUSes in the instances are all of similar
size, and they overlap to a very high degree. Still, the sometimes significant difference in size
between the smallest MUS and the largest MUS makes these instances an interesting and
popular test case for approaches which are interested in considering more than one MUS,
and we will use them as examples for the discussion of interactive MUS extraction.

19





Chapter 3
Interactive MUS Extraction

3.1 Motivation

The MUS extraction algorithms introduced in the previous chapter have so far only been
implemented as console tools which can be configured to some degree via parameters, but
do not offer any possibilities for user interaction in the middle of the search process. The
existing approaches to influencing the MUS extraction process have confined themselves to
specialized heuristics which extract some relevant set of MUSes. Good examples of such
approaches are the method presented by Grégoire, Mazure & Piette [33] for determining
inconsistent covers, and the work by O’Sullivan et al. [34] on generating representative sets
of explanations.

The central idea of this thesis is that the search process itself should be made more dynamic,
enabling specialists to use much of their domain knowledge already while extracting MUSes
as small explanations of infeasibility. In hardware verification, for instance, in a situation
where the descriptions of several different hardware components are part of an US, an error
diagnosis specialist will have intuitions which component is more likely to have contributed
to the error at hand, and will therefore find it useful to be able to influence which of the
descriptions is thrown out next in a deletion-based MUS extraction run. Note that when a
single MUS is to be extracted, this does not only influence the speed of the reduction, but
depending on the specialist’s decisions, we might end up with vastly different unsatisfiable
cores, one of which might be much more straightforward to interpret than the other.

The core idea of interactive MUS extraction therefore is to make a deletion-based MUS
extraction process transparent and controllable by the user. First and foremost, this means
that the user will be able to select which of the clauses (or clause groups) in the current
US the algorithm should try to remove next. To be able to make informed decisions, the
user needs to be provided with as much information as possible about the structure and the
content of the current US at any point.

Moreover, especially for very complex problem instances, the user should be able to revert
decisions that led to unwanted consequences without having to restart the reduction process.
For instance, it often happens that by some selected reduction, some other relevant part of
the US falls away as well, although the user intended to arrive at a MUS containing that part.
Thus, the user should at any time be able to explore alternative paths through the powerset
lattice. In this chapter, these considerations lead to the development of a system where
multiple USes can not only be stored and explored, but also interactively reduced in parallel.
Subsequent chapters then build on this novel infrastructure for interactive reduction.

21



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

3.2 Basic Architecture

This section gives an overview of the software architecture on the basis of which the prototype
of the interactive MUS extraction system was implemented. The first part of the section
motivates the choice of an existing software framework chiefly written by the author as
the basis of the implementation. The second part describes how the interface to MiniSat
was implemented, whereas the final and most essential part of the section describes the
ways in which US reductions and the information about critical clauses are stored and
processed within the system. Taken together, these parts of the software architecture form
the machinery behind the graphical interface presented in Section 3.3.

3.2.1 The Kahina Framework

The Kahina framework [35] started out as an interactive graphical debugging environ-
ment for logic programming in Prolog, with special focus on the needs of symbolic grammar
engineering, a branch of computational linguistics which deals with the development of for-
mal models of (fragments of) natural language syntax. The main purpose of Kahina is to
provide a grammar engineer with graphical visualizations of parsing processes in the form
of explicit control flow visualizations. Kahina’s main asset is its comprehensive support for
post-mortem inspection of computation step details. Kahina is written entirely in Java, and
relies on vendor-specific interfaces for communication with different Prolog implementations.
The graphical components build on the Swing library. Kahina’s software architecture is de-
signed with a special focus on modularity and extensibility, and has already proven to be
efficiently integrable with several different grammar implementation systems [36].

Kahina suggested itself as the basis for the prototype implementation because it already
provided many relevant view components, such as visualization components for trees and
directed acyclic graphs, as well as a simple abstraction layer for defining complex graphical
user interfaces. The conceptional similarity between post-mortem inspection of a control
flow graph and interactive inspection of a lattice of unsatisfiable clause subsets led to the
advantage that large chunks of existing Kahina-based code could just be reused, and that
only a few minor extensions to Kahina’s core package became necessary for better support
of concurrency and view update management. Another very relevant reason for choosing
Kahina over some other more well-established toolkit was the author’s intimate knowledge
of Kahina’s internals, acquired in three years of work as the main developer and maintainer,
which greatly reduced the time that would otherwise have been needed for exploring and
becoming familiar with a new codebase, and left more time for experiments.

In the first stage of the project, the Kahina system was extended by additional data types for
clause sets, variable assignments, propositional non-CNF formulae, and refutation proofs.
Additional new components include input and output functionality for DIMACS files, a text
format for propositional formulae, and the proof format used by CoPAn [37]. A few new
visualization components were developed as well, such as a fold-out tree view for refutation
proofs, and a general graph viewer for inspection of clause graphs and variable graphs, al-
though the latter did not make it into the final system because these visualizations turned
out to be not very helpful for instances of any interesting size.

Another strong point of the Kahina framework is its support for automatization of user
interactions. In a Kahina-based debugging system, tracing commands can be automatized
via patterns over step properties. In the Prolog case, such patterns are used to automati-
cally skip over the execution details of well-tested predicates, or to emulate the breakpoint
mechanisms of debugging environments for other languages.

22



CHAPTER 3. INTERACTIVE MUS EXTRACTION

3.2.2 Interface to MiniSat

The basic interface for single steps of a deletion-based MUS extraction algorithm was im-
plemented after the model of Martin Lahl [21]. The input and output for each MiniSat call
is exchanged via temporary files. While reading the problem from a file for each reduction
seems wasteful at first, the freeze variable mechanism allows the system to only write the
instance extended by selector variables to disk once, only manipulating much smaller freeze
files afterwards. MiniSat’s high speed at reading from files does the rest to make this simple
approach reasonably fast.

While Lahl’s original version only had to support one mode for calls to MiniSat (reading in
the extended input file as well as the freeze file and printing out the result and the proof
into new temporary files), in the new architecture MiniSat is called in more than just one
scenario. For the implementation of autarky reduction, only the output of resolution vari-
ables was needed, and for an application we shall see in Chapter 4, the output of a file
containing all the derived unit clauses was required. Unlike in Lahl’s code (where the SAT
solver calls were directly executed within the program’s main loop for simplicity), all the
methods interacting with the custom MiniSat variant were encapsulated into an auxiliary
class which provides wrapper methods for the different types of solver calls.

A slightly more complicated issue has been the support for parallelism. A major goal for
the new architecture was to support the distribution of SAT calls over several processors,
allowing multiple branches to be explored in parallel. For this purpose, SAT solver calls in
the context of US reduction where wrapped into a USReductionTask class which implements
Java’s Runnable interface. All instances of USReductionTask can therefore be started and
executed as worker threads. For the MiniSat interface, the only necessary change was to
keep the temporary files for each SAT solver call separate, which was solved in the trivial
way by adopting a naming scheme that includes a numeric ID which uniquely represents the
calling USReductionTask instance. The much more interesting problem of coordinating the
access of different reduction task threads to a common data structure for storing reduction
states will be discussed later in this chapter.

3.2.3 Representing Reduction States

When used as the basis for a debugging system, Kahina adapts the standard view of a
computation as a set of computation steps connected by a control structure. In the case of
imperative programming, this control structure is a call tree. For declarative programming
with backtracking, we get an additional search tree structure over the computation steps.
In any paradigm such as dynamic programming where partial results are stored and reused
by later steps, the call tree effectively becomes a directed acyclic graph (dag).

As already suggested in the introductory remarks for this chapter, the USes encountered
on reduction paths are the obvious choice for defining the meaningful steps of a MUS ex-
traction process, and were therefore chosen as the primary data points. Since every US
is a unique subset of the original clause set, it can be represented and uniquely identified
by a set of clause indices representing the clauses it contains. In the implementation, all
this reduction step information is stored in instances of a MUSStep class inheriting from the
basic KahinaStep, which gives the reduction steps and thereby the encountered USes the
status of primary information units in Kahina. This status has the advantage that view
components for displaying the contents of the currently selected US were very easy to write
and straightforward to integrate on the basis of existing application code.

In the case of US reduction, a deterministic deletion-based MUS extraction algorithm will
only create a linear structure of US states connected by the subset relation. But as soon as

23



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

we allow the exploration of multiple deletion alternatives, the structure of the encountered
USes will branch out into a tree. Since there can be different sequences of deletions leading
to the same US, the structure is a dag which can semi-formally be defined like this:

Definition 3.2.1. (Reduction graph) Let F be an unsatisfiable clause set. A reduction
graph R = (V,E) for F has as its vertices a set of unsatisfiable subsets V ⊂ 2F , and
contains an edge (V1, V2) ∈ E iff V2 was the result of removing some non-critical clause
from V1, possibly followed by clause set refinement or autarky reduction.

The fact that by this definition, for any (V1, V2) ∈ E we have V1 ⊃ V2 and thereby |V1| > |V2|,
implies that the reduction graph is indeed acyclic, and the deterministic nature of the SAT
solver we are using (if it is run with the same seed on the same machine) implies that no two
different children can be reached by the deletion of the same non-critical clause, meaning
that for any US node V , we have at most one outgoing edge for each non-critical clause in V .

These properties motivate our choice of the basic data structure for storing the edges of the
reduction graph. A very compact way to store all the relevant information about a US and
the deletion attempts which were made on it was found to be a reduction table, a mapping
of clause IDs into integers which represent the reduction graph edges or reduction links to
other USes. The most important operation on this data structure is the addition of a new
reduction link. In the case of a successful deletion of a clause C in a US V1 which is thereby
reduced to a smaller US V2 ⊆ V1\{C}, the step corresponding to V2 is retrieved from the
step database, or added to the database if V2 has not been encountered so far. The unique
step ID for V2 is then added to the reduction table of V1 as the value under the ID of the
deleted clause C.

As the search space is being explored, the integer-based link structure between the various
US steps grows to represent an ever larger reduction graph of US connections established
by successful deletion attempts. For the efficient implementation of the reduction table, the
choice of a data structure which supports thread-safe modification and scales well for a large
number of concurrent operations was a central concern. Moreover, for efficient traversal, the
key set of the map implementation needed to provide an iterator which enumerates all the
clause IDs for each entry in ascending order. A good solution for these requirements was
found in the ConcurrentSkipListMap class from the java.util.concurrent package, the
recommended concurrent analogue to TreeMap, which is not thread-safe.

3.2.4 Storing and Propagating Reducibility Information

While the way in which the reduction graph is stored and managed has already been de-
scribed, we have not yet considered the question how to store information on critical clauses,
and how to distribute reducibility information throughout this dag, given the observation
from Section 2.3.1 that criticality is downward monotonic, and irreducibility is upward mono-
tonic in the powerset lattice.

The very efficient way adopted in the prototype to encode the information that a clause was
determined to be critical in the reduction table of some US is to simply set its reduction
link to -1. This special value can be seen as the ID of an imaginary node in the reduction
dag which represents all satisfiable subsets. Whenever a reduction link is set to -1, by the
monotonicity of criticality we can propagate this value down to any subset of the current US,
which includes all its descendants in the reduction graph. Whenever a new link is created in
the reduction graph, it then suffices to simply propagate all the criticality information from
the parent to the child. Note that not all nodes representing subsets of some US will neces-
sarily be reachable as descendants of that US in the reduction graph. This is an instance of
a more general problem which will be resolved in Chapter 4.

24



CHAPTER 3. INTERACTIVE MUS EXTRACTION

The same general idea about propagation applies to any information about clauses found
to be non-critical in some US. This information can be handed up to all supersets of the
current US, the only question being what the propagated reduction links in higher nodes are
supposed to point to. Unlike in the case of criticality, there is a marked difference between
the information that some clause was found to be non-critical, and knowing and storing in
which lower node MUS reduction will end up when trying to reduce that clause at that par-
ticular US. Not modelling the difference between what we will call explicitly reduced and
fall-away clauses would be contrary to the design goal of making the entire search space
accessible, as some parts of the powerset lattice might become unreachable if we simply
link each clause that fell away during reduction to the reduced US everywhere. The right
strategy is of course to only propagate fall-away information for a non-critical clause, no
matter whether it fell away or whether it was explicitly reduced.

To differentiate between the two cases, -2 was defined as an additional value to be stored in
the reduction tables, indicating that that clause is merely known to be a fall-away clause.
Reducing such a fall-away clause will possibly lead to a new unexplored reduction state,
giving a strong reason for the user interface to allow just that.

3.3 User Interface

With the decisions on the data structures for interactive MUS extraction made, we can now
turn to the question how this information is best presented to a user, and how the desired
interactivity can be implemented in an intuitive way. The answers given to these questions
by the current prototype are the subject of this section. After a concise statement and
motivation of the central ideas, the relevant view components and interaction possibilities
of the prototype are discussed in turn, and a few examples of their usage are given.

3.3.1 Overall Design

The role of the reduction graph as the central place of storage for the current knowledge
about the search space motivates the idea of also using a visualization of this data structure
as the main orientation point in the user interface. One of the prerequisites of interactive
MUS extraction is that the user should be able to jump to any part of the search space and
continue to explore it from there at any time. This free access to the search space can be
provided by allowing the selection of nodes in a visualization of the reduction graph. The
unsatisfiable subset associated with the selected node would then be displayed in a second
view component which also visualizes the contents of that node’s reduction table.

To execute reduction attempts, the user should be allowed to interact with individual rep-
resentations in the display of the current US. The selection of some US in the reduction
graph and of some clause in the US display is already enough to define the next reduction
attempt which should be performed under the hood by a SAT solver call. The newly de-
rived reducibility information as well as the potential new US are then used to update the
corresponding views, giving the user visual feedback about the reduction attempt’s outcome
and preparing the system for the next user interaction.

The general setup of the graphical user interface for interactive MUS extraction as presented
so far is simple enough to stay intuitive, but additional visual complexity might easily detract
from this. More advanced functionality such as the possibility to exploit model rotation or
autarky reduction is therefore best hidden in a second interaction layer only accessible via
context menus. These context menus can also make available lesser-used options e.g. for
influencing the display properties of the two view components.

25



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

A second observation which has turned into one of the guiding ideas for the workflow of the
prototype is that there tend to be exploratory phases, in which many user-defined reduction
attempts are executed in a rather uninformed fashion. Confronted with a corner of the
search space about which nothing is known yet, a user will usually just walk into it in a
random direction for a while, which is often the best way to gain intuitions about the local
structure of the search space. However, this type of uninformed exploration is not optimally
supported by an interface which requires the user to manually execute every single explo-
ration step, especially in a situation where reductions can be executed much faster than the
user can enqueue them. Allowing some type of interplay between single reduction attempts
which are manually executed by the user and much faster automated reduction attempts
started by a simple algorithmic specification promises to increase overall productivity.

For representing clause sets such as in the US view, a JList-based format was chosen because
this Swing component can display very large sets of list items without requiring expensive
computations. The default format for list entries consists of the clause ID (numbered ac-
cording to the order in the input DIMACS file) and a set of positive and negative integers
representing the literals of the clause, just like in the original DIMACS file. If the DIMACS
file contains comment lines of the format c [variable] [symbol] between the header and
the clause list, these will be imported as a symbol table, and the respective symbols will
be displayed instead of the variable IDs. This support for displaying symbolic information
instead of bare variable IDs is obviously necessary for interactive MUS extraction based on
domain knowledge.

3.3.2 The Reduction Graph View

As motivated above, a reduction graph view was implemented to form the central compo-
nent for navigating between different unsatisfiable subsets, and was designed as an explicit
representation of the explored parts of the powerset lattice. By default, each node just dis-
plays information about the size of the US it represents (as a number displayed at the left of
each node label), and the number of clauses about which we have no reducibility information
yet (in parentheses). The colour of each node further encodes whether the corresponding
subset was determined to be a MUS (red), a non-minimal US where all reduction alterna-
tives have already been tried (green), or neither of the two (white).

Figure 3.1 shows an example of a reduction graph in the middle of a reduction process.
The example instance is based on an unsatisfiable instance of an answer set programming
(ASP) encoding of natural language parsing by Yulia Lierler and Peter Schüller [38], which
was converted to a SAT instance using the ASP grounder Gringo [39] as well as a chain of
auxiliary ASP tools developed at the Helsinki University of Technology [40].

The reduction graph in our example has a top node of size 6074, which of course corresponds
to the number of clauses in the unsatisfiable SAT instance we are trying to reduce. Only for
285 of these clauses we do not yet know anything about their criticality for the entire clause
set. Note that the number of clauses without reducibility information decreases on each path
through the graph, reflecting the knowledge we have gained with each reduction attempt.
At the bottom of the reduction graph, we see that six different MUSes have already been
found, containing between 340 and 369 clauses. Just above some of these MUSes, there
are nodes coloured in dark green, reflecting that these subsets have been explored in their
entirety. Only for the MUSes and these nodes, we can be certain that no further branches
can be created by additional reduction attempts.

Observe that between the root and the coloured nodes, there is a complex landscape of
branches representing all the successful reduction choices, giving some impression of the vast
non-determinism potentially involved in MUS extraction. Many nodes are still coloured in

26



CHAPTER 3. INTERACTIVE MUS EXTRACTION

Figure 3.1: A first example of the reduction graph view.

white, indicating that there are still unexplored reduction choices left for each of them. In
principle, the entire search space is made accessible via this reduction graph, and the user
is able to interactively navigate and explore it by inspecting the subsets associated with
nodes, and by starting reduction attempts which may uncover new corners of the search
space, generating additional nodes in the reduction graph.

3.3.3 US Inspection and Reduction

The general design considerations led to the idea that whenever some US is selected in the
reduction graph view, an additional US view should display its contents. In the current
prototype, the US view is not much more than a list of clauses whose font colour encodes
the respective value in the reduction table for that clause. Critical clauses are displayed in
red, explicitly reduced clauses in a dark green, fall-away clauses in a lighter green, and all
other clauses in black. For advanced interactions, one or more clauses can be selected, and
are then highlighted by a yellow background colour.

In Figure 3.2, we see a part of the visualization of a large US in the ASP example. In the vis-
ible section, the three clauses with the IDs 640, 641, and 646 have already been determined
to be critical, either by unsuccessful reduction attempts from this node, or from some super-
set of the current US. Successful reduction attempts have already been made for the clauses
with the IDs 648 and 650. Except for clause 653, all other clauses have already fallen away
during some successful reduction, so we know that these are not critical, although deleting
them from the current US might lead to new previously unseen USes. Clause 653 is the only
clause in this section about which we do not have any criticality information yet, and would
therefore be a typical target for the next reduction attempt.

Apart from displaying the unsatisfiable subset currently selected in the reduction graph, the
US view is also responsible for providing the interactive reduction functionality. The most
direct method of starting a reduction attempt is to double-click on one of the clauses coloured
in black or light green. On a US consisting of not more than a few thousand clauses, the
underlying SAT solver call is so fast that the result will appear almost instantly. If the SAT
solver finds a model, meaning that the reduction attempt failed, the clause will be coloured
in red, and the criticality information will be propagated downwards in the reduction graph.

27



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Figure 3.2: A first example of the US view.

If the reduction attempt was successful, the clause itself will receive a dark green colour,
most often along with a few other ones falling away and switching to light green as a result of
clause set refinement. In any case, the newly derived uncriticality information will be prop-
agated upwards, and a new link will appear in the reduction graph, either to a previously
existing node (so there are now multiple paths to some US) or to a new node, indicating
that a novel US was found and made accessible via the reduction graph.

To illustrate the development of the reduction graph during interactive MUS extraction,
for reasons of compactness we do not use the ASP instance previously used, but take a
simple example instance from the Daimler test set [32] instead. Like some instances in that
test set, it has more than a single MUS, and is thus complex enough to illustrate all the
central mechanisms of interactive MUS extraction. In Figure 3.3, we see the state of the
reduction graph and the selected US before starting our reduction attempts. Note that a
MUS of size 93 has already been found at this stage, and that we are currently explor-
ing an alternative branch of the reduction graph. About this branch, not much is known
yet, as we have no information about the status of 94 of the 97 remaining clauses. For this
reason, all the clauses in the visible section of the current US view are still coloured in black.

Figure 3.3: Display before the example reductions.

28



CHAPTER 3. INTERACTIVE MUS EXTRACTION

Let us first look at the result of an unsuccessful reduction attempt in Figure 3.4. After the
user attempted to reduce the clause with ID 1291 by double-clicking on it in the current US
view, the clause has changed its colour to red, indicating that the SAT instance generated
and solved under the hood was determined to be satisfiable, and that the clause we tried to
delete is therefore now known to be critical. Note that the counter for clauses of unkown
status in the selected node of the reduction graph reflects this by its decrease from 94 to
93. Since the criticality information can only be propagated downwards, nothing else has
changed in the reduction graph.

Figure 3.4: Display after the unsuccessful example reduction.

This is different in the case of a successful reduction attempt like the one we see executed
in Figure 3.5. Here, we attempted to reduce the clause with ID 311, and as we can see, the
attempt was successful, resulting in a new node in the current branch of the reduction graph.
The new node is of size 94, showing that along with clause 311, two other clauses from the
old US have fallen away. When a new node is added to the reduction graph during interac-
tive reduction, that node is automatically selected to allow for quick manual exploration of
a new branch. In the new node, we see that clause 1291 is already known to be critical, so
this information has been propagated downwards from the old US. The old US has gained
the information that three of its clauses are not critical, causing the decrease of the number
of clauses of unknown status from 93 to 90. Note that the number of nodes of unknown
status in the top node has not decreased, which means that the upwards propagation of
fall-away information did not yield any new knowledge in the top node. The reason for this
must be that the same clauses have already been successfully deleted on the other branch,
indicating an overlap between the already determined MUS and the one we are currently
moving towards. In Chapter 5, we will develop an additional view component to make this
kind of overlap information much more explicitly visible.

The advantage of the explicit US view is that it can be used to provide more functionality
than just the execution of single reduction attempts. Some more powerful operations which
act not on a single clause, but on subsets of the current US, were made accessible via the
US view’s context menu. The first of these options offers what could be called methods
of semi-automatization. In essence, it allows the user to initiate a batch processing of
reduction attempts, where all the clauses which are currently selected in the US view are
reduced in turn. The main application of this is to quickly open up several new branches
in the reduction graph at once, or to speed up criticality checks. This option is called semi-
automatization because we will be introducing a much more powerful form of automatization
in the last section of this chapter.

29



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Figure 3.5: Display after the successful example reduction.

The second option is called simultaneous reduction, an obvious generalization of the
default deletion-based method where multiple clauses can be deactivated at once by set-
ting their selection variables. The corresponding context menu option causes the system to
attempt the deletion of all the currently selected entries in the clause list at once. If the
attempt was successful, a new node (or link) will appear in the reduction graph, just like
in the case of deleting a single clause. The major difference is that after a simultaneous
reduction, none of the clauses in the old US will receive the status of an explicitly reduced
clause, again to avoid the unaccessibility of possible intermediate USes in the reduction
graph. If a simultaneous reduction attempt fails, no criticality information can be derived,
because it is possible that some of the clauses could have been deleted as long as other would
have stayed in. Simultaneous reduction will become a very helpful technique in Chapter 5,
when additional information about clause groups which belong closely together will be made
visible in an additional view.

The support for a semi-automatic or simultaneous reduction of clause subsets immediately
leads to the question how interesting subsets can be selected as efficiently as possible. In any
case, the interface needs to provide more than just the option of manually selecting chunks
of clauses in the list. The basic paradigm in which this is achieved in the current prototype
may be called selection refinement or subselection. Starting from some selected subset
of the clauses in the current US, the advanced selection interface of the current version gives
the user the possibility to subselect only the clauses of a given status, the clauses with a
given number of literals, the clauses containing a given literal, just the first or the last few
clauses of the selection, or a random subset of a given size. All these options are available
through a hierarchy of submenus in the US view’s context menu.

To demonstrate the use of this advanced selection interface, and to illustrate the interaction
possibilities arising from it in combination with semi-automatization, we will conclude this
section with a small workflow example. Having already found a first MUS for the ASP
example instance, assume that we want to explore a few alternative paths which start from
a node in the middle of the reduction graph. To do this, we want to semi-automatically
reduce some of the clauses of yet unknown status in the selected US. The first step is to
select all the clauses via the corresponding option in the US view’s context menu.

Figure 3.6 shows how we can use the subselection mechanism to refine this selection to all
clauses of unkown status. In Figure 3.7, this first subselection step has been executed, so
that the fall-away clauses in the visible part of the US view have lost the yellow background
colour which previously marked them as selected. In the reduction graph, we can see that

30



CHAPTER 3. INTERACTIVE MUS EXTRACTION

our current selection now contains 345 clauses. Since we only want to explore a few ad-
ditional paths, semi-automatically reducing by all these clauses would be a bit too much.
Instead, we first apply another subselection command. We could choose to subselect either
the first few or the last few clauses, but this is likely to be a low-quality sample of the overall
variety in alternative reduction paths. Instead, in Figure 3.7 we opt for a random selection
of twenty clauses of unknown status.

If we now choose the option of reducing the selected clauses individually in the context
menu, the system will perform a batch processing of reduction attempts for each of the
twenty selection clauses. In Figure 3.8, we see the results of this semi-automated reduction
step. The twenty different selection attempts have led to five additional branches in the
reduction graph, each representing a US of a different size. Twelve additional clauses have
been determined to be critical, as we can see in the decrease of the number of clauses of
unknown status in the old branch. Only (345−304−12) = 29 additional clauses have fallen
away in the five new branches together, suggesting a high overlap between the new USes.
Altogether, after this systematic and goal-directed semi-automatized exploration of but a
few new branches we have gained quite a bit more knowledge about the search space and
thereby about the nature of our ASP instance.

3.3.4 Model Rotation and Autarky Reduction

Model rotation and autarky reduction (as defined in Section 2.4) were both implemented
based on the adapted version of MiniSat. In compliance with the general design considera-
tions, these two advanced methods were also made accessible as operations via the context
menu of the US view.

Note that autarky reduction as well as attempts to delete multiple clauses at once may
create links in the reduction graph which are not associated with any attempt to reduce a
specific clause, and are therefore not represented in any reduction table. This is the main
reason why the reduction graph view is not updated directly from the reduction tables, but
the reduction graph is maintained in a separate data structure.

In Figure 3.9, as an example of the benefits of model rotation, we repeat the unsuccessful
reduction attempt of Figure 3.4, only this time choosing via the context menu to enhance
this reduction step by model rotation. In the visible part of the US view, two additional
clauses apart from the clause we attempted to reduce are now displayed in red, and the
numbers on the nodes of the reduction graph tell us that eight clauses in total have been
determined as critical. Situations where by a single user interaction and a single call to a
SAT solver, quite a few clauses are determined to be critical by model rotation, are not

Figure 3.6: Subselecting all clauses of unknown status in a US.

31



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Figure 3.7: Subselecting twenty random clauses of unknown status.

Figure 3.8: The result of semi-automatically reducing by the selection.

Figure 3.9: Display after unsuccessful example reduction followed by model rotation.

32



CHAPTER 3. INTERACTIVE MUS EXTRACTION

at all uncommon. The technique is thus not only a very worthwhile enhancement of any
deterministic MUS extraction algorithm, but is also very relevant for interactive reduction,
because the otherwise tedious process of testing a large number of clauses for criticality, es-
pecially in the last phase on the interactive reduction process where we have already closed
in on some specific MUS, can be tremendously accelerated.

In Figure 3.10, we see on the left the result of applying lean kernel extraction (see Section
2.4.3.3) to our Daimler test instance, and the result of a random successful deletion attempt
followed by clause set refinement on the right. If our main goal is to find a small MUS as fast
as possible, clause set refinement is clearly superior, since it immediately reduces the instance
to an US of size 96, whereas the lean kernel still contains 1627 clauses. On the other hand,
remember that clause set refinement boils down the instance to only those clauses which
were needed for a single arbitrary proof, whereas lean kernel extraction gives us all the
clauses which can be used in some refutation proof, thereby producing a pruned instance
which still subsumes all the MUSes of the original instance. Depending on the scenario,
both approaches to clause set pruning may be useful. If we are interested in several or even
all MUSes, lean kernel extraction can be a very valuable preprocessing step, whereas if we
want to quickly find a way towards the transition boundary, clause set refinement is a lot
more helpful.

3.4 Automated Reduction

As mentioned in the general design considerations, a user will often want to quickly explore
some part of the search space without having to manually execute hundreds of reduction
attempts, especially in contexts where domain knowledge has not yet become relevant, so
that the manual reduction attempts would be executed in a very mechanistic way. Making
the semi-automated reduction of selected subsets possible has already somewhat alleviated
this problem, but even these more abstract reduction steps tend to become rather repetitive
and predictable for large problems.

Guided by the general observation that repetitive tasks are always good candidates for au-
tomatization, this section introduces an automated reduction mechanism in the form of
reduction agents which freely interact with user-controlled manual interactive reduction,
and presents and discusses some of the implementation details. As we shall see, the reduc-
tion agent approach has the additional benefit of allowing the user to define and observe
the behaviour of standard MUS extraction algorithms in the form of pluggable deletion
heuristics.

3.4.1 Reduction Agents & Parallelized Architecture

The very general approach to fully automated reduction implemented in the prototype relies
on the concept of a reduction agent which in essence acts like an autonomous additional

Figure 3.10: Clause set pruning by lean kernel extraction and clause set refinement.

33



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

user who was given a set of simple instructions. A reduction agent issues a sequence of
reduction commands, receives back information about the success of these attempts along
with data about the reached USes, and hands on its reduction results to a Kahina state
object which administers and regulates the access to a shared reduction graph. We shall
later see that by plugging in different instruction sets, agents can be programmed to behave
just like standard deletion-based MUS extraction algorithms.

The reduction agents are the reason why we have been referring to concurrency issues
throughout this chapter. The architectural challenge was to build a stable system which
can handle a number of threads operating on a common data structure, while at all times
staying responsive to user input in the form of manual and semi-automatic reduction com-
mands. The resulting parallel system architecture is displayed as a schematic architecture
graph in Figure 3.11. The boxes which represent separate threads or processes have a grey
background, whereas the few shared data structures are kept in white. The reduction work
is done by a pool of reduction threads which are managed by a common controller class.
This controller receives reduction task statements from the user as well as from a number of
reduction agents which were started by the user and work their ways through the powerset
lattice in parallel. The new reduction tasks are queued and distributed to a number of
reduction threads. Each of these threads creates its own freeze file and issues a system call
to MiniSat, waits for the completion of the MiniSat process, reads in the result file and/or
the proof file, and extracts the relevant information. The information whether the executed
reduction was successful or not is handed back to the issuing reduction agent, and the newly
derived reducibility information is added to the reduction graph.

This last stage is the most problematic for concurrent processing, since the modification op-
erations on the reduction graph are not atomic. This does not only easily lead to consistency
errors when multiple reduction threads try to add their data at the same time, but it is also
relevant for the GUI update thread which reads out the reduction graph from time to time
in order to update the reduction graph visualization. If the graph structure is changed while
it is being traversed for the view update, this can cause the GUI update thread to encounter
an exception and die, which in turn causes the user interface to freeze. The only way to
prevent this issue was to be very generous with locks on the reduction graph data structures.
This prevents the mentioned inconsistencies from occurring, but it leads to starvation and
livelock issues if too many reduction threads are started at the same time. Depending on
the machine, the architecture of the prototype therefore runs into problems when more than
a handful of reduction agents are started. While this is unproblematic for simple use cases,
the desired scalability to many more reduction agents will only be achievable with a much
more involved data structure for the reduction graph, most likely involving an update queue
and a technique similar to double buffering for the visualization.

To provide the user with some information about the running agents, an overview of all the
active reduction agents is displayed in an additional view that was added to the bottom of

Figure 3.11: Overview of the parallel reduction agent architecture.

34



CHAPTER 3. INTERACTIVE MUS EXTRACTION

the main window. This view is a scrollable list of frames which compactly represent relevant
information about the currently running reduction agents, each displaying information on
the US the respective agent is currently operating on, as well as statistics about the number
of successful and unsuccessful SAT calls. These statistics are not based on the SAT calls
which were actually executed, but on the number of SAT calls the reduction agent would
have had to make if there had been no information about the reduction graph beforehand.
Internally, a largely unified treatment of both types of SAT calls was achieved by providing
support for simulated reduction attempts which from the perspective of the reduction
agent differ in no perceptible way from genuine reduction steps except that being mere step
data retrievals, they are executed much faster.

In Figure 3.12, we see an example of the reduction agent overview in the middle of a reduc-
tion. Of the four reduction agents in the list, one has already terminated after reaching a
MUS, one was terminated by the user using the Stop button in the middle of the process
before reaching a MUS, and the two remaining ones are still running. The meaning of the
heuristics specification, the Hide button and the coloured Change button will become clear
in the following sections.

3.4.2 Agent Traces in the Reduction Graph

To visualize the actions of reduction agents in the reduction graph, one can visualize what we
will call agent traces, i.e. the downward paths through the powerset lattice by which the
different agents explore the search space. For this purpose, a signal colour can be assigned
to every reduction agent, and the trace of the respective agent in the reduction graph will
be highlighted in that colour. If several different agents happen to share a common path
segment, this segment will be drawn using parallel lines with multiple colours.

In Figure 3.13, we see another example of a reduction graph for the ASP instance, this time
including two different agent traces. There is a red trace on the left side of the graph which
ends in a MUS, and another trace which has not yet arrived at a MUS. The thin black lines
to the other nodes are the result of manual reductions which were performed without the
help of the reduction agent system. Using the Hide button in the information panel of an
agent, the coloured trace of each agent can be removed from the reduction graph, leaving
behind only a thin black line which looks as if the reductions had been executed manually.
This hide functionality is a valuable tool for decluttering the reduction graph of optically
dominant details that have become irrelevant. In the remainder of this section, we will see
how agent traces can be used to gain insights on the performance of different deletion-based
MUS extraction algorithms.

Figure 3.12: Example of the reduction agent overview.

35



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Figure 3.13: Example of a reduction graph with reduction agent traces.

3.4.3 Interface for Plugging Heuristics

When deletion-based MUS extraction was introduced in Section 2.3.2, the way in which the
deletion candidate k is selected was not specified at all in the generic algorithm. There
are of course many possible ways to define selection functions or deletion heuristics, which
differ widely in their degree of informedness, but also in complexity. As in the case of se-
lecting the next unit for propagation in the DPLL algorithm, there is a tradeoff between
retrieving and processing as much information as possible to arrive at an informed deci-
sion, and the computation time invested into making that decision. In the case of DPLL,
unit propagation is so cheap that investing time into choosing between units rarely pays
off, which is reflected by the tendency of rather simple heuristics to display superior perfor-
mance [41]. However, given the potentially high costs of SAT solver calls, this result cannot
be generalized to deletion heuristics in MUS extraction without further investigation. It
is very conceivable that intelligent heuristics will help a lot in speeding up deletion-based
MUS extraction. However, a series of experiments carried out by Martin Lahl [21] in order
to investigate this issue was inconclusive, providing some indication that not much can be
gained by the use of intelligent heuristics in deletion-based MUS extraction either.

When developing new ideas for intelligent deletion heuristics, being able to quickly inspect
their behaviour on real-world instances is an asset. To facilitate such experiments, the re-
duction agent mechanism of the prototype was extended by a very general Java interface
named ReductionHeuristics. User-defined heuristics can quickly be created as Java classes
implementing this interface. By default, heuristics are only given access to the contents of
the current US, i.e. we simulate isolated runs by forcing the reducer to store any additional
information for itself. Based on only the information about the current US and possibly
information it has stored about previous USes on its path, all that a ReductionHeuristics

implementation needs to define is some sequence of deletion candidates for reduction at-
tempts. In any sensible heuristic, this sequence will of course have some additional proper-
ties. For instance, there will be no repetitions of clause indices, since this would imply wasted
SAT calls. By convention, a deletion heuristic returns k = −1 to signal that it assumes to
have found a MUS, which can then be tested via interactive inspection and reduction.

36



CHAPTER 3. INTERACTIVE MUS EXTRACTION

A handful of different simple deletion heuristics come pre-defined with the prototype. These
include four of the six different deletion heuristics investigated by Martin Lahl [21], with
only the ones based on proof reduction missing. The heuristics are based either directly on
the clause IDs or on a relevance ordering of the selection variables based on their frequency
in the last resolution proof. Both of these lists can be traversed either from top to bottom,
from the bottom up, or in a spiraling movement starting in the middle of the list. Taken
together, we therefore arrive at six different predefined deletion heuristics, all of which are
listed in Figure 3.14. Each of these heuristics can be motivated by structural considerations,
but none of them can be expected to perform better than all the others across instances.

Whenever a new reduction agent is defined, it can be set to receive its instructions from
some ReductionHeuristics object. Figure 3.15 shows the dialog which was added for cre-
ating and starting new reduction agents. The most important option is the possibility to
select one of the predefined heuristics from a drop-down menu. The signal colour for each
new agent is initialized with a random point in RGB space, but it can be redefined via the
Change button which allows the user to define a different colour using Swing’s standard
colour chooser dialog. Finally, the user is given the option to independently activate or
deactivate model rotation and autarky pruning for the reduction agent.

3.4.4 Comparing the Behaviour of Deletion Heuristics

To give an example of the insights one can gain from a graphical inspection of the behaviour
of different heuristics, we will now take a look at yet another example reduction graph for the
ASP instance. It is interesting to observe how the predefined deletion heuristics go very dif-
ferent paths through the reduction graph, leading to considerable differences in the number
of successful and unsuccessful SAT solver calls as well as in the size of the MUS that is found.

In Figure 3.16, we see a reduction graph which only consists of five different agent traces.
All the agents were started at the top node, but each of them used a different predefined
deletion heuristic. None of the agents was configured to apply model rotation or autarky
reduction, and each one happened to end up in a different MUS.

In this test case, the descending relevance heuristic turned out to need the lowest number of
steps through the reduction graph, as it was often able to throw away large chunks of a US.
This is not surprising given that this heuristic always tries to reduce clauses which were used
in many places in the refutation proof. A successful deletion of such a clause must lead to a
very different proof, potentially causing many other clauses to become unnecessary and fall
away. However, note that the descending relevance heuristic has also led to a rather large

ascending index heuristic goes through the US clauses by ascending ID
descending index heuristic goes through the US clauses by descending ID
centered index heuristic spirals through the US clauses starting in the middle
ascending relevance heuristic goes through the US clauses in order of relevance,

starting with the least relevant clause
descending relevance heuristic goes through the US clauses in order of relevance,

starting with the most relevant clause
centered relevance heuristic starts with the US clauses of medium relevance, then

spiraling out to ever more and less relevant ones

Figure 3.14: Table of predefined deletion heuristics.

37



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Figure 3.15: The dialog for starting a new reduction agent.

Figure 3.16: Comparing deletion heuristics using the reduction graph.

38



CHAPTER 3. INTERACTIVE MUS EXTRACTION

MUS, which may have been caused by the fact that it tends to throw away clauses which
are helpful for short refutation proofs, making a greater number of other clauses necessary
to compensate for their absence.

The centered relevance heuristic, which tries to keep a balance between the relevance of the
deletion candidates for the proof and the potential impact of deletion on MUS size, was more
successful in reducing MUS size, but it needed more steps for its path through the reduction
graph. In this test case, the heuristic which can with some justification be called the most
successful one is the centered index heuristic. This heuristic led to the smallest MUS, while
at the same time requiring the lowest total number of SAT calls. Since the heuristic has
this advantage in other instances of this particular ASP encoding as well, this can be taken
as a hint that the encoding tends to lead to an agglomeration of fall-away material in the
middle of the clause list, making it worthwhile to start deletion attempts in the middle of
the instances.

Although none of these observations can be generalized to arbitrary instances without quan-
titative evaluation, the behaviour of the different heuristics usually stays rather similar across
SAT instances derived from a single application. Trying out different deletion heuristics on a
few sample instances of a benchmark set can therefore help to quickly determine the charac-
teristic structure of a given SAT encoding with respect to the MUS extraction search space,
and to assess the expected performance of different heuristics for practical applications.

3.5 Conclusion

In this chapter, we introduced and saw an implementation of a first version of the inter-
active approach to MUS extraction developed in this thesis. While we have not yet seen
any practical application of the paradigm, its prospective advantages can already be mo-
tivated on principal grounds. The ability to influence the MUS extraction process while
it is running obviously complements existing tools which are geared towards performant
extraction, since it adds flexibility and the possibility to incorporate domain knowledge to
deletion-based MUS extraction. The explicit visualization of the search space makes it easy
to detect structural properties of novel encodings.

A major strength of the initial prototype presented in this chapter is the very general heuris-
tics interface that allows to experiment with many different heuristics, which can be quickly
defined by implementing a lean Java interface, and then immediately be observed in action.
The parallel architecture allows to run many such agents at the same time, causing the
system to scale well and making it possible to fully exploit the processing power of multi-
core hardware architectures. The integrated accessibility of state-of-the-art techniques such
as model rotation and autarky pruning further adds to the value of the prototype as an
exploratory tool.

The main disadvantage of the first prototype is that it does not yet provide any visualization
of overlaps between USes, which makes it hard to see how relevant the differences between
the various branches of a reduction graph really are. The lack of detail in the reduction graph
also makes it difficult to understand the properties of different deletion candidates, since the
relevant information can only be gained via time-consuming inspection of individual USes.
While it allowed for a straightforward implementation of a first version of interactive reduc-
tion, the rudimentary display of clause sets as a colour-coded list does not add much to the
user’s understanding of the problem structure either. While the selection functionality can
to some degree be used to increase inspection efficiency, the sometimes tight connections
between individual clauses are not visible in any way. Another disadvantage that we have
already alluded to is that we are so far only propagating reducibility information along es-

39



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

tablished reduction links, but not to all subsets or supersets as the monotonicity properties
would allow us to do. This leads to a loss of information which can lead to a waste of SAT
solver calls for deriving information which would actually already have been there.

In the following chapters, many of these shortcomings of the initial prototype will be ad-
dressed. Chapter 4 introduces meta learning as a general and theoretically founded ap-
proach to a better utilisation of the available reducibility information by sharing it between
branches in a systematic manner. Chapter 5 will add visualization components which reveal
a lot more information about the connections between different USes, and Chapter 6 will
present a first practical application of the extended prototype as a proof of concept for the
benefits of interactive MUS extraction.

40



Chapter 4
Introducing Meta Learning

4.1 Motivation

When we discussed the issue of propagating reducibility information through the reduction
graph during interactive reduction in the last chapter, we mentioned that this can still lead
to unnecessary SAT calls because the edges in the reduction graph do not necessarily cover
all the subset relations between the different USes we encountered. In this chapter, we will
develop a solution to this problem which also leads to a range of additional benefits for the
interactive MUS extraction paradigm.

We start our closer analysis of this problem by considering the powerset lattice of another
small example instance {C1, C2, C3, C4}. To simplify the exposition, we will assume that
clause set refinement is of no relevance here, so that each single reduction step will at most
lead one step down in the powerset lattice. Assume a state of interactive reduction where
the reduction graph spans the edges coloured in black, and the grey edges and subsets have
not yet been explored. In the subset {C2, C3, C4}, the clause C2 has just been determined
to be critical, which we again symbolize by colouring critical clauses and the corresponding
transition edges in red.

{C1, C2, C3, C4}

{C1, C2, C3} {C1, C3, C4} {C1, C2, C4} {C2, C3, C4}

{C1, C3} {C1, C2} {C2, C3} {C1, C4} {C3, C4} {C2, C4}

{C1} {C3} {C2} {C4}

{}

41



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

The criticality of C2 in {C2, C3, C4} is propagated downwards in the reduction graph to the
subset {C2, C4}, but not to the other subsets. Now assume that in the next reduction step,
we successfully delete C1 from the set {C1, C2, C3}. The propagation and the reduction
attempt together lead us to the following new state of the reduction graph:

{C1, C2, C3, C4}

{C1, C2, C3} {C1, C3, C4} {C1, C2, C4} {C2, C3, C4}

{C1, C3} {C1, C2} {C1, C4} {C2, C3} {C3, C4} {C2, C4}

{C1} {C3} {C2} {C4}

{}

In the implementation of interactive MUS extraction in Chapter 3, in this situation, we do
not derive the information that C2 is critical in the new US {C2, C3}, causing us to waste a
call to a SAT solver when we later try to delete C2. This type of problem is quite virulent
in larger instances, because it is likely to occur whenever one branch of the reduction graph
arrives at a US which would also be reachable by reduction starting in some other node
where some unsuccessful reductions have already been performed.

In our minimal example (clause sets of size 4 are the smallest case where the problem can
occur in non-trivial subsets), the issue does not appear too problematic because it seems
feasible to simply test for all the subsets of {C2, C3, C4} whether they are already in the re-
duction graph, and marking C2 as critical in all of them. The problem with this is of course
that the number of possible subsets is exponential in the size of a set, so for instances of any
interesting size we will need a much more efficient approach to propagating this information
only to those subsets which are already represented by nodes in the graph.

The propagation of criticality information through the powerset lattice is just one instance
of the more general phenomenon that the deletion of some clause or some combination of
clauses from a clause set can make other clauses necessary. For interactive reduction, it
seems worthwhile to collect such observations and to exploit them in order to systematically
infer new information about the status of clauses in one node of the reduction graph from
the information collected on other branches.

The approach developed in this chapter aims to achieve this by explicitly representing and
processing these connections in the form of boolean constraints over selector variables.
Before, selector variables had the only purpose of extending the clauses of the original in-
stance in such a way that clauses can effectively be switched off by setting the corresponding
selector variable in the freeze file to false. In this chapter, we will go beyond that by reusing
the selector variables as direct handles for talking about the presence or absence of clauses

42



CHAPTER 4. INTRODUCING META LEARNING

in subsets. For instance, we will see that, as in our motivating example, if during our reduc-
tion attempts we find a set of clauses {C1, C2} which cannot be reduced at the same time,
we can remember this information in the form of {s1, s2}, an additional clause which con-
tains positive literals for the two selection variables corresponding to C1 and C2, enforcing
the presence of either of the two in any subset we henceforth consider. We will be using
a collection of such clauses to store all the derived reducibility information, and use it to
efficiently determine all the clauses already known to be critical in new unsatisfiable subsets.

Although the terms are slightly overused, we will take meta instance to refer to the second
SAT instance over the selector variables which we shall maintain, and meta learning to
denote the addition of clauses to the meta instance whenever new reducibility information
has been derived. The clauses of the meta instance, whether added during meta learning or
in other contexts, will be called meta constraints.

The remainder of this chapter is divided into four sections. In Section 4.2, we will system-
atically develop answers to the question which connections between selector variables we
can learn from the results of individual reduction attempts. Section 4.3 then deals with the
question how meta learning can be implemented and best made use of in our interactive
MUS extraction system. This includes the problem of compiling all the derived knowledge
into clausal meta constraints, and the question how the criticality information relevant in
different use contexts can efficiently be extracted from the meta instance. Section 4.4 then
provides an outlook on some of the many other ways in which meta constraints can be put to
use. Finally, Section 4.5 summarizes the results of the chapter, taking stock of the problems
resolved and the issues remaining.

4.2 What Can We Learn?

We have seen that the reducibility information we find out about one node of the reduction
graph tends to be of use in many other nodes as well. In this section, we will systematically
develop an answer to the question how this information can be expressed in terms of for-
mulae over selector variables. The two cases of a successful and an unsuccessful reduction
are of course very different in the kinds of knowledge they allow us to infer, which is why in
this section, we will be considering both cases separately.

Throughout this chapter, we will use the convention that an unsatisfiable SAT instance F
was extended to F ′ by extending each clause Ci := {l1, . . . , ln} ∈ F by a negated selec-
tor variable si to form {l1, . . . , ln,¬si} ∈ F ′. By convention, the correspondence between
clauses and selector variables is therefore expressed by shared indices. Therefore, setting
the selector variable si to false is equivalent to deactivating the clause Ci, and setting it
to true enforces the presence of Ci. Whenever we operate on a second set of clauses and
corresponding selector variables, we will use the same convention for clauses Dj and selector
variables tj , respectively.

While there is a variety of conditions a meta instance could be used to express, for reasons
that will become clear as we proceed, we will use the meta instance to express conditions for
clause unsatisfiability. Formally, we will know that a clause set {C1, . . . , Cn} is satisfiable
if for {D1, . . . , Dm} := F\{C1, . . . , Cn}, the meta instance G extended by assumptions over
selector variables modelling the set {C1, . . . , Cn}, i.e. G∪{¬t1}∪· · ·∪{¬tm}∪{s1}∪· · ·∪{sn},
is unsatisfiable. This does not imply that the meta instance will be unsatisfiable under such
assumptions for all satisfiable subsets, or that its satisfiability under these assumptions tells
us anything about the satisfiability of the subset. In this case, the meta instance would
already encode the full search space, defeating its purpose. Instead, we will be using the
meta instance as a repository of our incomplete knowledge about the search space.

43



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

4.2.1 Unsuccessful Reductions

Assume that we have attempted to delete a clause Ci from an unsatisfiable clause set
{C1, . . . , Cm}, and that this has resulted in a satisfiable instance, meaning that Ci is now
known to be critical in {C1, . . . , Cm}. This criticality information depends on all the clauses
{D1, . . . , Dn} := F\{C1, . . . , Cm} which had already been reduced or fallen away in the
state where we attempted the deletion. The new information can therefore be expressed as
(¬t1∧· · ·∧¬tn)→ si. Note that this new meta constraint can directly be written as a single
clause {t1, . . . , tn, si}, which we can simply add to the meta instance.

The new meta constraint {t1, . . . , tn, si} can be read as preventing all the elements of the set
{D1, . . . , Dn, Ci} from being removed at the same time, by requiring that one element of the
set must be present in any unsatisfiable subset. In our motivating example, we would learn
the meta clause {s1, s2}, expressing that either C1 or C2 must be present in any unsatisfiable
subset of {C1, C2, C3, C4}.

A helpful way to think about the nature of criticality information in the powerset lattice of
clause subsets is based on the observation that after each reduction attempt, the monotonic-
ity properties allow us to reduce the search space by an entire wedge through the powerset
lattice. Let us consider how the criticality information learnt in the case of an unsuccessful
reduction can be conceived as such a wedge. We have just seen that an unsuccessful deletion
of Ci from a clause set {C1, . . . , Cm} allows us to derive a new meta constraint {t1, . . . , tn, si},
where t1, . . . , tn describes the clause set {C1, . . . , Cm} by stating the presence of any element
from its complement. Now consider what happens in an arbitrary subset of {C1, . . . , Cm}.
The monotonicity of criticality with respect to the subset relation predicts that Ci will still
be critical in every such subset. But this is exactly what our constraint expresses, because
any subset can be described by a set T ⊃ {t1, . . . , tn} of selector variables, leading to clauses
which are subsumed by {t1, . . . , tn, s}. In fact, the set {C1, . . . , Cm}\{Ci} corresponds to
the tip of what we will call an upward wedge of satisfiability (sat wedge) through
the elements of the powerset lattice, and this wedge is explicitly removed from the search
space by the meta constraint {t1, . . . , tn, si}. In our motivating example, by colouring all
sets known to be satisfiable in orange, the sat wedge which gets cut from the search space
when we learn the meta constraint {s1, s2} can be visualized in the powerset lattice like this:

{C1, C2, C3, C4}

{C1, C2, C3} {C1, C3, C4} {C1, C2, C4} {C2, C3, C4}

{C1, C3} {C1, C2} {C2, C3} {C1, C4} {C3, C4} {C2, C4}

{C1} {C2} {C3} {C4}

{}

44



CHAPTER 4. INTRODUCING META LEARNING

Note that the nodes had to be slightly reordered to demonstrate that the sets we have deter-
mined to be satisfiable can be seen to form an upward wedge with the tested subset {C3, C4}
at the top. For a single wedge, we can always reorder the nodes in our two-dimensional dis-
play of the powerset lattice in such a way that the wedge structure becomes visible. For
displaying more than one wedge at the same time, we might already need an additional
dimension to visualize the lattice in a way that explains our geometric notion of a wedge.

A few further relevant observations about sat wedges deserve to be mentioned. The first is
that smaller meta clauses yield larger wedges. Obviously, with each literal less in the meta
clause the number of subsets covered by the wedge doubles. This not only explains why for
interactive reduction, we always want to detect critical clauses as high up in the powerset
lattice as possible, but it also leads to the idea that it might be worthwhile to try to enlarge
the wedges by attempting to delete literals from meta constraints. We will explore this idea
in some detail in Section 4.3.1.

Turning back to the example at hand, let us see how the meta constraint {s1, s2} helps us
to derive the criticality information we were missing when using mere propagation through
the reduction graph. Assume again that in the next reduction step, we successfully reduce
{C1, C2, C3} to {C2, C3}. If we now want to determine whether C2 is critical in {C2, C3},
we can perform a first check for the satisfiability of {C3} by testing the satisfiability of
{{s3}, {¬s1}, {¬s2}, {¬s4}} given our knowledge that {s1, s2}. Sure enough, the clause set
{{s3}, {¬s1}, {¬s2}, {¬s4}, {s1, s2}} is unsatisfiable, allowing us to find out by solving a
trivial SAT instance that C2 must be critical in {C2, C3}. As intended, we do not need to
waste a much more costly SAT solver call on the original instance any longer.

More generally, we find that checking a combination of selector literals representing a clause
subset against a collection of meta clauses learnt from unsuccessful reduction attempts is
equivalent to checking whether the subset lies in one of the sat wedges that we know of:

Theorem 4.2.1. Let F1, . . . , Fk ∈ 2F be satisfiable subsets of an unsatisfiable clause set F ,
where for each 1 ≤ j ≤ k we write Fj := {Cj1, . . . , Cjmj

} and F\Fj := {Dj1, . . . , Djnj
}.

Let G := {{t11, . . . , t1n1}, . . . , {tk1, . . . , tknk
}} be the CNF instance derived by meta learning

in the reduction steps which established the satisfiability of the sets F1, . . . , Fk. Then, for
any set S ⊂ F with F\S := {D1, . . . , Dn}, there is a 1 ≤ i ≤ k with S ⊆ Fi iff the extended
meta instance G ∪ {¬t1} ∪ · · · ∪ {¬tn} is unsatisfiable.

Proof. ⇒: Let S := F\{D1, ..., Dn} ⊆ F\{Di1, . . . , Dini
} =: Fi. Taking the complement

on both sides, we know that {D1, ..., Dn} ⊇ {Di1, . . . , Dini
} and therefore {t1, ..., tn} ⊇

{ti1, . . . , tiki}. This means that G is extended by at least the unit clauses {¬ti1}, . . . , {¬tiki}.
After propagating these ki units, the clause {ti1, . . . , tiki} in G has become the empty clause,
proving the unsatisfiability of G ∪ {¬t1} ∪ · · · ∪ {¬tn}.
⇐: Let G∪{¬t1}∪ · · · ∪ {¬tn} be unsatisfiable. By the completeness of resolution, we must
be able to deduce the empty clause by a finite sequence of resolution steps. As the non-unit
clauses in the extended meta instance do not contain any negative literals, all these steps
must have occurred between the non-unit clauses and the negative literals. To arrive at
an empty clause, we must have deleted all literals from {ti1, . . . , tini} for some 1 ≤ i ≤ k,
which means that for the set {t1, ..., tn} of selector variables in the negative units we must
have {t1, ..., tn} ⊇ {ti1, . . . , tini

}. But given the definition of the selector variables, this is
equivalent to S = F\{D1, ..., Dn} ⊆ F\{Di1, . . . , Dini

} = Fi.

According to this theorem, the meta instance we are building so far can be used to check
whether a newly encountered clause set is a subset of any previously determined satisfiable
subset, showing that we have found the desired general solution to the problem of complete
propagation of criticality information. Later, we will see that the meta instance is even more
useful if we go beyond using it as an effective encoding of sat wedge membership.

45



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

4.2.1.1 Model Rotation

Let us now consider the case of model rotation. If using this method, we have found an
entire set {Ci1 , . . . , Cik} of new critical clauses, this gives us the constraint (t1 ∧ · · · ∧ tn)→
(si1 ∧ · · · ∧ sik) or ¬t1 ∨ · · · ∨ ¬tm ∨ (si1 ∧ · · · ∧ sik) which must hold for any unsatisfiable
subset in the reduction graph. Converting this into clausal form, we receive the k meta
constraints {t1, . . . , tm, si1}, . . . , {t1, . . . , tm, sik}, i.e. from the perspective of meta learning,
the results of model rotation are exactly equivalent to what we would have learnt from the
k corresponding unsuccessful reductions of a single clause. In the following discussion, we
therefore no longer need to consider the case of model rotation separately.

4.2.1.2 Unsuccessful Simultaneous Reduction

Another case which we need to consider is when the simultaneous deletion of a set of k clauses
{Ci1 , . . . , Cik} from a clause set {C1, . . . , Cm} has led to a satisfiable problem, meaning that
we have gained the knowledge that the k clauses may not be deleted together. Note that
in terms of criticality, this does not imply for any of the clauses in {Ci1 , . . . , Cik} that it
was critical in {C1, . . . , Cm}, nor that it was not. We have therefore learnt a more complex
connection between clause deletions which cannot simply be represented by manipulating
reduction tables in other parts of the reduction graph.

Still, our selector variable approach is powerful enough to express the new information.
Instead of a conjunction of positive selection literals enforcing the presence of clauses as
in the case of model rotation, we now have a disjunction in the resulting meta formula
(t1 ∧ · · · ∧ tn)→ (si1 ∨ · · · ∨ sik), expressing that under the condition that all the clauses in
the complement of {C1, . . . , Cm} have been deleted, at least one of the clauses Ci1 , . . . , Cik

cannot be deleted any more. Again, we have a trivial translation to a single clausal meta
constraint {t1, . . . , tn, si1 , . . . , sik}. Note that this clause is subsumed by any of the clauses
{t1, . . . , tn, sij} we would get if we later determine one clause Cij ∈ {Ci1 , . . . , Cik} to be
critical. This reflects the fact that the information we get from an unsuccessful simultaneous
reduction is rather weak, and immediately becomes obsolete if we determine a single one of
the reduced clauses to be critical.

4.2.2 Successful Reductions

Let us now assume that our attempt to delete a clause Ci from an unsatisfiable clause
set {C1, . . . , Cm} was successful, so that we have arrived at a new unsatisfiable subset
C ′ ⊆ {C1, . . . , Cm}\{Ci}, where equality holds iff clause set refinement has not caused any
further clauses to fall away. With this result, we have found out that we can safely delete
all the clauses in {D1, . . . , Dn} := {C1, ..., Cm}\C ′ from any unsatisfiable clause set which
contains all the clauses in C ′. If we express this connection in terms of selector variables,
we can simply say that it suffices for unsatisfiability if all clauses in {C1, ..., Cm}\C ′ are
present, i.e. if t1 ∧ · · · ∧ tn holds.

Note that this formula is of a very different nature from what we have derived for the case
of unsuccessful reductions. Our goal remains to encode in the meta problem conditions for
unsatisfiability, but we are now dealing with a constraint that is a sufficient condition,
not a necessary condition as before. In fact, t1 ∧ · · · ∧ tn is a minterm which would need
to be added as a disjunct to the meta problem to represent one way to fulfill the condition
that a subset be unsatisfiable. But this disjunctivity means that we cannot simply integrate
this information by adding a set of clausal constraints to the meta instance, touching a core
element of the problems of representability which will be a focus of discussion in the context
of implementing meta learning in Section 4.3.1.

46



CHAPTER 4. INTRODUCING META LEARNING

If we interpret in terms of the powerset lattice the information that t1∧· · ·∧ tn is a sufficient
condition for unsatisfiability, in full analogy with the unsuccessful reduction case we get a
downward wedge of unsatisfiability (unsat wedge), because the minterm also holds
in all supersets of {C1, ..., Cm}\C ′. With every successful reduction attempt, we therefore
get unsatisfiability guarantees for a number of other sets. The smaller the set we find to be
still unsatisfiable, the larger the number of supersets in the unsat wedge becomes. Again,
for each conjunct less in the minterm, the number of unsatisfiable subsets covered doubles.
This once more illustrates how much the detection of one small unsatisfiable subset can help
us in detecting others, as large chunks of the search space are then known to be above the
transition boundary.

While the enlargement of sat wedges will require additional implementation effort, in our
deletion-based MUS extraction paradigm, generalizing the minsets to enlarge unsat wedges
is exactly what we are doing by our standard operation of executing reduction attempts.
This makes the explicit storage of unsat wedges less obviously necessary than that of sat
wedges, later conveniently allowing us to forego the latter in the implementation.

Returning to our running example, let us see what we learn from the successful reduction
of {C2, C3, C4} to {C2, C4}. The minset is simply s2 ∧ s4, and the unsat wedge it represents
(coloured in green) comprises the subset {C1, C2, C4} about which we knew nothing before.

{C1, C2, C3, C4}

{C1, C2, C3} {C1, C3, C4} {C1, C2, C4} {C2, C3, C4}

{C1, C3} {C1, C2} {C2, C3} {C1, C4} {C3, C4} {C2, C4}

{C1} {C2} {C3} {C4}

{}

The bad news is that this new information about the subset {C1, C2, C4} cannot be derived
via a satisfiability check on the meta instance as we defined it up to now. While the new
minset makes the meta instance satisfiable under the assumptions {{s1}, {s2}, {¬s3}, {s4}},
The satisfiability of the meta instance under assumptions can never guarantee that the cor-
responding reduction is possible. So how could we perform this type of inference? If our
meta instance were composed only of minterms over selector variables, we could use it to
detect unsat wedge membership, allowing a full propagation of fall-away information in a
way dual to what we achieved for criticality information from unsuccessful reductions. As-
sume that in the next step of our reduction, we want to find out whether C3 can be deleted
from the top node {C1, C2, C3, C4}, so we need test for the unsatisfiability of {C1, C2, C4}.
The unsatisfiable subsets we already know are encoded as (s2 ∧ s4)∨ (s1 ∧ s2 ∧ s3). Adding
the assumption minset (s1 ∧ s2 ∧¬s3 ∧ s4) representing {C1, C2, C4}, we find that the meta
instance remains satisfiable, showing us that the tested set lies in one of the unsat wedges.

47



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Again, this piece of fall-away information would not have arrived in the new node by upward
propagation alone, since the edge between {C1, C2, C4} and {C2, C4} has not been added
to the reduction graph yet. We were only able to make this inference because by collecting
only minterms, we have in fact arrived at an alternative meta instance whose satisfiability
given an assumption minset guarantees the unsatisfiability of the corresponding subset, but
which cannot guarantee satisfiability, dual to the meta instances we used before.

We have seen that we have a nice duality between downward unsat wedges and upward
sat wedges which can capture all the information we want to distribute about the status
of individual clauses, but that we need a conjunction of clauses to directly encode the sat
wedges, and a disjunction of minterms to collect and efficiently represent unsat wedges.
Furthermore, we have seen that the conjunction of clauses only encodes sufficient conditions
for satisfiability, and that the disjunction of minterms only encodes sufficient conditions
for unsatisfiability. This duality makes it impossible to meaningfully represent both types
of information in one meta problem so that we would either have to maintain two meta
instances, or choose to only completely represent either criticality or fall-away information.
In the next section, we will see good reasons for opting for the second option in the context
of interactive MUS extraction.

4.2.2.1 Successful Simultaneous Reduction

As for unsuccessful reductions, let us last consider the case of successful simultaneous re-
duction. Assume that a set of k clauses {Ci1 , . . . , Cik} was simultaneously deleted from a
clause set {C1, . . . , Cm}. For the result set {D1, . . . , Dn} := {C1, . . . , Cm}\{Ci1 , . . . , Cik}
we have found to be unsatisfiable, we can again store a sat wedge by learning the minterm
t1 ∧ · · · ∧ tn. Though the result set might be smaller, there is thus no principal difference to
the case of a successful deletion of a single clause. Note that this observation also allowed
us to not consider the consequences of clause set refinement in this section, since it does not
change anything except the size of the derived minterm.

4.3 Implementation

To add the new concept of meta learning to the prototype implementation of interactive
MUS extraction described in the previous chapter, we will proceed in four steps. In Section
4.3.1, we will spend some thoughts on which types of constraints derived by meta-learning
can directly represented in the meta instance, and we will motivate the decision to not
represent unsat wedges, therefore not storing any meta constraints which would serve to
guarantee unsatisfiability. Section 4.3.2 then explores different ways of extracting selector
units from the meta instance, while Section 4.3.3 deals with the application of full SAT
solving on the meta instance. The implementation of meta learning in the interactive MUS
extraction system is described and discussed in Section 4.3.4. Finally, Section 4.3.5 shows
an example of meta learning in the implementation.

4.3.1 Representing and Maintaining the Meta Problem

In the last section, we have seen that the constraints over selector variables which result
from unsuccessful reductions can easily be added to a clausal meta instance that encodes
sufficient conditions for unsatisfiability, but we cannot integrate the non-clausal minsets de-
rived from successful reductions into the same meta instance, not only because the mixed
problem could grow exponentially when converted to clausal form, but also because if we
try to encode all known sufficient conditions for satisfiability and unsatisfiability in the same
meta problem, we end up encoding neither of the two.

48



CHAPTER 4. INTRODUCING META LEARNING

As already mentioned, we could now choose to work with two meta problems, one being in
conjunctive normal form and one in the form of a disjunction of minterms (for which the
term disjunctive normal form (DNF) is commonly used), one encoding the satisfiability of
some previously unseen subsets by sat wedges and the other of some unsatisfiable ones by
unsat wedges. But if we only want to maintain one meta instance, we will need to make a
choice which type of conditions to express in it.

For the implementation, we will opt for the CNF encoding of sat wedges, but not only be-
cause we want to avoid the overhead of maintaining two different meta problems. Even if
we could directly derive the unsatisfiability of a subset of previously unknown status from
the meta problem, for the technique of clause set refinement, a crucial element for efficient
interactive reduction, we need to inspect a proof of unsatisfiability, which we can only get
from a SAT solver call on the full original instance. This severely limits the possible pay-off
of unsat wedge membership testing, since most successful tests would still have to be fol-
lowed by a solver call on the original instance to generate the proof. At any rate, the few
situations where bare unsatisfiability information derived from the meta instance could be
useful (such as when the tested subset is only one clause larger than an unsatisfiable subset
which is already in the reduction graph), do not justify the overhead involved in maintain-
ing a second meta instance. We will therefore only be using one meta problem in CNF to
represent sat wedges in the implementation.

Some technical difficulties are involved in storing and maintaining the meta instance in an ef-
ficient and compact manner. The main challenge in this regard is to avoid storing redundant
information. The problem of redundancy is very severe in a meta instance which encodes a
collection of wedges, as many of these wedges will be contained in others, and it would be
sufficient to only store those edges which are not completely contained in some larger wedge.

In terms of the defining clauses, wedge redundancy exactly corresponds to what is commonly
called subsumption in the literature. A clause C1 is said to subsume another clause C2

iff the conditions imposed by C1 on satisfying assignments are stronger than those imposed
by C2, in the sense that every assignment fulfilling C1 will fulfill C2 as well. For clauses
which do not contain complementary literals, this means that a clause C1 subsumes another
clause C2 iff C1 ⊂ C2. In our meta instance, the subset relation between clauses corresponds
to the containment relation between the wedges they represent, as illustrated in Figure 4.1.
Assume that our meta instance encodes a small sat wedge, which we represent by the grey
upward triangle. Now assume that we learn another meta clause containing a subset of
the literals in the existing wegde. This new meta clause encodes a larger wedge (displayed
in white) which includes the old one. To avoid redundancies, we must detect the wedges
contained in the new wedge and remove the clauses corresponding to them from the meta
instance while adding the new clause.

The direct correspondence between the containment relation between sat wedges and the
subsumption relation between the respective clauses allow us to use standard approaches for
filtering out subsumed clauses by what is called subsumption checking to detect these
redundant clauses in the meta instance. Subsumption checking is used sparingly by SAT
solvers because it is considered too costly to execute as often as would be necessary to main-
tain subsumption-freeness at all times. For our meta problem, this is not an issue, since
unlike during SAT solving, we are not constantly modifying the clauses of the problem, but
the only possible source of redundancy is if it is caused by the addition of a new clause,
which makes subsumption checking tractable and worthwhile.

To develop an algorithm for efficiently maintaining the subsumption freeness of a clause set
to which more clauses are added one by one, Lintao Zhang [42] distinguishes between two

49



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Figure 4.1: Illustration of subsumption checking while adding a sat edge.

different kinds of subsumption checking. The first kind is called backward subsumption
checking, where for a new clause to be added, we check whether it subsumes any of the
clauses already present, which are then removed from the instance because they have been
made redundant. By contrast, in forward subsumption checking we determine whether
the new clause is already subsumed by some clause in the set, making it redundant and al-
lowing us to simply not add it. For both types of subsumption checking, different approaches
were proposed in the literature, and Zhang’s algorithm applies very different techniques to
both cases.

In our use case, we have the fortunate situation that only backward subsumption checking
will be necessary. If we arrived at a situation where forward subsumption checking were
necessary, i.e. if there were a known sat wedge containing the new wedge, this would imply
that we have checked for the satisfiability of a subset which we should already have known
to be satisfiable, since the subsuming sat wedge must already have been part of our meta
knowledge. This concurs with our intuition that deletion-based MUS extraction steps can
only cause existing sat wedges to grow, but never to shrink.

For the implementation of backward subsumption checking, a variant of the algorithm pre-
sented by Lintao Zhang [42] was chosen. In essence, the algorithm loops through the literals
of the new clause, efficiently retrieves the lists of existing clauses containing each literal, and
gradually refines a set of subsumption candidates by efficiently intersecting it with these
lists. After all the literals are processed, the candidate set contains all backward-subsumed
clauses. The original version relies on a sparse-matrix representation of the clause set to
retrieve the lists of clauses for each literal, whereas my implementation uses an indexing
data structure which was already being maintained for other purposes, such as quick vari-
able deletion for the autarky reduction algorithm.

While subsumption checking can be seen as a general method for CNF simplification, our spe-
cific situation would also allow us to perform some additional operations on the meta prob-
lem. These operations are based on forming and testing hypotheses about additional con-
nections between selector variables, thereby constituting ways to derive information about
the search space beyond the purely deletion-based paradigm.

A first approach in this direction is based on the trivial fact that more satisfiable subsets are
covered by larger wedges, which makes larger wedges represented by shorter meta clauses
more desirable. This suggests an operation of strengthening clauses in the meta instance
by attempting to remove literals from them, and then testing whether the corresponding
assignment of truth values to the selector variables still leads to a satisfiable instance. If
it does, we have managed to enlarge the wedge represented by the strengthened clause.
Strengthening can also be seen as a simplification operation because strengthened clauses

50



CHAPTER 4. INTRODUCING META LEARNING

are more likely to subsume other existing clauses, possibly causing other clauses to fall away
during subsumption checking.

Viewing the meta instance as a collection of upward sat wedges, another approach would
be to attempt to form larger wedges from smaller ones by a merge operation. If we have
found satisfiable subsets F1 and F2 and have therefore added sat wedges represented by meta
clauses C1 and C2 to the meta instance, it could well be that already the union F1 ∪F2 was
satisfiable. In terms of meta clauses, we can test this by forming the intersection C1∩C2 and
testing the corresponding assignment to the selector variables. If the result is satisfiable, we
have created a potentially much larger sat wedge which subsumes both C1 and C2, often
leading to significant simplification by letting the merged wedges and possibly more fall away.

A problem with the merge operation is that one application may cause other applications to
be blocked. For instance, it may be the case that we already know of three satisfiable subsets
F1, F2, F3, and could find out by merging that both F1 ∪F2 and F2 ∪F3 are satisfiable, but
not F1 ∪ F2 ∪ F3. If we use the standard merge operation on F1 ∪ F2 or F2 ∪ F3 first, the
other merge operation becomes unavailable. If instead, after the successful check we add the
sat wedge headed by F1 ∪ F2 to the meta instance, but keep the one headed by F2 around,
it remains possible to also check F2 ∪F3 by a second merge operation. This method of only
applying subsumption checking for all the new clauses after performing a series of merge
operations could be called non-greedy merge.

Schematic representations of all three operations are given in Figure 4.2. In each case, the
grey triangles represent some sat wedges which were already known before the operation,
and the white triangles stand for the new wedges derived by the different operations. In
a next step, subsumption checking would then remove all grey wedges covered by white
wedges, making clear why the operations lead to simplifications of the meta instance. In the
rightmost sketch representing an instance of the non-greedy merge operation, the middle
triangle plays the role of the wedge headed by F2.

Figure 4.2: Illustration of wedge strengthening, merge and non-greedy merge.

There are some interesting connections between these operations on the meta instance and
the different paradigms for MUS extraction. When deciding to only store sat wedges in our
meta instance, we already saw that a successful deletion step is equivalent to enlarging an
unsat wedge. Conversely, the strengthening operation we just introduced on a sat wedge is
equivalent to the successful addition of a clause to a satisfiable subset in an insertion-based
MUS extraction algorithm.

These connections show that an interactive reduction system which supports the addi-
tional operations could maintain a more compact meta instance, but it would not be purely
deletion-based any more, causing some of the design concepts established for the prototype
to collapse. The obvious way to integrate those operations given the existing infrastructure
would be to define and implement expansion agents as the dual to the existing reduction

51



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

agents, and have agents of both types approach the transition boundary simultaneously
from both sides. Expansion agents would profit immensely from the second instance we
discarded, because it would allow them to share criticality information just as efficiently
and completely as our current meta instance format does to reduction agents. These ideas
seem interesting enough to be further pursued, but they could not be carried out within the
time constraints for this thesis.

4.3.2 Retrieving Transition Clauses

Having decided what information to store in the meta problem and how to represent it, we
now turn to the question how the desired information can be extracted from the meta in-
stance during interactive reduction. Recall that our goal is to determine in some US F ′ ⊆ F
with F\F ′ := {D1, . . . , Dn} (with n = 0 if F = F ′) all the clauses Cj which are implied to
be critical by the meta instance G because their removal would lead to a set covered by one
of the sat wedges. In Theorem 4.2.1, we saw that this check can be performed by calling
a SAT solver on the extended meta instance G ∪ {¬t1} ∪ · · · ∪ {¬tn} ∪ {¬sj}. The most
obvious way to determine the known transition clauses by means of the meta problem there-
fore is to perform for each Cj a SAT solver call on the meta instance with the assumptions
{¬t1, ...,¬tn,¬sj}.

This approach could be used to speed up the processing of reduction steps by often spar-
ing us a much more expensive SAT call on the full problem in the satisfiable case. The
disadvantage is that in the case of the extended meta instance being satisfiable, the full
SAT problem would still need to be solved, causing us to have wasted computation time
on the first SAT solver call. Moreover, for the purposes of interactive MUS extraction, we
would like to determine many or even all of these forbidden reductions whenever a node is
displayed, allowing us to store the criticality information and colour the deletion clauses in
red before the user even gets to select a deletion candidate. This makes it very desirable
to find a much more efficient way to extract all the criticality information contained in the
meta instance with respect to some US in the form of a set of transition clause IDs.

Once such an approach is developed and implemented, the prototype can be extended to
perform this retrieval of transition clause IDs whenever a new US is added to the reduction
graph, but also whenever the user selects some existing node. We are thus not constantly
trying to redistribute all the derived information to all the nodes in the same fashion as the
propagation of criticality information before, but we only derive all the information we have
whenever the user (or some other agent) enters some US. We now turn to the challenge of
implementing this retrieval of transition clauses in an efficient but complete fashion.

4.3.2.1 Using the Modified SAT Solver

In order to develop an approach which suits our needs, we first note that given the way we
have set up the meta instance, a clause Ci is guaranteed to be a transition clause in some
set F\{D1, . . . , Dn} if no model of the extended instance F ′ can be found where ¬si as well
as ¬t1 ∧ · · · ∧ ¬tn hold at the same time. Therefore, every literal ¬sj which follows from
F ′ ∪ {¬t1} ∪ · · · ∪ {¬tn} tells us that Cj is a transition clause in F\{D1, . . . , Dn}. If we
want to avoid having to call for each Cj a SAT solver first on the meta problem and often a
second time on the original instance, we therefore need a method which allows us to quickly
determine all the ¬sj that follow from F ′ ∪ {t1} ∪ · · · ∪ {tn}.

So how can we get access to these implied negative literals? One obvious idea is to use an
existing tool part of whose task it is to derive the unit clauses following from a clause set.
A SAT solver based on the DPLL algorithm does just that during the propagation phase.
Using our custom variant of MiniSat, it is easy to dump the units learnt during a solver run

52



CHAPTER 4. INTRODUCING META LEARNING

into a temporary file, and by reading this file it is easy to get a list of literals which follow
from the meta instance. This was implemented within the prototype, but it did not yield a
complete solution to our problem.

Unfortunately, the literals we can extract in this way are only a subset of the ones implied
by the meta problem. The problem is that while finding a model of the meta instance, the
SAT solver has three different ways of arriving at variable assignments for the model under
construction. The first is unit propagation, and the second (called splitting) consists in
making an arbitrary decision for the assignment of a variable, which can later be reverted if
this choice turns out to lead to an unsatisfiable subproblem. The third way is called pure
literal elimination, which is to set a variable to the respective truth value if it only occurs
in the formula with one polarity. The effects of unit propagation are covered by extracting
the learnt units, but splitting and literal elimination are more problematic. Eliminated pure
literals are not considered to be learnt clauses, and will therefore not end up in the temporary
file. One problem with splitting is that all clauses learnt after some splitting will include
the decisions made, causing no further units to be learnt. But more crucially, if a choice
made during splitting would later have followed in any case, it is one of the literals we want
to extract, but it will not show up in the list of learnt unit clauses. Both these problems for
using a SAT solver to extract implied literals can be seen as caused by the fact that a SAT
solver is content as soon as it finds some model, and does not need to differentiate whether
the assignment decisions made on the way to it were necessary or mere assumptions which
helped to build a model.

4.3.2.2 Using a Java Implementation of Unit Propagation

Fortunately, it turns out that, given the structure of the meta instance, systematically prop-
agating the selector literals representing a subset through the meta instance is enough to
derive all the implicitly stored reducibility information for the subset, even without the
branching part we would need for a complete DPLL decision procedure. To see why this is
so, let us reconsider the proof of Theorem 4.2.1. The first part of the proof shows that mere
propagation of the unit clauses containing the selector literals which characterize some sub-
set S will suffice to detect the unsatisfiability in case S is covered by one of the sat wedges.
But this gives us exactly all the reducibility information we desire, as a check against all the
sat wedges is already all we need to determine whether some reduced version of the subset
is already known to be satisfiable.

The Java implementation of unit propagation which was added to the prototype for this
purpose relies on a simple, but reasonably efficient unit propagation algorithm first pre-
sented by James M. Crawford and Larry D. Auton [43]. Relying on the existing indexing
data structure that allows for quick lookup of all the clauses which contain a given literal,
and using counters for keeping track of the number of literals still remaining in each clause,
their algorithm was straightforward to implement.

The implementation was found to be clearly fast enough for the intended application, al-
though of course much more efficient algorithms for this essential component of any modern
SAT solver exist. A first step towards further optimizing unit propagation would be to use
the more recent algorithm by Hantao Zhang and Mark E. Stickel [44], which is however
reported to only improve performance by a constant factor of about 2 on typical instances,
making the effort not seem very worthwhile. More recent and involved algorithms for unit
propagations could lead to significant performance gains, but these would not add much
to the responsiveness of the prototype, since its main performance bottlenecks already lie
elsewhere, particularly in the costly redraws of the various visualization components.

53



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

As expected, running the new implementation of unit propagation on the test sets yields a
number of negative selection literals which exactly correspond to the clauses in the current
subset that are implied to be critical by the meta knowledge. By exploiting unit propagation,
we have therefore arrived at the desired efficient approach to extracting all the reducibil-
ity information encoded in our clausal meta instance for some specific US, and this new
functionality could directly be integrated to quickly detect and colour all known transition
clauses whenever the user or another agent enters some US.

4.3.3 Full SAT Solving Against Meta Constraints

With the infrastructure for complete propagation of criticality information firmly in place,
we can now turn to a different more general application scenario for meta learning. This sce-
nario is based on generating models of the meta instance. Each such model is a combination
of selector variables that possibly encodes an interesting unsatisfiable subset. Depending
on the assumptions which we put into the model, we get new and possibly smaller subset
candidates to test for satisfiability against the full instance. If the check fails, we have de-
termined another unsatisfiable subset, which we might integrate into the reduction graph
of our interactive MUS extractor. Otherwise, we have detected a satisfiable subset which
heads a sat wedge that we can use to refine the meta instance by applying meta learning
just as before, including the backward subsumption check.

One problem of using models of the meta instance is that we need to make sure that the
models we generate are indeed new. After finding a new US, we therefore need to extend
the meta problem by a clause which explicitly forbids the combination of selector variables
representing that US. Since we only want to exclude that specific US, but not an entire
wedge under it like before, the clause we use for excluding a subset S := {C1, . . . , Cm} ⊂ F
with F\S := {D1, . . . , Dn} is {¬s1, . . . ,¬sm, t1, . . . , tn}. Adding this clause to the meta
instance will prevent the SAT solver running on the meta instance from producing the se-
lector variable characterization of the same S as a model again. A problem of this approach
is that each of these clauses has as many literals as the original instance has clauses, and
storing many of them will therefore significantly increase the runtime of the SAT solver on
the meta problem. To some degree, this problem can be remedied by the block-based storage
techniques which are going to be developed in Chapter 5.

Since we want to use models of the meta instance in order to find US candidates which
are of interest for MUS extraction, minimization needs to be enforced by always looking
for US candidates below some subset which is already known to be unsatisfiable. This can
easily be done by adding negative selector literals for all the clauses outside that subset
to the assumption list given to the SAT solver. Moreover, for fast minimization, the SAT
solver we employ on the meta instance should always try to set to false as many selector
variables as possible. This could be achieved by ensuring that during splitting, the negative
assignment should be chosen and explored first. The downside is that as long as we do
not yet have strong sat wedges in the meta instance, we will often get candidate subsets
which are much too small and therefore unlikely to be unsatisfiable. In practice, it will be
important to maintain a careful balance between fast minimization and remaining above the
transition boundary. The observation that in instances with many MUSes, all of them tend
to be of similar size, suggests that if we are interested in more than one MUS this could be
done by looking for models of approximately the same size as the already determined MUSes.

Note that this procedure constitutes a fundamentally different approach to finding MUS
candidates from what we have seen so far. While for MUS extraction in the standard
sense, the advantages of this approach are not obvious, the meta instance models start to
get interesting when we are allowed to add arbitrary additional constraints over selector
variables. This subject will be explored further in Section 4.4.

54



CHAPTER 4. INTRODUCING META LEARNING

4.3.4 Integrating the Meta Instance into the Interface

In order to integrate meta learning into the user interface of the interactive MUS extraction
prototype, a second instance of the existing clause set display component containing the
current state of the MUS instance at each point was added to the graphical user interface.
Whereas internally, the selector variables have IDs in the range from n+ 1 to n+m (where
n is the number of variables and m the number of clauses in the original instance), there is
of course no need to keep the IDs separate for an instance which consists only of selector
variables. It is therefore possible to make the contents and the behaviour of the meta in-
stance easier to understand by shifting the displayed variable IDs down by n positions, such
that the IDs of the selector variables displayed in the meta instance coincide with the IDs
of the corresponding clauses in the original instance.

For the current purpose of complete propagation of criticality information alone, there would
be no need to expose the meta instance in this way to the user. The entire meta instance
and the interactions with it could be handled completely under the hood without unneces-
sarily cluttering the user interface. In an experimental system, however, it is appropriate
to give the user some room for experimentation. Additional options are therefore provided
by a context menu, as displayed in Figure 4.3. The first item gives the user access to the
model-based US candidate generation we just introduced. Whenever this item is selected,
the prototype will use a SAT solver to generate a model of the meta instance under the
assumptions defined by the currently selected US. This model is interpreted as a new US
candidate which is then checked for satisfiability. If the candidate is indeed a US, a new node
is added to the reduction graph below the currently selected US. Otherwise, meta learning
is applied as after a normal unsuccessful reduction step.

Figure 4.3: An example of the meta instance view with visible context menu.

Model-based candidate generation only really makes sense if we can add arbitrary boolean
conditions over selector variables. In the current version, the context menu therefore allows
the user to import additional meta constraints from another CNF file in DIMACS format.
Another option allows to store the derived meta knowledge in a DIMACS file, giving the
user the possibility to have the collected meta constraints persist across reduction sessions.
In a future version which also supports the operations of wedge strengthening and merging,
these would also be made accessible via the context menu, allowing the user to select the
clauses to be strengthened or merged, and then executing the desired operation.

4.3.5 An Example of Meta Learning in the Prototype

For purposes of demonstration in this and in the next chapter, a very small example instance
was hand-crafted to have as many interesting properties as possible while still being small
enough to be displayed in its entirety on screenshots. In this section, this example is used
to show how meta learning and backward subsumption checking are implemented in practice.

55



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Figure 4.4: Initial situation for an example of meta learning on a simple instance.

We start our example with the situation in Figure 4.4, where we have already made two
different successful reduction attempts in the top node, and we have unsuccessfully tried to
delete C6 from the top node, leading to the sat wedge {s6}. In the currently selected US,
we have furthermore attempted to delete C8 without success, which has caused us to learn
the sat wedge {s1, s2, s3, s4, s8}. Next, we attempt to delete C7 in the same US.

Figure 4.5: Situation after the unsuccessful deletion of clause C7 in the example.

The result of this reduction attempt is visible in Figure 4.5, where we also have selected
the other leaf US in the reduction graph. The new sat wedge {s1, s2, s3, s4, s7} in the meta
instance reflects that our attempt to delete C7 in the US {C5, C6, C7, C8, C9, C11} was not
successful. Let us see what happens if we attempt to delete C4 in the newly selected US.

Figure 4.6: Consequences of backward subsumption by a new sat wedge {s4, s7}.

Again, the reduction attempt is unsuccessful. From this we can learn the sat wedge {s4, s7}.
Figure 4.6 shows what happens when this sat wedge is added to the meta instance. The new
sat wedge subsumes the existing sat wedge {s1, s2, s3, s4, s7}, which is therefore removed
during backward subsumption checking. We now have the knowledge that C4 and C7 can
never be removed together.

56



CHAPTER 4. INTRODUCING META LEARNING

4.4 Additional Meta Constraints

In this final section of the chapter on meta learning, we will go beyond the main topic and
turn to the question what else apart from more complete exploitation of criticality infor-
mation we can gain from maintaining a meta instance. The main aspect under which this
question is explored here is to employ the meta problem for directly specifying constraints
on the presence of clauses in the MUSes we extract. This general idea leads to a number
of possible applications, some of which are presented in this section. In all these applica-
tions, we use the meta instance to axiomatize some additional properties which we want our
MUSes to exhibit.

The applications proposed in this section only serve to demonstrate potential benefits of
adding constraints over selector variables, whereas none of them has actually been imple-
mented as part of the prototype. The main reason for this is the unclear connection to
interactive MUS extraction caused by the lack of monotonicity in some interesting proper-
ties, while all the monotonic properties can somewhat indirectly be emulated by the existing
mechanism for importing additional meta constraints from CNF files. For interactive reduc-
tion, we only used the meta instance to axiomatize unsatisfiability, whereas now, we are
additionally using it to axiomatize further criteria for the sets we want to find. If these
criteria are not monotonic in the sense that they also hold for each superset of a set where
they hold, we cannot prevent that the satisfiability check against the meta instance will
prematurely reject unsatisfiable subsets that would by future reductions have reached the
criterion. Therefore, some of the ideas presented in this section only make sense in the mode
of full SAT solving against meta constraints, where they are used to encode constraints on
the combinations of selector variables which arise as models of the meta problem, and which
we use as suggestions for US candidates.

4.4.1 Inclusion or Exclusion of Specific Clauses

We first come back to one of the problems we set out to solve via interactive MUS extraction.
The problem of unwittingly causing clauses to fall away which were supposed to be part of
the desired explanation of infeasibility was solved by interactive MUS extraction by allow-
ing to revert reduction decisions and to explore alternative paths. However, because this
approach does not change anything about the fact that we are making reduction attempts
which can in principle cause arbitrary other clauses to fall away, a lot of trial and error
might still be involved until the user arrives at a MUS containing a specific set of desired
clauses.

Using meta constraints, it becomes possible to explicitly specify such requirements. If we
have a subset {C1, . . . , Cm} which we desire to be part of the extracted MUS, we can simply
add the unit constraints {s1}, . . . , {sm} to the meta instance in order to ensure that the
desired clause set must be part of each unsatisfiable subset we encounter. Note that we
do not necessarily arrive at a MUS in the original sense by this method, but we are guar-
anteed that the USes we arrive at are minimal under the condition that all the clauses in
{C1, . . . , Cm} remain present. Note that the property thus expressed is monotonic, since all
supersets of a set containing {C1, . . . , Cm} trivially contain these clauses, too. The addition
of positive selector literals as unit constraints does therefore not interfere with the validity
of deletion-based interactive MUS extraction as implemented in the prototype.

An analogous scenario arises when we are sure that some clauses, though part of the orig-
inal instance, cannot be part of any interesting MUS. Just as we enforced the presence
of a subset {C1, . . . , Cm}, we can also enforce its absence by adding the unit constraints
{¬s1}, . . . , {¬sm} to the meta instance. This is our first example of a property which is
not monotonic, as with these constraints added, the unsatisfiability of the meta instance

57



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

will not tell us any more that all subsets of the tested subset violate the desired conditions,
but it might well be that we end up in a legal US after removing some more clauses. This
way of enhancing the meta instance is therefore not useful for deletion-based interactive
MUS extraction, but needs to be used in the context of full SAT solving against the meta
constraints for deriving US candidates.

Despite this difference, both of the scenarios we just discussed could be subsumed under the
name MUS extraction modulo unit assumptions. The conditions we can express in
this way are more general than in the previously discussed approach of merely distinguishing
between relevant and don’t-care clauses, because this can be emulated by simply enforcing
the presence of all the don’t-care clauses and ignoring them in the resulting MUSes.

4.4.2 Expressing and Generalizing GMUS Extraction

Let us now carry our approach of complementing the existing connections between selector
variable assignments by additional constraints a little further. To give an example of the
power of this approach, let us reconsider the task of GMUS extraction. The standard ap-
proach to ensuring that certain groups of clauses are always removed together was to assign
the same selector variable to the clauses of a group. The possibility to define additional
constraints over the selector variables allows us to emulate this behaviour even though we
have instrumented every clause by a different selector variable.

Assume that we want the clauses C1, . . . , C4 to belong to the same group. We can enforce
these clauses to be either all absent or present by adding clauses {¬s1, s2},{¬s2, s3},{¬s3, s4},
and {¬s4, s1} to the meta problem. Note that the circular dependency between these clauses
enforces that as soon as one of the si is assigned the value false, repeated unit propagation
forces all the three other si to also become false, and analogously for the value true. This
encoding is very efficient because it is linear in the number of clauses. Still, it seems a lot
more straightforward to use one common selector variable for each group, and we have not
yet gained any advantage over this standard approach.

The advantages only become visible when we start generalizing the notion of a GMUS. Note
that a standard GMUS problem effectively defines a partition of the instance, as every clause
is assigned to exactly one group. But let us assume that we have an application where these
groups overlap, e.g. two groups {C1, C2, C3} and {C1, C4, C5} where the presence of C1

only forces the clauses from either one of the groups to be present, but the absence of C1

forces all clauses from both groups to be absent. Such connections between groups might
be applied in isolating faulty components which share parts, for example while modelling
hardware or software interfaces.

In our example, the necessary conditions can easily be expressed e.g. by the meta constraints
{¬s1, s2, s4}, {¬s2, s3}, {¬s3, s1}, {¬s3, s2}, {¬s4, s5}, {¬s5, s1}, and {¬s5, s4}. This dis-
junctive dependency of the clause C1 could not be expressed within the standard GMUS
paradigm. Depending on the application, even more complex connections between over-
lapping groups might need to be expressed. For such purposes, being able to freely define
dependencies between clauses in terms of meta constraints will be very helpful.

4.4.3 Enforcing Desired MUS Size

Much more complex constraints are of course possible as well. One of the potentially most
attractive options is to express an upper bound k on the size of the desired MUS, allowing
us to explicitily check whether any MUS of a given size exists. The basic procedure for
adding such a parametrization is simple enough: we use an efficient encoding for AtMost
constraints (such as the ones described by Carsten Sinz [45] or Ben-Haim et al. [46]) to

58



CHAPTER 4. INTRODUCING META LEARNING

express the requirement
∑m

i=1 si ≤ k, and add the resulting clauses to the meta problem.
Running the SAT solver on the meta problem would then only generate US candidates of
a size smaller than k, and once the meta instance is made unsatisfiable by the sat wedges
learnt from unsuccessful reduction attempts, this means that no further USes of size ≤ k
exist.

Note that by repeating the process for ever smaller k, this parametrized US search could
in principle be used to find minimum unsatisfiable subsets. It might not even be the most
inefficient way, as between iterations, the sat wedges generated by failed US candidates
could be reused to speed up the process for lower k. Time constraints made it impossible
to implement and evaluate this algorithm in the context of this thesis. But the idea serves
well to illustrate the potential value of extending MUS extraction systems by the option of
defining and adding arbitrary constraints over selector variables.

4.5 Conclusion

In this chapter, we have solved the problem of efficiently propagating all the available crit-
icality information to all subsets in our reduction graph. While an analogous method for
solving the dual problem of propagating fall-away information to all supersets suggested
itself, the choice was made not to implement it, because we would then have to maintain
an additional complex data structure, and we saw that if we employ clause set refinement,
the potential benefits do not warrant the additional overhead in memory and computation
time.

To achieve complete propagation, we have introduced a mechanism for explicitly tracking
and exploiting connections between assignments of values to the selector variables, which is
based on maintaining a second clausal meta instance over the selector variables. Efficient
ways of storing connections between selector variables and retrieving the information rele-
vant for a given MUS were developed and implemented in the prototype. Furthermore, we
have seen how the other standard paradigms of MUS extraction can be seen as procedures
for simplifying the clausal meta instance. Finally, we have taken a glimpse at the additional
possibilities which the paradigm of expressing and solving constraints over selector variables
gives us for axiomatizing interesting additional properties for the MUSes we attempt to find.

For the purposes of standard interactive MUS extraction, however, the benefits of the meta
learning approach beyond complete propagation of partial knowledge have not become too
clear yet. The next chapter will reveal that the meta instance can help us to understand
more about the structure of unsatisfiable subsets, and allows us to provide interactive vari-
ants of both GMUS extraction and finding minimal unsatisfiable subformulae merely by
adding additional structure to the meta instance, and using this structure to restrict the
possible interactions in ways which reflect the special problem structure.

A general issue with the first version of meta learning implemented in this chapter is that
for instances of any interesting size, the meta clauses become very large, as each of them
enumerates all the selector variables corresponding to clauses in the complement of the
satisfiable subset at the top of the sat wedge. As a result, maintenance of the meta instance,
and especially subsumption checking, quickly becomes rather costly and therefore slow. This
issue will also be addressed in the next chapter, where the additional structure given to the
meta problem will also serve as a compression scheme for large meta clauses.

59





Chapter 5
Block-Based Meta Learning

This chapter motivates and explores at some depth the idea of imposing additional structure
on the meta instance as it was introduced in the previous chapter. The concrete approach
of this idea builds on the notion of a block of selector literals, i.e. a disjunction of selector
literals which always occur together in the clauses of the meta instance. The selector literals
occuring in the meta instance will be grouped together in blocks according to some scheme
which translates information derived during interactive reduction into block assignments
in a meaningful way. With the help of these blocks, we will be able to resolve some of the
most pressing problems of interactive MUS extraction as implemented so far in the prototype
system. On the more theoretical side, we will establish some interesting connections between
block-based meta learning and the problems of GMUS extraction as well as the extraction
of minimal unsatisfiable subformulae from non-CNF instances.

5.1 Motivation

In this introductory section, we will look at the idea of forming blocks of selector variables
from three different angles, motivating and setting the stage for the deeper exploration of
the idea in the remaining sections of the chapter. The first section only views the blocks
as abbreviations in what can be seen as a compression scheme, allowing us to exploit the
large overlaps between meta clauses to represent them in a more space-efficient manner, with
barely any overhead in extracting the relevant information. The second section then proceeds
to interpret the blocks inferred by this compression scheme semantically as representing
groups of clauses which in some sense belong more closely together. The closeness has a
natural interpretation in terms of refutation proof subtrees. The third perspective lifts the
concept of constraints over selector variables to dependencies between blocks, leading to
a less granular view of the enforcement relation between the presence of different clauses
which makes the relevant structure of unsatisfiable SAT instances easier to visualize and
comprehend.

5.1.1 Efficiency Considerations

In the previous chapter, we mentioned as one of the main problems that the clauses learnt
during meta learning tend to become very large, since each of them enumerates all the
individual selector variables which correspond to the elements of the complement of some
satisfiable subset. The sheer size of these meta clauses has had a detrimental impact on
the runtimes of subsumption checking as well as the unit propagation approach we used for
extracting the desired criticality information.

61



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

The key to a remedy of this problem is the trivial observation that there tend to be large
overlaps between the literals in the meta clauses. Even the most extreme case of two large
meta clauses only differing in a single literal is quite common, since this is what results from
unsuccessful attempts to delete different clauses from the same unsatisfiable subset.

Using some automated scheme which groups the selector literals that often occur together in
meta clauses into blocks, we will be introducing block variables as shorthands for referring
to large disjunctions of selector variables in our meta instance. This approach can be viewed
as using the block representation as a compression scheme. The space savings achieved in
this way will turn out to be so significant that this measure alone makes both subsumption
checking and unit propagation for extracting selector literals feasible on benchmark instances
of any interesting size.

5.1.2 Conspiracies and the Role of Refutations

Beyond seeing blocks merely as a compression device, there is a way to interpret the clause
sets represented by the selector literals which are grouped together in one block in a more
semantically motivated way. As the block structure progressively gets more granular, the
algorithms for inferring the block structure that we will use tend to group together clauses
which often occur together as subtrees of refutation proofs. The reasons for this connection
between inferred blocks and refutation proofs lies in the fact that the operation of clause
set refinement prunes unsatisfiable subsets to only those clauses which occur in some unsat-
isfiability proof, and that block structure inference is performed according to a criterion of
efficient compression, causing clause subsets to be grouped together which fell away together
during an application of clause set refinement.

Clauses which belong together in this way will be said to conspire, suggesting that each
of the clauses represented by a selector variable in some block contributes in a hidden way
to the derivation of a clause which is of use for building refutations. Visualizing which
clauses form such conspiracies will become an important element of our attempts to make
the internal structure of unsatisfiable SAT instances more transparent during interactive
MUS extraction. Also, the inferred clause conspiracies will become the central handle for
concise descriptions of sat wedges and thereby of our knowledge about the search space.

5.1.3 Dependencies Between Blocks

The resulting new version of the interactive MUS extraction system can be viewed as keep-
ing track of and revealing block dependencies, i.e. dependencies between the reducibility
or criticality of blocks. The extension of the prototype by visualization components for
two different block structures will support the user in thinking about the MUS extraction
problem in this way. This includes changes to the workflow, as the user will normally not
select individual clauses for reduction attempts (although this option continues to exist),
but attempt to remove entire blocks, which are automatically refined in case the reduction
was unsuccessful, differentiating between the part of the block which could be removed in
the respective situation, and the part that was determined to be critical.

Many choices are involved in defining an algorithm that infers a block structure from the
information that is derived during interactive reduction. Two obvious choices are whether
blocks may be allowed to subsume other blocks, and whether they are allowed to overlap.
Allowing both quickly leads to an uncontrollable proliferation of blocks which makes the
generation of compressed meta clauses too costly. Therefore, we will first discuss the variant
of forbidding both nestings and overlaps, leading to the block partition approach presented
and discussed in Section 5.2. If we allow nestings, but continue to forbid overlaps, we get a
recursive tree structure over blocks. This approach will be explored in Section 5.3.

62



CHAPTER 5. BLOCK-BASED META LEARNING

5.2 Block Partitions

Our first approach to maintaining a block structure over the selector literals of the meta
instance builds on inferring a partition of the clauses in the CNF instance. We will define
a block partition as a set B := {B1, . . . , Bk} of clause subsets or blocks Bj ⊆ F , where
for all 1 ≤ i 6= j ≤ k, we have Bi ∩ Bj = ∅, i.e. the blocks are defined to be disjoint.
Furthermore, we impose the condition that

⋃
Bj = F , meaning that every clause needs

to be assigned to some block. The trivial block partition B := {B1} := {F} plays an
important role as the starting point for the inference algorithm we are about to define, and
therefore receives a special symbol B0.

The reader will have noticed that we are defining blocks in terms of clause subsets and not
in terms of disjunctions of selector literals, as we did in the introductory remarks. This is
warranted by the fact that in the form of the meta instance we will be building on, only
positive selector variables occur in the meta clauses, so that we have an exact correspon-
dence between blocks in the sense of clause subsets and blocks in the sense of disjunctions
of the corresponding selector variables. While the algorithm in Section 5.2.1 would also be
applicable for blocks that contain negative selector literals as well, the visualization and
integration with interactive MUS extraction discussed in Section 5.2.2 needs to rely on the
narrower sense of a block as we formally defined it here. Sometimes, we will use the cor-
respondence between clauses Ci and selector variables si to implicitly identify blocks with
sets of positive selector variables, often leading to a much simpler notation.

Turning to the question how a block partition is used to compress the meta instance, we
first note that we only need to maintain equivalence in two important respects. Firstly, the
full meta instance and the compressed instance should be equi-satisfiable, and secondly, the
sets of selector units derivable by unit propagation should be identical.

Definition 5.2.1. (Block variables and block access function)
Let G := {D1, . . . , Dn} be a meta instance for the CNF instance F := {C1, . . . , Cm} with
meta clauses over positive selector literals s1, . . . , sm. Let B := {B1, . . . , Bk} be a block
partition of F . For each Bj, we define a corresponding block variable bj, accessible by a
function blockV ar(Bj) := bj ∀1 ≤ j ≤ k. Moreover, we define a block access function by
blocks(si) := {Bj | Ci ∈ Bj}.

Note that because of the disjointness of the block partition, blocks(si) will be a singleton
set for each si here, which we sometimes identify with the single element of that set.

Definition 5.2.2. (Meta instance representability by a block partition)
For an integer threshold nmax ≥ 0, a meta instance G := {D1, . . . , Dn} for a CNF instance
F is called nmax-representable in a block partition B over F iff for each 1 ≤ i ≤ n and
each sij ∈ Di with |blocks(sij) ∩Di| > nmax, we have blocks(sij) ⊆ Di.
For each set of positive selector variables D and each s ∈ D, we furthermore define the

function blockRep(s,D) :=

{
{bj} if {Bj} = blocks(s) ⊆ D
{s} else

.

Note that the expression |blocks(sij) ∩ Di| > nmax uses all the notational conventions
we have introduced so far to express the condition that the overlap between Di and the
selector variables for the clauses contained in the block that sij is assigned must exceed the
threshold value nmax for the inclusion relation to be enforced. This definition can be seen
as ensuring a degree of compatibility (parametrized by nmax) between a meta instance and
a block partition, because shortening a clause by a shortcut only works if the definition of
the shortcut (almost) completely fits into the clause. The higher we set nmax, the larger the
allowed overlaps with blocks that are not completely contained in Di become. In practice,
we will mostly work with the threshold values nmax := 1, allowing the presence of a single
selection variable from each block not covered, or nmax := 0, not allowing any overlaps at

63



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

all. Building on parametrized representability, we can now formally define a compression
scheme for meta instances:

Definition 5.2.3. (Meta instance compression by a block partition)
Let G := {D1, . . . , Dn} be a meta instance for the CNF instance F := {C1, . . . , Cm}, and let
B := {B1, . . . , Bk} be a block partition over F in which G is nmax-representable. We define
the compression G′ of G by B as consisting of

• the clause {¬bj , sj1, . . . , sjmj} for each Bj := {Cj1, . . . , Cjmj}, and

• the clause
⋃ni

j=1 blockRep(sij , Di) for each meta clause Di := {si1, . . . , sini
}.

The first type of clause, encoding the implication bj → (sj1 ∨ · · · ∨ sjmj ), is also called a
block definition clause, and the second type of clause is called a compressed sat wedge.
Let us show that the compression scheme does indeed have the desired properties:

Theorem 5.2.4. (Equisatisfiability of meta instance compression)
For a CNF instance F and a block partition B of F , an arbitrary meta instance G that is
nmax-representable in B is satisfiable iff the compression G′ of G by B is satisfiable.

Proof. ⇒: Let ϑ be a model ofG. We show that ϑ can be extended to a model ϑ′ ofG′, i.e. an
assignment with ϑ′(si) := ϑ(si) for s1, . . . , sm which satisfies all the clauses of G′. We extend
ϑ′ to the block variables by considering all Di := {si1, . . . , simi

} ∈ G in order. Since ϑ satis-
fies Di, there must be a 1 ≤ j ≤ mi with ϑ(sij) = 1. If blockRep(sij , Di) = {sij}, then the
compressed sat wedge for Di contains sij and is satisfied by ϑ′. If blockRep(sij , Di) = {bij},
then the defining clause of bij contains sij , and is satisfied by ϑ′. This means that the only
negative occurrence of ¬bij becomes irrelevant, so that bij is a pure literal, allowing us to set
ϑ′(bij) := 1, causing ϑ′ to satisfy the compressed sat wedge

⋃mi

j=1 blockRep(sij , Di). Having
processed all Di in this way, such that all the compressed sat wedges are satisfied, there
might be some blocks Bj whose defining clauses {¬bj , sj1, . . . , sjnj} we have not touched
and therefore not satisfied yet. All these can be satisfied by simply defining ϑ′(bj) := 0.
⇐: Let ϑ′ be a model of G′. We show that by restricting ϑ′ to the selector variables, we re-
ceive a model of G. For every Di := {si1, . . . , simi

} ∈ G, we need to show that ϑ′(sij) = 1 for
some j. We know that ϑ′ satisfies

⋃mi

j=1 blockRep(sij , Di), i.e. that ϑ′(blockRep(sik, Di)) = 1
for some 1 ≤ k ≤ mi. If blockRep(sik, Di) = {sik}, then we have ϑ′(sik) = 1, and Di is
satisfied. If blockRep(sik, Di) = {bk} for some block variable bk, we consider the block defi-
nition clause {¬bk, sk1, . . . , sknk

}. Since ϑ′(bk) = 1 and ϑ′ satisfies the clause, we must have
ϑ′(skj) = 1 for some Ckj ∈ Bk. The representability of G in B gives us skj ∈ Di, so that Di

is satisfied in this case as well.

Theorem 5.2.5. (Unit propagation equivalence under meta instance compression)
For any consistent assumption set A := {l1, . . . , lk} ⊆

⋃m
i=1{si,¬si} and a compression G′ of

a meta instance G for F , every selector variable unit which is derived during unit propagation
on G ∪ {l1} ∪ · · · ∪ {lk} is also derived during unit propagation on G′ ∪ {l1} ∪ · · · ∪ {lk}.

Proof. We proceed by induction over the propagation steps. In the base case, the derived
unit {l} is one of the assumptions li. Since the assumption units in both cases are identical,
the unit {l} will trivially also be derived from unit propagation on the compressed instance.
Otherwise, there must have been a meta clause Di = {si1, . . . , sini

} which was reduced to {l}
by previous propagation steps, i.e. l = sip for some 1 ≤ p ≤ ni. The induction hypothesis
in this case is that the propagated literals ¬si1, . . . ,¬sip−1,¬sip+1, . . . ,¬sini

have already
been derived and propagated during unit propagation on G′∪{l1}∪· · ·∪{lk}. Now consider
the compressed sat wedge

⋃ni

j=1 blockRep(sij , Di) for Di.
We first show that all elements of each blockRep(sij , Di) except those of blockRep(sip, Di)
were cancelled out by propagating the units given by the induction hypothesis. Consider
an arbitrary j 6= p. If blockRep(sij , Di) = {sij}, this single element has trivially been
cancelled out while propagating ¬sij . If blockRep(sij , Di) = {bq} 6= blockRep(sip, Di) for

64



CHAPTER 5. BLOCK-BASED META LEARNING

some block definition variable bq, consider the block definition clause {¬bq, sq1, . . . , sqnq
}.

By the representability of G in the block partition B, we must have {sq1, . . . , sqnq} ⊂ Di, so
by the disjointness of blocks and the induction hypothesis, we know that {sq1}, . . . , {sqnq}
have been derived and propagated. But this means that the unit {¬bq} was derived and
propagated next, cancelling out blockRep(sij , Di) in this case as well.
Finally, consider the only remaining unit blockRep(sip, Di) in the compressed sat wedge.
If blockRep(sip, Di) = {sip}, we have already derived the unit clause {sip} = {l}. If
blockRep(sip, Di) = {bq} for some block definition variable bq, {bq} is propagated, reducing
the block definition clause {¬bq, sq1, . . . , sqnq

} to {sq1, . . . , sqnq
}, which now only contains

sip along with other variables, all of which must have been contained in Di, therefore being
cancelled out by the units propagated according to the induction hypothesis. But this means
that we have also derived the unit {sip} = {l} in this last case.
This concludes our inductive proof.

Let us conclude the exposition with a simple example. Although we have not yet discussed
the issue how a good block partition can be inferred and maintained during interactive
reduction, we can already give an example of an intermediary state of the process, see how
the definitions and theorems just introduced are reflected in it, and gain a first impression
of compression efficiency. In Figure 5.1, there is a meta instance G consisting of five clauses
over 15 selector variables. In the compressed variant on the right, the block definition clauses
are mentioned last, and the sat wedges represented by each line are identical. Already in
this toy example, the space efficiency of the partition-based compression scheme becomes
apparent. In real-life examples where each of the uncompressed meta clauses consists of
thousands of selector variables, the effect is of course more pronounced, as we shall see in a
benchmark at the end of Section 5.2.1.

5.2.1 Algorithm

With the essential theory of meta instance compression by a block partition in place, we now
turn to the practical question how the compression and, most importantly, the maintenance
and adaptation of a block partition B in which G remains representable is implemented in
practice. To make the definition of the algorithm more concise, we first introduce an auxil-
iary procedure (Algorithm 6) which splits an element of B into two subblocks, and adapts
the representation of the meta instance accordingly.

With this important helper method defined, it becomes straightforward to write a method
ensureRepresentability(B, G,D, nmax) for refining the block partition B in order to main-
tain nmax-representability when an arbitrary clause D of selector variables is added to G.
The pseudocode for this method is given as Algorithm 7.

uncompressed meta instance G compression G′

{s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s13, s14, s15} {b1, b2, b3, s13}
{s1, s2, s3, s5, s6, s7, s8, s9, s10, s14, s15} {b1, b2}
{s1, s2, s3, s4, s14, s15} {b1, s4}
{s1, s2, s3, s5, s6, s7, s8, s9, s10, s12, s13, s14, s15} {b1, b2, b4}
{s4, s5, s6, s7, s8, s9, s10, s12} {b2, s4, s12}

{¬b1, s1, s2, s3, s14, s15}
{¬b2, s5, s6, s7, s8, s9, s10}
{¬b3, s4, s11}
{¬b4, s10, s13}

Figure 5.1: Example of a meta instance, and its compression by a block partition.

65



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Algorithm 6 blockPartitionSplit(B,G′,B,B′)

Input: meta instance G′ compressed by block partition B, block B ∈ B, subblock B′ ⊂ B
Output: removes the block B from B, adds new blocks B′ and B\B′ instead, adapts clauses

in G′ such that it remains the compression of G by B
1: B := B\{B} . remove split block from partition
2: G′ := G′\{{¬b} ∪ {si | Ci ∈ B}} . remove block definition clause for B
3: B1 := B′; B := B ∪ {B1} . new block, block ID = 1 without loss of generality
4: G′ := G′ ∪ {{¬b1} ∪ {si | Ci ∈ B′}} . add block definition clause for B1

5: B2 := B\B′; B := B ∪ {B2} . new block, block ID = 2 without loss of generality
6: G′ := G′ ∪ {{¬b2} ∪ {si | Ci ∈ B\B′}} . add block definition clause for B2

7: for D′ ∈ G′ with b ∈ D′ do . in all meta clauses with B’s definition variable b ...
8: D′ := D′\{b} ∪ {b1, b2} . ... replace b with the new representation of B′ ∪B\B′
9: end for

Algorithm 7 ensureRepresentability(B,G′,D,nmax)

Input: meta instance G′ compressed by B, new meta clause D = {s1, . . . , sn}
Output: refines B to ensure nmax-representability of D
1: S := D . agenda of selector variables to represent in D′

2: while S 6= ∅ do
3: Bmax := arg maxB∈B |B ∩ S| . determine block with maximal overlap to S
4: if nmax < |Bmax ∩ S| < |Bmax| then . Bmax partially outside S, split needed
5: blockPartitionSplit(B, G,Bmax, Bmax ∩ S)
6: end if
7: S := S\Bmax

8: end while
9: return

In the beginning, the meta instance G0 only consists of one clause {s1, . . . , sm}, expressing
the trivial knowledge that the empty clause set (the complement of F = {C1, . . . , Cm}) is sat-
isfiable. We start with the trivial block partition B0 consisting of a single block B0 = F . Ac-
cording to the definition, the compression of G0 under B0 is G′0 := {{¬b0, s1, . . . , sm}, {b0}}.
To see that Algorithm 7 does what it is designed to do, we can now formulate and prove the
following theorem:

Theorem 5.2.6. (Correctness of ensureRepresentability)
Let D1, D2, . . . , Dk be a series of meta clauses. Starting with B0 and G0 as defined above,
we sequentially derive Bi and G′i by calling ensureRepresentability(Bi−1, G′i−1, Di, nmax).
Then, the meta problem Gk := {D1, . . . , Dk} is nmax-representable in Bk.

Proof. We proceed by induction over i, the index of the Di last added.
“i = 0”: G0 is obviously nmax-representable in B0, as ∀1 ≤ i ≤ m : blocks(si) = {B0} = G0.
“i− 1→ i”: The step corresponds to calling ensureRepresentability(Bi−1, G′i−1, Di, nmax)
on a new meta clause Di := {si1, . . . , sini}. We need to show that Gi−1 ∪ {Di} is nmax-
representable in the changed block partition Bi that results from executing this call.
By the induction hypothesis, every D := {s1, . . . , sk} ∈ Gi−1 is nmax-representable in Bi−1.
This will not change during any call to blockPartitionSplit(Bi−1, Gi−1, Bmax, Bmax ∩ S),
because an execution of this method can only cause the block assigned to a variable to
become smaller, not breaking the condition blocks(sj) ⊆ D for any j.
To prove that the definition of nmax-representability holds for the newly added clause Di,
we consider each sij ∈ Di in turn. In one iteration of the while loop, we must have sij ∈
Bmax. Let us refer to this Bmax by the symbol Bj . We need to distinguish three cases.
If Bj = {sij}, then trivially blocks(sij) = {sij} ⊆ Di. If |blocks(sij) ∩ Di| ≤ nmax,
then the representability condition for sij trivially holds because its antecedent does not.

66



CHAPTER 5. BLOCK-BASED META LEARNING

Otherwise, the condition in line 4 holds because |D ∩ Bj | ≥ |S ∩ Bj |. After the execution
of blockPartitionSplit, sij will end up in a new block B1 := Bj ∩ S ⊆ Bj ∩Di, so that we
have blocks(sij) = B1 ⊆ Bj ∩Di ⊆ Di, fulfilling the condition in this case as well.

Turning to the question of runtime complexity, we see that it is linear in the size of the
added clause, and also linear in the sum of instance and meta instance size, making the
maintenance of the data structure affordable also for larger applications:

Theorem 5.2.7. (Complexity of ensureRepresentability)
The worst-case runtime complexity of ensureRepresentability(B, G′, D, nmax) is in
O(l(m+ n)) for l := |D|, m := |F |, and n := |G|, i.e. the number of stored sat wedges.

Proof. The complexity of computing B ∩ S is linear in |B|. Because of the disjointness of
blocks, we have

∑
B∈B |B| ≤ m. Therefore, the search for the maximum overlap in line 3

can be executed in O(m). In the worst case, the while loop in lines 2-8 is iterated O(l) times,
because we can only guarantee that one of the elements of S falls away in each iteration.
Turning to the complexity of the calls to blockPartitionSplit, we note that all its lines can
be executed in O(1) except the for loop in lines 7-9. In the worst case, b is contained in
every compressed sat wedge, meaning that the loop can be executed up to O(n) times. On
efficient data structures for clause set representation, line 8 can be executed in O(1), giving
us a runtime of O(n) for each execution of blockPartitionSplit. Altogether, we get the
stated runtime complexity of O(l(m+ n)).

Algorithm 8 addSatWedge(B,G′,D)

Input: meta instance G′ compressed by B, nmax-representable clause D = {s1, . . . , sn}
Output: changes G′ into the compression of G ∪ {D}
1: D′ := {}
2: S := D . agenda of selector variables to represent in D′

3: while S 6= ∅ do
4: Bmax := arg maxB∈B |B ∩ S| . determine block with maximal overlap to S
5: if Bmax ∩ S = Bmax then
6: D′ := D′ ∪ {bmax} . bmax is the block definition variable for Bmax

7: else if |Bmax ∩ S| ≤ nmax then . Bmax partially outside S, but overlap acceptable
8: D′ := D′ ∪ (Bmax ∩ S)
9: else

10: print("ERROR: D not n max-representable!")
11: return
12: end if
13: S := S\Bmax

14: end while
15: G′ := G′ ∪ {D′}
16: return

Having developed an algorithm for ensuring the nmax-representability of a new sat wedge
D = {s1, . . . , sn}, it remains to define a method addSatWedge(B, G′, D) which computes the
compressed sat wedge D′ out of D in such a way that G′ ∪{D′} remains the compression of
G∪{D} under B. This is achieved by the pseudocode given in Algorithm 8, as the following
theorem shows:

Theorem 5.2.8. (Correctness of addSatWedge)
Let G′ be the compression of a meta instance G under a block partition B. For a new meta
clause D := {s1, . . . , sn}, let G ∪ {D} be nmax-representable in B. After the function call
addSatWedge(B, G′, D), G′ is the compression of G ∪ {D} under B.

67



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Proof. The call to addSatWedge does not change anything about the block declarations in
G′, so we only have to show that the generated D′ is equal to

⋃n
j=1 blockRep(sj , D), i.e.

that for each sj , D
′ contains bj if {Bj} := blocks(sj) ⊆ D, and sj itself otherwise. In some

iteration, we have Bmax = Bj = blocks(bj). The nmax-representability of D gives us either
Bj ⊆ D, which is covered by the condition of line 5, or |Bj ∩D| ≤ nmax, which is covered by
that in line 7. In the first case, by the disjointness of blocks we have Bj ⊆ S, i.e. Bj∪S = Bj ,
such that bj is added to D′ in line 6. In the second case, we get D′ := D′ ∪ {Bj ∩S}, which
by the disjointness of blocks means si ∈ D′.

Theorem 5.2.9. (Complexity of addSatWedge)
The worst-case runtime complexity of addSatWedge(B, G′, D) is in O(l ·m), where l := |D|
is again the size of the sat wedge, and m := |F | the size of the original instance.

Proof. Again, the search for the maximum overlap in line 4 can be executed in O(m), all
the other operations within the while loop are dominated by this, and we cannot guarantee
anything better than O(l) iterations of the while loop in the worst case.

In a final step, we now consider how the ensureRepresentability and addSatWedge methods
can be combined to infer a block partition B and maintain the corresponding compression
G′ while incrementally adding sat wedges to G. The correctness results show that this
could be achieved by simply setting nmax := 1 and calling ensureRepresentability before
each call to addSatWedge. In the context of interactive reduction, we can do better if we
exploit that typical unsuccessful reductions will always lead to sat wedges that contain one-
variable extensions to the positive selector literals representing some US in the reduction
graph. This means that it suffices to call ensureRepresentability with nmax := 0 on the US
representation of the new US in the case of a successful reduction to achieve the necessary
1-representability for following calls to addSatWedge with nmax := 1 after each unsuccessful
reduction attempt. This is exactly how block partition inference was implemented in the
prototype. For simultaneous reductions of multiple clauses and other operations such as
autarky reduction which cause larger overlaps, an additional call to ensureRepresentability
remains necessary.

Another issue that we have not yet touched upon is the compatibility of block partition
handling and subsumption checking as we implemented it for the uncompressed case. The
problem is best explained in an example. Assume that we are learning a sat wedge {s1}
which subsumes a block definition clause {¬b1, s1, s2}. By default, backward subsumption
checking would remove the block definition clause when adding the sat wedge to the meta
instance, breaking the partition structure in an uncontrollable way. To avoid such effects,
block definition clauses must be exempt from backward subsumption checking.

In Figure 5.2, we return to our small example from the last chapter to illustrate what the
inference algorithm thus defined does. We start with a reduction graph consisting of two
nodes. The successful reduction step between these nodes has split the instance into two
blocks, one containing the clauses {C1, C2, C3, C4, C7} which fell away during that operation,
the other containing the clauses of unknown status. Executing another reduction attempt
for the reduction candidate C8, we arrive at a new US of size 9. From this successful reduc-
tion attempt, we want to learn the sat wedge {C7, C8}. We show the results of the call to
ensureRepresentability with nmax := 0. Since the elements of this sat wedge come from
different blocks, these elements are removed from their respective blocks. Both C7 and C8

end up as singleton blocks as a result of the algorithm.

With block partition inference implemented in the prototype, we can now say more about
the degree of compression we can achieve by using it. While proving theoretical results
about the goodness of the compression is beyond the scope of this thesis, we can get an
impression of rates of reduction in meta instance size by running three reduction agents on

68



CHAPTER 5. BLOCK-BASED META LEARNING

Figure 5.2: Example of reduction step while inferring a block partition.

five random unsatisfiable instances from two standard test sets for MUS extraction. For the
experiment, the already mentioned Daimler testset for automotive product configuration
[32] and another instance set from the test data for the SAT competition 2011 [10] were
chosen. The results for these instances are summarized in Figure 5.3. The computed values
are an approximation to the memory size needed for the original meta instance and the
compressed instance after running three reduction agents with descending, ascending and
centered relevance heuristics until each of them found a MUS. The learnt sat wedges were
added to the meta instance using the procedure just sketched. In the experience of the
author, the very high compression rates achieved here are typical.

5.2.2 Interactive Visualization

So far, we have mainly viewed blocks as a means of compressing the meta instance. We now
turn to the structure-revealing aspect of the inferred block partition. To understand why the
inferred blocks reflect valuable information about clause conspiracies, consider what happens
whenever there is a successful reduction followed by clause set refinement which leads us from
some US S to another US S′ ⊂ S. As soon as we learn that some clause Ci ∈ S′ is critical,

Test set and instance name |F | |G| |G′|
∑

D∈G |D|
∑

D′∈G′ |D′|
SAT11-Competition: bf1355-127.cnf 7,306 439 441 3,143,824 8,186
SAT11-Competition: bf1355-462.cnf 7,305 469 472 3,353,061 8,493
SAT11-Competition: bf1355-530.cnf 7,305 253 255 1,827,249 7,813
SAT11-Competition: bf1355-666.cnf 7,305 343 345 2,466,969 7,993
SAT11-Competition: bf1355-741.cnf 7,307 247 249 1,784,903 7,803
Daimler: C168 FW SZ 66.cnf 5,425 280 284 1,493,047 6,355
Daimler: C202 FW SZ 103.cnf 10,283 428 437 4,252,915 12,193
Daimler: C208 FA SZ 121.cnf 5,278 97 99 508,990 5,474
Daimler: C210 FW RZ 57.cnf 7,405 76 78 560,980 7,559
Daimler: C220 FV SZ 55.cnf 5,753 916 923 4,989,549 10,133

Figure 5.3: Benchmark results for meta instance compression by block partition.

69



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

we will learn a meta clause which contains all the selector variables for F\S′. Often, we will
also have some criticality information about S in the form of meta clauses which contain all
the selector variables for F\S. If the new meta clause is added to the compressed instance,
the block inference algorithm will in most cases produce a new block containing all the se-
lector variables for S\S′. This means that blocks will very often represent groups of clauses
which fell away together during a successful reduction step followed by clause set refinement.

As mentioned in Section 5.1.2, there is a strong connection between such conspiracies and
subtrees of refutation proofs. This gives us a semantic way to interpret the inferred block
partition. Blocks are connected to fragments of refutation proofs, and the ways in which
blocks can be combined into unsatisfiable subsets reveal a lot about necessary and optional
contributions to the unsatisfiability. Thoroughly investigating the connections between block
partitions and possible refutation proofs goes beyond the scope of this thesis, but already at
this highly informal level we can see that a block partition along with dependencies between
the blocks tells us more than individual MUSes could about the structure of the unfeasibility
we are analyzing.

To make the block information directly and intuitively accessible to the user, the obvious
choice was to extend the prototype’s graphical user interface by a block display compo-
nent. The most direct and scalable way to implement such a view was found to be another
custom variant of Swing’s JList component, which by default is placed between the re-
duction graph visualization and the current US view. Each list entry in the block display
represents one block of positive selector literals by a list of associated clause IDs. Like in
the US view, the block display uses font colours to mark the status of different blocks with
respect to the current US. The colour coding makes it possible to understand at a glance
how the current US is composed, and which parts of it are already known to be critical or
unnecessary. Since the colours are updated whenever a different US is selected, the block
display is also an important tool for understanding how much different USes have in com-
mon. The visual and colour-coded representation of the relevant structural features makes
it easy to spot overlaps. The default block colours and their semantics are listed in Figure 5.4.

Color Explanation
grey the entire block is outside the US
dark red the entire block is critical in the US
light red some clauses in the block are critical in the US
dark green the entire block was successfully removed from the US
light green some clauses in the block were successfully removed from the US
black unkown status, none of the other conditions apply

Figure 5.4: The default colour schema for partition block status encoding.

In Figure 5.5, we see an example of the block view in the context of the other views during
a reduction process for our simple example instance. The currently selected US of size 10
is displayed in the current US view. Note that the reduction steps we have executed so far
have led the system to infer a block partition with three blocks of size 1, which is very typ-
ical behaviour in constructed example instances, but much less common in large instances
derived from applications. The reader will notice that the blocks are coloured according to
the colour schema defined in Figure 5.4. For instance, the block {6, 9, 10, 11} is coloured
in light red to indicate that some of its members have already found to be critical, so that
we can be sure we will not be able to remove the entire block. The singleton block {5} is
coloured in grey because it is not part of the current US. Note that already in the case of this
small instance which is still possible to comprehend as a clause list, the grouping of clauses

70



CHAPTER 5. BLOCK-BASED META LEARNING

Figure 5.5: An example of the block display during a reduction process.

defined by the inferred blocks tells us a lot more about the structure of the problem. For
instance, we know that the conspiring clauses with IDs 6, 10, and 11 are likely to be critical
clauses just like their block mate 9. Inspection of the other USes would also allow us to
see at a glance how far the two USes of size 6 overlap by comparing the blocks’ status colours.

The block display can be used for purposes beyond mere visualization of conspiring clauses
and overlaps between MUSes. We can extend the notion of interactive reduction to not
only work on single clauses (or selected subsets) in a MUS, but on inferred blocks. Any
maximal group of clauses that have always fallen away together will form a block. It is clear
that in order to explore new parts of the reduction graph, it seems a reasonable move to
try out whether the clauses of a block of unknown status can again all be removed in one
step. This suggests an additional interaction pattern between the block display and the US
display where the block display allows us to select a block, whose members are then selected
in the US display. Since by far the most common action a user will want to execute on a
block is the attempt to remove it, workflow efficiency can further be increased by making
this action accessible via a double click on a block. In practice, a fallback option in case the
entire block could not be removed at once has turned out to be convenient. In the current
implementation, the fallback mechanism attempts to reduce single clauses in the block until
either all of them are known to be critical, or a successful reduction is performed, causing
the block to be split. With this mechanism, it becomes possible to perform manual MUS
extraction via double clicks in the block display alone. In the resulting workflow, the user
breaks down the large MUS instance into ever smaller blocks, throwing away parts of blocks
until all the remaining blocks are critical.

5.2.3 Application to GMUS Extraction

Blocks can not only be implicitly defined by an inference algorithm, but there is also the
possibility to define and integrate blocks a priori. An obvious application for this is to imple-
ment group MUS extraction based on the block partition approach we have just developed.

Manual GMUS extraction can very straightforwardly be emulated in the extended prototype
by adding a pre-defined block for each group to the meta instance when loading the group
CNF instance. The only necessary changes to the interface are to deactivate the fallback
procedure in case of unsuccessful block removal, to switch off clause set refinement, and to
disallow the selection and reduction of individual clauses by means of the US view.

71



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

This leaves the user only with the option of removing entire blocks which exactly correspond
to the groups defined in the GMUS instance. The selector variables for don’t-care clauses
can simply be left unassigned, and their selector variables be set to true. This will cause the
variables to not be available in the block view.

Apart from the block definition clauses, the resulting meta problem will only contain sat
wedges which are expressible by a disjunction of block definition variables, giving these vari-
ables exactly the role selector variables played in Nadel’s approach to GMUS extraction (see
Section 2.3.2). For automated GMUS extraction, the reduction agents would also need to
be adapted to not use the forbidden options and techniques, and to recognize a US as a
GMUS as soon as all remaining blocks are known to be critical.

The close analogy between block partitions and GMUS instances can also be viewed from
another angle. Block partition inference is essentially a method for automatically turning
any SAT instance into a GMUS instance by grouping together clauses which are closely
connected. In essence, we have thus developed a scheme for splitting up any unsatisfiable
SAT instance into interesting components. In Section 6.5, we will investigate the question
in how far the resulting components are meaningful in an application.

5.3 Block Trees

Our second approach to maintaining a block structure over the selector literals of the meta
instance allows blocks to contain other blocks, inferring a recursive block structure over the
clauses in the CNF instance. We will define a block tree as a tuple BT := (V,E) :=
({B0, B1, . . . , Bk}, {(Bi, Bj) | Bi ⊃ Bj , ¬∃h : Bi ⊃ Bh ⊃ Bj}), where again we are building
on blocks Bj ⊆ F . The non-overlap condition is weakened to allow for inclusion, we merely
postulate that for all nodes Bh, Bi, Bj , we have (Bh, Bi), (Bh, Bj) ∈ E ⇒ Bi ∩ Bj = ∅, i.e.
child blocks need to be disjoint subsets of the parent block. In addition, we impose the
condition

⋃
(Bi,Bj)∈E Bj = Bi, i.e. every clause in a non-leaf block must be contained in

one of its child blocks, which implies that every clause is assigned to one of the leaves of the
block tree. Finally, we postulate that there is a top block B0 := F containing all clauses,
which completes the axioms ensuring that the block tree as defined above is indeed a tree.
This time, the trivial block tree BT 0 := ({B0}, {}) := ({F}, {}) will be the starting point
for our inference algorithm.

The set of leaf blocks L(BT ) := {Bi ∈ V | ¬∃Bj ∈ V : (Bi, Bj) ∈ E} obviously consti-
tutes a block partition as defined in the last section. This important observation allows
us to see a block tree as a block partition enhanced by an additional structure of blocks
that group together smaller blocks, in which we can express and infer connections be-
tween larger groups of blocks instead of only between individual blocks. Note that the
values of the function blocks(si) := {bj | Ci ∈ Bj} are no longer singleton sets, but
always contain the members of a chain of blocks Bk ⊆ Bk−1 ⊆ · · · ⊆ B0 from the
Bk ∈ L(BT ) that si is assigned to up to the top block B0. This allows us to define
a function leafBlock(si) that returns the associated leaf block Bk, and the function

maxBlock(s,D) :=

{
leafBlock(s) if ¬∃B ∈ V | B ⊆ D
max{Bi ∈ blocks(s)|Bi ⊆ D} otherwise

for retrieving the maximal block containing s that is completely contained in D, defaulting
to leafBlock(s) if no such block exists.

Using L(BT ), the definition of nmax-representability for block partitions can be generalized
to block trees by using leafBlock(si) instead of blocks(si) in the definition. With the new
notational machinery, we can now formally define the compression of a meta instance G by
a block tree BT in the following way:

72



CHAPTER 5. BLOCK-BASED META LEARNING

Definition 5.3.1. (Meta instance compression by a block tree)
Let G := {D1, . . . , Dn} be a meta instance for the CNF instance F := {C1, . . . , Cm}, and let
BT := {{B0, B1, . . . , Bk}, E} be a block tree over F in which G is representable. We define
the tree compression GT of G by BT as containing
1) For each Bi = {Ci1, . . . , Cimi

} ∈ L(BT ), the clause {¬bi, si1, . . . , simi
},

2) for each Bj ∈ V \L(BT ), the clause {¬bj , bj1, . . . , bjkj
}, where the corresponding blocks

Bj1, . . . , Bjkj are the children of Bj in the block tree, and
3) a clause

⋃ni

j=1maxBlockRep(sij , Di) for each meta clause Di := {si1, . . . , sini}, where

we define maxBlockRep(s,D) :=

{
maxBlock(s,D) if leafBlock(s) ⊆ D
{s} else

.

The first type of clause, encoding an implication bi → (si1 ∨ · · · ∨ simi
), is again called a

block definition clause, whereas the second type of clause, encoding bj → (bj1∨· · ·∨bjkj
),

is called a superblock declaration. The third type of clause is called a tree-compressed
sat wedge. Next, we show that the new compression scheme still has the desirable proper-
ties we proved in Section 5.2 for the block partition:

Theorem 5.3.2. (Equisatisfiability of tree compression)
For a CNF instance F and a block tree BT over F , an arbitrary meta instance G that is
nmax-representable in BT is satisfiable iff the tree compression GT of G by BT is satisfiable.

Proof. We take the compression G′ of G by L(BT ). By Theorem 5.2.4, we know that G′ is
equisatisfiable to G. Therefore, we only need to show that GT is satisfiable iff G′ is.
⇒: Let ϑT be a model of GT . We show that by restricting ϑT to selector variables and the
block variables for L(BT ), we receive a model of G′. The block definition clauses we do not
need to consider, since they are identical in GT and G′. Therefore, it suffices to show that
the compressed sat wedge

⋃ni

j=1 blockRep(sij , Di) is satisfied for each Di = {si1, . . . , sini
}.

Consider the corresponding tree-compressed sat wedge
⋃ni

j=1maxBlockRep(sij , Di). We

know that at least one maxBlockRep(sip, Di) is satisfied by ϑT . If leafBlock(sip)∪Di 6= Di,
then we must have ϑ′(sip) = ϑT (sip) = 1, so that blockRep(sip, Di) is satisfied, too. Other-
wise, we only know that ϑT (maxBlock(sip, Di)) = 1, and must inductively traverse the block
tree downward, starting with bq := maxBlock(sip, Di). In each step, we consider the su-
perblock declaration {¬bq, bq1, . . . , bqkq

}, which needs to be satisfied. Since ϑT (bq) = 1, one
of the child block definition variables {bq1, . . . , bqkq

} must be set to true, becoming the new
bq. This consideration is applied inductively until eventually, we have bq = leafBlock(sip).
The block definition clause {¬bq, sq1, . . . , sqkq

} needs to be satisfied by ϑT , so for some sqj
we must have ϑ′(sqj) = ϑT (sqj) = 1. Because Bj ⊆ Di, we have sqj ∈ blockRep(sij , Di), so
that the compressed sat wedge is satisfied.
⇐: Let ϑ′ be a model of G′. We show that we can extend ϑ′ to the non-leaf block
variables to produce a model ϑT of GT . For each Di, we must show the satisfiabil-
ity of

⋃ni

j=1maxBlockRep(sij , Di). We know that
⋃ni

j=1 blockRep(sij , Di) is satisfiable,
i.e. we have ϑ′(blockRep(sip, Di)) = 1 for some p. If blockRep(sip, Di) = sip, then
leafBlock(sip) ∪ Di 6= Di, so that maxBlockRep(sip, Di) = sip as well, satisfying the
tree-compressed wedge.
Otherwise, we set ϑT (bq) := 1 for Bq := leafBlock(sip). But this allows us to also set
ϑT (br) := 1 for the parent block Br, because the superblock declaration for Br is already sat-
isfied by ϑT (bq) := 1. Inductively continuing with this, we arrive at Br = maxBlock(sip, D)
with ϑT (br) = 1, thereby satisfying

⋃ni

j=1maxBlockRep(sij , Di) as desired. After process-
ing all Di in this manner, there might be some untouched blocks Bj just like in Theorem
5.2.4. For such a block, we can simply set ϑT (bj) := 0, satisfying the corresponding block
definition or superblock declaration clause as well. After this, all clauses in GT are satisfied
by ϑT , so ϑT is a model of GT .

73



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Theorem 5.3.3. (Unit propagation equivalence under tree compression) For any
consistent assumption set A := {l1, . . . , lk} ⊆

⋃m
i=1{si,¬si} and a tree compression GT of a

meta instance G for F , every selector variable unit which is derived during unit propagation
on G ∪ {l1} ∪ · · · ∪ {lk} is also derived during unit propagation on GT ∪ {l1} ∪ · · · ∪ {lk}.

Proof. We only need to extend the proof of Theorem 5.2.5 to account for the indirection
introduced by superblock declarations. The base case for our induction over the propagation
steps was already covered there. We have l = sip for some 1 ≤ p ≤ ni, and the induction
hypothesis says that the literals ¬si1, . . . ,¬sip−1,¬sip+1, . . . ,¬sini

have already been de-
rived and propagated. Consider the tree-compressed sat wedge

⋃ni

j=1maxBlockRep(sij , Di)
for Di. We first show that all literals in each maxBlockRep(sij , Di) except those of
maxBlockRep(sip, Di) were cancelled out by propagating the units given by the induc-
tion hypothesis. Consider an arbitrary j 6= p. If maxBlockRep(sij , Di) = {sij}, this single
element has trivially been cancelled out while propagating ¬sij . If maxBlockRep(sij , Di) =
{bq} 6= maxBlockRep(sip, Di) for some block definition variable bq, we already considered
the case that Bq ∈ L(BT ) in the proof of Theorem 5.2.5, where we saw that {¬bq} is derived
and propagated, cancelling out blockRep(sij , Di) = maxBlockRep(sij , Di) in this case, too.
Otherwise, we consider the superblock declaration {¬bq, bq1, . . . , bqkq}. To show that {¬bq}
is still propagated, we need to show that all the ¬bqj are propagated. This argument can
inductively be applied until Bq is a leaf node, which is again covered by the proof of Theorem
5.2.5 because leafBlock(si) ⊆ maxBlock(si, Di) for every Di.
Finally, we turn to the only remaining unit maxBlockRep(sip, Di) in the tree-compressed
sat wedge. If maxBlockRep(sip, Di) = {sip}, we have already derived the unit clause
{sip} = {l}. If maxBlockRep(sip, Di) = {bq} for some block definition variable bq, {bq} is
propagated. If Bq is a leaf, the last part of the proof of Theorem 5.2.5 shows that the unit
{sip} = {l} is still derived. Otherwise, we again need to traverse superblock declarations
until we arrive at a leaf block. Again, we know that all the units in all leaves under Dq must
have been cancelled out because leafBlock(si) ⊆ maxBlock(si, Di) for every Di.

In Figure 5.6, we revisit the compression example from Figure 5.1, this time displaying the
original meta instance next to a near-optimal tree compression by a very small block tree.
The block definition clauses and the superblock declaration clause are mentioned last, so
that each tree-compressed sat wedge corresponds to the sat wedge on the same line.

5.3.1 Algorithm

As already in the case of block partition inference, we separate the algorithm for block tree
construction into three parts. The first method is called blockLeafSplit (Algorithm 9), and
fulfills the task blockPartitionSplit does for block partitions. Unlike blockPartitionSplit,

uncompressed meta instance G tree compression G′

{s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s13, s14, s15} {b3, b5, s13}
{s1, s2, s3, s5, s6, s7, s8, s9, s10, s14, s15} {b5}
{s1, s2, s3, s4, s14, s15} {b1, s4}
{s1, s2, s3, s5, s6, s7, s8, s9, s10, s12, s13, s14, s15} {b5, b4}
{s4, s5, s6, s7, s8, s9, s10, s12} {b2, s4, s12}

{¬b1, s1, s2, s3, s14, s15}
{¬b2, s5, s6, s7, s8, s9, s10}
{¬b3, s4, s11}
{¬b4, s10, s13}
{¬b5, b1, b2}

Figure 5.6: Example of a meta instance, and its compression by a block tree.

74



CHAPTER 5. BLOCK-BASED META LEARNING

however, given the necessary hash-based indexing structures, it can be executed in constant
time, because we do not need to replace the block variable b by a new representation. The
old block B will still be part of the block tree, even though it is not a leaf any longer. Note
that the block trees we can construct in this way are rather restricted compared to the
freedom that the definition would allow. In essence, we are confined to binary trees, and we
cannot revert splitting decisions.

Algorithm 9 blockLeafSplit(BT ,GT ,B,B′)

Input: meta instance GT compressed by block tree BT = (V, E), leaf block B ∈ V , B′ ⊂ B
Output: splits leaf block B into new blocks B′ and B\B′; adapts clauses in GT so that is

remains the tree compression of G under the changed block tree BT
1: B1 := B′; B2 := B\B′ . new blocks, block IDs = 1,2 without loss of generality
2: V := V ∪ {B1, B2}
3: E := E ∪ {(B,B1), (B,B2)}
4: GT := GT ∪ {{¬b1} ∪ {si | Ci ∈ B′}} ∪ {{¬b2} ∪ {si | Ci ∈ B\B′}} . block def clauses
5: GT := GT \{{¬b} ∪ {si | Ci ∈ B}} . remove the old block definition clause for B
6: GT := GT ∪ {{¬b, b1, b2}} . add the superblock declaration for B

However, this restricted method for block tree inference has the advantage of making it
straightforward to write variants of ensureRepresentability and addSatWedge for block
trees. Because they now operate on a tree structure, both are much easier to define re-
cursively. The ensureTreeRepresentability method we define as Algorithm 10 operates on
a clause set D which is to be represented in the tree under a block Bi, splits up the task
along the child block boundaries and recursively calls itself on the child blocks with their
respective portions of D. If it reaches the base case of a leaf, blockLeafSplit is called if nec-
essary. On the topmost level, ensureTreeRepresentability is of course always called with
Bi := B0, so that processing starts at the top node. The implementation of addSatWedge
for block trees, as presented in Algorithm 11, follows the same basic layout, but it collects
literals in a partial representation DT of D which is handed on through the recursion, and
finally added to GT . With the following theorems, we again establish the correctness of both
methods, and give rough estimates of their runtime complexity. This time, we will perform
inductive proofs over sequences of block trees BT i and tree compressions GT

i , where GT
0

is the compression of G by the trivial block tree BT 0. Because the trivial block tree only
consists of a single leaf, we have GT

0 = G′0.

Algorithm 10 ensureTreeRepresentability(BT = (V,E),Bi ∈ V ,D,nmax)

Input: node Bi in block tree BT , new meta clause D = {s1, . . . , sn}, threshold nmax

Output: refines BT (and changes GT accordingly) to ensure nmax-representability of D
1: if ∅ 6= Bi 6= D then . D is not empty, and does not cover Bi entirely
2: if Bi ∈ L(BT ) then
3: if |D| > nmax then . overlap with leaf Bi too large
4: blockLeafSplit(BT , GT , Bj , D)
5: end if
6: else
7: for (Bi, Bj) ∈ E do . distribute the task to the child blocks
8: ensureTreeRepresentability(BT , Bj , D ∩Bj , nmax)
9: end for

10: end if
11: end if
12: return

75



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Algorithm 11 addSatWedge(BT ,GT ,D)

Input: meta instance GT tree-compressed by B, nmax-representable D = {s1, . . . , sn}
Output: changes GT into the tree compression of G ∪ {D}
1: DT := buildRepresentation(BT , B0, D, {})
2: GT := GT ∪ {DT }
3: return

Procedure buildRepresentation(BT = (V,E),Bi ∈ V ,D,DT )

1: if Bi = D then
2: DT := DT ∪ {bi}
3: else
4: if Bi ∈ L(BT ) then
5: if |D| ≤ nmax then
6: DT := DT ∪D
7: else
8: print("ERROR: D not n max-representable!")
9: return

10: end if
11: else
12: for (Bi, Bj) ∈ E do
13: DT := DT ∪ buildRepresentation(BT , Bj , D ∩Bj , D

T )
14: end for
15: end if
16: end if
17: return DT

Theorem 5.3.4. (Correctness of ensureTreeRepresentability)
Let D1, D2, . . . , Dk be a series of meta clauses. Starting with BT 0 and GT

0 , we sequentially
derive BT i and GT

i by calling ensureTreeRepresentability(BT i−1, G
T
i−1, Di, nmax). Then,

the meta problem Gk := {D1, . . . , Dk} is nmax-representable in BT k.

Proof. Again we proceed by induction over i, the index of the Di last added.
“i = 0”: G0 is obviously nmax-representable in BT 0, since by definition we have
∀1 ≤ i ≤ m : maxBlocks(si, {s1, . . . , sm}) = {F} = G0.
“i−1→ i”: This corresponds to calling ensureTreeRepresentability(BT i−1, G

T
i−1, Di, nmax)

on the new meta clause Di := {si1, . . . , sini
}. We need to show that Gi−1 ∪ {Di} is nmax-

representable in the changed block tree BT i that results from executing this call.
By the induction hypothesis, everyD = {s1, . . . , sm} ∈ Gi−1 is nmax-representable in BT i−1.
A call to blockPartitionSplit(Bi−1, Gi−1, B,D) will not change that, because only smaller
blocks are added to the tree, and no block is removed, so that maxBlock(sj , D) ⊆ D
still holds in BT i for any j. To show that the nmax-representability holds in BT i for
the newly added clause Di, we need to consider each sij ∈ Di in turn, showing that
maxBlock(sij , Di) ⊆ Di if |maxBlock(sij , Di) ∩ Di| > nmax. The only case in which
maxBlock(sij , Di) ⊆ Di can be wrong at all is when maxBlock(sij , Di) = leafBlock(sij) ⊃
Di, i.e. if we have arrived at a leaf block that is a strict superset of Di. The case
|leafBlock(sij)∩Di| ≤ nmax we do not need to consider, because then the antecedent of the
representability condition does not hold. Otherwise, the condition |leafBlock(sij) ∩Di| =
|Di| > nmax in line 3 holds, causing a call blockLeafSplit(BT , GT , leafBlock(sij), Di).
This call splits leafBlock(sij) into Di and leafBlock(sij)\Di. As a result, in BT i we have
maxBlock(sij , Di) = Di, fulfilling the representability condition for j.

76



CHAPTER 5. BLOCK-BASED META LEARNING

Theorem 5.3.5. (Correctness of addSatWedge)
Let GT be the compression of a meta instance G under a block tree BT . For a new meta
clause D := {s1, . . . , sn}, let G ∪ {D} be nmax-representable in BT . After the function call
addSatWedge(BT , GT , D), GT is the compression of G ∪ {D} under BT .

Proof. The proof for Theorem 5.2.8, i.e. the corresponding result for block partition in-
ference, can be adapted with some minor changes. Again, we only need to show that
the DT generated and added to GT by the call to addSatWedge(BT , GT , D) is equal to⋃n

j=1maxBlockRep(sj , D) for D = {s1, . . . , sn}, i.e. that for each 1 ≤ j ≤ n, DT exclu-
sively contains bj for Bj := maxBlock(sj , D) if leafBlock(sj) ⊆ D, and sj otherwise.
Consider the case leafBlock(sj) ⊆ D. By definition, leafBlock(sj) ⊆ maxBlock(sj , D) ⊆
D. We show that during our recursive traversal of the block tree, for some recursive call
to buildRepresentation we will have Bi = maxBlock(sj , D). The only case where block
traversal is stopped before reaching a leaf block is if the condition Bi = D in line 1 of
buildRepresentation holds. Given the way buildRepresentation was recursively called, this
would imply D ∩ Bi = Bi, i.e. Bi ⊆ D. The recursion could thus be stopped before
maxBlock(sj , D) if we hadmaxBlock(sj , D) ⊂ Bi. But we know that sj ∈ maxBlock(sj , D)
and thereby Bi ∈ blocks(sj), contradicting with Bi ⊆ D the definition of maxBlock(sj , D).
Consider this call to buildRepresentation withBi = maxBlock(sj , D). Given the arguments
that buildRepresentation is recursively called with, we must then have maxBlock(sj , D) ∩
D = D, which together with maxBlock(sj , D) ⊆ D implies Bi = maxBlock(sj , D) = D,
causing the condition in line 1 to hold. This means that {bj} fo Bj = maxBlock(sj , D) is
added, proving the theorem in this case.
If leafBlock(sj) ⊃ D, the nmax-representability of D gives us |leafBlock(sj) ∩D| = |D| ≤
nmax. For this case, we show that for some recursive call to buildRepresentation we will
have Bi = leafBlock(sj). The only case where block traversal is stopped before reaching a
leaf block is if the condition Bi = D in line 1 of buildRepresentation holds. Given the way
buildRepresentation was recursively called, this would imply D∩Bi = Bi, i.e. Bi ⊆ D. The
recursion could thus be stopped before leafBlock(sj) if we had leafBlock(sj , D) ⊂ Bi. But
in this case, we would have an edge (Bi, leafBlock(sj , D)) ∈ E in the block tree, so that
the recursive call in line 13 would occur, contradicting our assumption that the recursion
stopped. Consider now this call to buildRepresentation with Bi = leafBlock(sj). Our case
|Bi∩D| = |D| ≤ nmax is covered by the condition in line 5. We therefore get DT := DT ∪D,
which in our case means sj ∈ DT because of sj ∈ leafBlock(sj) ∩D.
Obviously, in the recursive case of buildRepresentation nothing is added, and no further
recursion happens if anything was added. Since we determined where the recursion stopped
in all cases, nothing else than the variables covered is added to DT .

As we will see now, the worst-case runtime for both ensureTreeRepresentability and
addSatWedge is surprisingly long, due to a notorious worst case. Runtimes in practice
are much better than one would expect from this (almost linear in m), but this cannot be
shown without extensive formal analysis of the distributional properties of learnt sat wedges.
Suffice it to say that the number of blocks is typically much lower than the number of clauses
in the instance, and that while the representation for a block is generated, we virtually never
need to traverse the entire block tree in practice.

Theorem 5.3.6. (Complexity of ensureTreeRepresentability and addSatWedge)
The worst-case runtime complexity of both ensureTreeRepresentability(BT , G′, D, nmax)
and addSatWedge(BT , GT , D) is in O(m logm), where m := |F |.

Proof. In the worst case, the block tree distributes the m selector variables over m leaves,
and we only have binary branches. If we now add the sat wedge D = {s1, . . . , sm}, the
computation of D ∩ Bj for each recursive call in line 8 (or 13, respectively) takes O(|Bj |).
We therefore have

∑
B∈B |B| ≤ m once on each of the logm layers of the tree, leading to

runtime O(m logm) for the intersections alone.

77



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

The methods we just discussed are combined into the inference algorithm in exactly the
same way as it was described for block partitions in Section 5.2. An interesting observation
that is specific to block trees should nevertheless be mentioned, namely that the block
tree structure inferred by the algorithm largely depends on the order in which the sat
wedges were added. To see this, consider the minimal example of F = {C1, C2, C3, C4}
with BT 0 = {({C1, C2, C3, C4}), {}}, in which we want the sat wedges D1 = {s1, s2} and
D2 = {s2, s3} to be nmax-representable for nmax := 0. If we add D1 before D2, we get

BT 1 = {C1, C2, C3, C4}

{C1, C2} {C3, C4}

BT 2 = {C1, C2, C3, C4}

{C1, C2}

{C1} {C2}

{C3, C4}

{C3} {C4}

On the other hand, adding D2 before D1 leads to a different block structure:

BT 1 = {C1, C2, C3, C4}

{C2, C3} {C1, C4}

BT 2 = {C1, C2, C3, C4}

{C2, C3}

{C2} {C3}

{C1, C4}

{C1} {C4}

While the block partition L(BT ) is identical in both variants, the leaf blocks have been
grouped together differently into larger blocks. This observation essentially remains true
for instances of any size. To better understand the constraints on the producable block
structures over any given unsatisfiable instance, it might be more fruitful to ask which binary
block trees over L(BT ) can not be produced by any sequence of reduction operations.

5.3.2 Interactive Visualization

Just like in the case of a block partition, exposing the inferred block tree to the user opens
up a variety of new information retrieval and control possibilities. The implementation was
therefore extended by a block tree display component based on Kahina’s tree visualization
classes. Each node in the tree represents a block. By default, the node caption consists of
the ID of the respective block followed by the block size in brackets. The default colouring
scheme for the leaf nodes is the same as the one defined for the block partition, but the
colour of a non-leaf block is determined in an intuitive way by the colours of its sub-blocks.
For example, if all of the child blocks are coloured in dark red to mark their criticality,
their parent block will also receive that colour. If only one child block is known to be crit-
ical, and all other child blocks are of unknown state, the parent block is coloured in light red.

In Figure 5.7, we return to the block partition example from Figure 5.5 to showcase the
block tree display. Note that the leaves of the tree correspond to the block partition we
saw there. The order in which the interactive deduction steps were performed has caused
the block tree visualized in the view to be inferred. As can be seen in the reduction graph,
our currently selected US is minimal. The current US view also shows all clauses as being
critical. In the block tree view, we see that all the leaf nodes are coloured either in dark
red or in grey. All the leaves coloured in red represent the blocks the MUS is composed of,
whereas the grey blocks are those which fell away during the reduction process. Another
MUS will exhibit a different pattern of red and grey leaves, making it very easy to visually
assess the overlap and the differences between different MUSes.

As we saw in the previous section, the block tree grows whenever a new sat wedge cannot
be represented in the old tree. The growth of the block tree by leaf splitting mirrors a

78



CHAPTER 5. BLOCK-BASED META LEARNING

Figure 5.7: An example of the block tree display during a reduction process.

continuous refinement of the block partition represented by the leaf nodes. It is attractive
to assume that the block tree reveals some hidden knowledge about the inner structure of
the unsatisfiable SAT instance. The problem is that, as already demonstrated, the block
trees can differ a lot depending on the order in which the sat wedges were added. While
the partition defined by the literals will come out more or less identically (with the nmax

threshold adding some variety), the inferred tree structure over this partition can be vastly
different. If the block tree reveals hidden structure beyond what can be concluded from the
underlying partition, this information would just as well depend on the operations executed
to derive it. This subject is certainly worthy of closer investigation in the future. In Chapter
6, we will take a first stab at exploring this issue when we assess the usefulness of interactive
MUS extraction as a paradigm.

Just like the block partition display, the block tree display is valuable as an additional layer
for defining useful clause selections. Moreover, it is again an attractive option to allow US
reduction steps to be executed on any block in the tree. Just like for the block display,
the default reaction to a double-click on one of the blocks in the block tree is to attempt a
simultaneous reduction of all the clauses in the block, followed by the fallback procedure of
reducing clauses individually up to the first success if simultaneous reduction is unsuccessful.

In Figure 5.8, we see the effect of a user-defined block reduction operation on a different
block tree. The simultaneous reduction of all 144 clauses in block 6082 fails, causing the
fallback option to be executed. Already the first reduction in the row is successful, leading
to a sat wedge that is not representable in the current tree. On the right side, we see the
consequences of the call to ensureTreeRepresentability. Block 6082 is not a leaf block any
longer, but it was split into a new block of 113 clauses which fell away during clause set
refinement, and a core of 31 clauses of unknown criticality. The mechanism demonstrated
here makes it possible to find MUSes by means of interaction with the block tree alone,
splitting leaf nodes until all leaves are coloured either in dark red or in grey, just as in our
first block tree example in Figure 5.7.

5.3.3 Application to Non-CNF Instances

Just as in the case of block partitions, there is a natural application of block trees to a
more general form of minimal core extraction. This becomes apparent when we look at the
Tseitin encoding of a non-CNF formula in negation normal form (see Definition 2.1.6).

For this application, we need to slightly generalize our notion of a block tree by dropping
the condition

⋃
(Bi,Bj)∈E Bj = Bi, so that not all the selector variables in a block need to

79



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Figure 5.8: An example of interactive block tree node expansion.

be covered by its children. We did not consider this definition of block trees before because
it would have made the block inference algorithm much more complicated. In this section,
we will again work with an a priori block structure, so that an inference algorithm is not
needed. The necessary proofs of equi-satisfiability and propagation completeness can easily
be adapted to this more general notion of block tree.

We can now map the formula structure of an NNF formula to a block tree by grouping
together the clauses from the Tseitin encoding that together represent a formula subtree. In
Figure 5.9, we see an example of an NNF formula tree, the corresponding Tseitin encoding
extended by selector variables, and the block tree over these selector variables that models
the formula structure.

∧

∨

∧

¬a b

∧

a ¬b

∧

¬b ¬a

F ′ = {{x0,¬s1},
{¬x0, x1,¬s2},
{¬x0, x2,¬s3},
{¬x1, x3, x4,¬s4},
{¬x2,¬a,¬s5},
{¬x2,¬b,¬s6},
{¬x3,¬a,¬s7},
{¬x3, b,¬s8},
{¬x4, a,¬s9},
{¬x4,¬b,¬s10}}

{¬b0, b1, b2, s1, s2, s3}

{¬b1, b3, b4, s4}

{¬b3, s7, s8} {¬b4, s9, s10}

{¬b2, s5, s6}

Figure 5.9: Example of NNF formula, its Tseitin encoding, and corresponding block tree

The crucial observation now is that by removing blocks of clauses from the Tseitin encoding,
we arrive at Tseitin encodings of subformulae. Consider the case where we want to remove
the entire subtree (¬a ∧ b) ∨ (a ∧ ¬b) from the formula. During interactive reduction, a
click on the corresponding block B1 would cause the selector variables s4, s7, s8, s9, s10 to
be set to false. F would be reduced to {{x0}, {¬x0, x1}, {¬x0, x2}, {¬x2,¬a}, {¬x2,¬b}},
where the clause {¬x0, x1} has become unnecessary, but does not destroy equi-satisfiability
because we can now simply set x1 to true.

The naturalness of this approach to minimal unsatisfiable subformula extraction lies in the
fact that block variables in the meta instance now stand for the removal of subtrees, and are
used to express dependencies between removals of different subtrees, just like we used them
for clause groups in the block partition case. For our example reduction, the resulting F is
satisfiable, so we would learn the sat wedge {s4, s7, s8, s9, s10}, which would be compressed
to {b1}, stating in a nicely concise way that the subformula (¬a ∧ b) ∨ (a ∧ ¬b) is critical.

80



CHAPTER 5. BLOCK-BASED META LEARNING

When defining minimal unsatisfiable subformulae in Section 2.2.3, we saw that we only get a
reasonable definition if we only allow or-subtrees to be removed. For interactive reduction,
this means that we have to differentiate between blocks which correspond to or-subtrees
and may therefore be reduced, and other blocks which are not reducible. As in the case of
GMUS extraction, we also have to deactivate the possibility of removing individual clauses,
and the fallback option of sequential reduction when a block reduction failed.

5.4 Conclusion

In this chapter, we have extended the meta learning approach by blocks of selector variables,
and seen how these blocks can be inferred automatically both by refining a flat partition and
by building up and maintaining a recursive hierarchy of blocks. Algorithms for doing this
were described and to some degree analysed, and implementations of both block schemes
were added to the prototype system developed in previous chapters.

We have seen how both block structures can be visualized to expose additional information
about the internal structure of unsatisfiable SAT instances. The visualizations solved the
problem of making the overlaps between different MUSes transparent, and provide an inter-
face for giving the user visual hints which clauses or clause groups might be worthwhile to
try to remove from the current US.

To demonstrate the relevance of the concept of block-based meta instances, we have shown
how both GMUS extraction and the extraction of minimal unsatisfiable subformulae from
non-CNF instances can be described and emulated very naturally in terms of blocks. Using
these techniques, the prototype can easily be turned into a system for interactive extraction
of unsatisfiable cores not only of the usual CNF instances, but also of GMUS instances and
non-CNF formulae.

Taken together, these innovations complete our exploration of interactive MUS extraction
and the features of its current prototype implementation. In the following and final chapter
of this thesis, some of the new techniques will be evaluated by using the prototype on a set
of instances intended to approximate the real-world instances that users will want to use
interactive MUS extraction tools on.

81





Chapter 6
Evaluating Interactive MUS Extraction

Having built up an architecture and a prototype of a system for interactive MUS extraction,
we can now turn to the issue of evaluating the usefulness of the paradigm by testing it in
an application context. This endeavour was hampered by the lack of available test data,
a problem which is described in Section 6.1. To compensate for this lack, Section 6.2
then develops a novel approach to SAT-based parsing of context-free grammars for natural
language processing. A test set of 120 interesting instances is generated, whose properties
with respect to minimal unsatisfiable subsets we analyse in Section 6.3. We then turn to
the question how unsatisfiable subsets in these instances can be interpreted with respect to
grammar debugging tasks. In preparation, we define an application-specific clause relevance
filter in Section 6.4. In Section 6.5, we then implement further assistance functionality
for displaying this symbolic information, observe the structure of typical conflict sets, and
analyse what they can tell us with respect to the grammar. A concluding section wraps up
the results of the experiment, and draws a few conclusions concerning the applicability of
interactive MUS extraction in general.

6.1 General Issues of Evaluation

While it is possible to use interactive MUS extraction as a tool for exploring the search space
for any SAT instance, it can only develop its full potential if the user knows something about
the semantics of variables, clauses, and clause blocks in the context of the application in
question. In most cases, this presupposes some understanding of the connection between
the input SAT instance and the problem it encodes.

From the user’s part, this requires domain knowledge in the respective field. For the SAT
encoding, it means that at least some variables need to represent problem information in a
fashion that is transparent to or at least interpretable by the user. Normally, this would be
done by encoding the semantic contribution of variables in their symbols. Here we face the
problem that the publicly available test sets for MUS extraction are obfuscated in the sense
that they do not contain any symbolic information of this kind.

For comparing the performance of general-purpose SAT solvers, the DIMACS format is the
standard exchange format. By default, this format only stores numerical IDs to represent
variable names, and no symbolic information is contained in the various test instances which
are publicly available. SAT solving technology is thus being evaluated on pure structural
information where the symbols have been stripped of all their semantic content. Some gen-
eral information about the respective application is often given in accompanying papers, but
never enough to restore any variable symbols.

83



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

The main reason for this unfortunate situation is that the test sets are usually compiled
by researchers who are working on an industrial application. If these researchers are not
themselves employees bound by non-disclosure agreements, they will have contracts with
industry partners which forbid the proliferation of sensible data that could give away trade
secrets. Quite understandably, such researchers therefore tend to be very careful in giving
away data which could yield any information about application scenarios and the problem
encodings. As a tendency, this also extends to academic researchers without any direct
industry affiliation, since they have generally invested many work hours into developing effi-
cient encodings for their respective applications, and only very few people are ready to leave
the fruits of this work to their competitors in such an active and thriving field.

But even if it were possible to procure a test set with associated symbol tables for the
variables, his lack of the relevant domain knowledge (e.g. in hardware design) would have
made it very hard for the author to assess what a specialist in the field could gain from an
interactive MUS extraction tool. For these reasons, it became necessary to find or develop
a SAT encoding for a problem from a domain the author is sufficiently familiar with.

6.2 The Test Case: CFG Parsing for NLP

The mentioned problems in acquiring meaningful instances from industrial applications led
the author to resort to the domain of natural language processing (NLP) as the one
he is most familiar with, and to look for interesting SAT encodings of problems in this field.
Surprisingly, an extensive search of the literature revealed that only very few applications
of SAT solving in NLP exist, and no literature at all was found for one of the core areas of
NLP, the syntactic analysis of natural language. In the author’s opinion, the lack of work
on SAT-based methods in NLP is due to the reason that during the past two decades, work
in mainstream NLP has largely shifted to purely statistical methods, whereas during the
heyday of symbolic NLP and artifical intelligence in the 1980s, the field of SAT solving had
not yet developed the performant and mature tools available today, causing most of this
older work to take place in the framework of logic programming instead.

The only work which was found of potential relevance is the planning-based approach based
on answer set programming (ASP) presented by Yulia Lierler and Peter Schüller [38], which
we already encountered in Section 3.3.2. The example of a reduction graph we saw there
was based on a SAT instance created from an instance of this ASP encoding by means of the
ASP grounder Gringo [39]. Originally, the author intended to use existing tools to reduce
the entire encoding to SAT, and to evaluate interactive MUS extraction on the resulting
unsatisfiable SAT instances. However, it turned out that this is made impossible by the
many reduction techniques which Gringo and other ASP grounders perform in order to keep
answer set programming feasible. These techniques guarantee that no answer sets (the ASP
equivalent of models) are lost, but in the unsatisfiable case, the inconsistencies often get
reduced to an empty clause already at this stage, so that most SAT instances produced by
grounding and post-processing are already trivially unsatisfiable. This mirrors the situation
in logic programming, where a result set is given in the satisfiable case, but for efficiency
reasons no explanation is generated in case a predicate call fails. The logic programming
and ASP paradigms are not designed to provide explanations for failure, so we will not be
able to extract useful test instances from any approach to syntactic parsing which takes
place in these paradigms.

The lack of SAT-based previous work leaves a computational linguist with many opportu-
nities for developing novel SAT-based approaches to classical problems in NLP. As a result,
the test case for SAT solving that will be developed in this chapter seems to be completely

84



CHAPTER 6. EVALUATING INTERACTIVE MUS EXTRACTION

new. While it can only be considered a first exploratory step towards MUS-based debugging
of formal grammars in symbolic NLP, the general ideas we will develop apply just as well to
state-of-the-art systems which use much more complex formalisms. But to understand the
application and its encoding in SAT, we first have to cover some basic background knowledge
on linguistics and NLP.

6.2.1 Parsing Natural Language

The syntactic analysis of natural language builds on the theories and notions of syntax as a
branch of linguistics, a field with a long tradition of competing paradigms. For our exposition
here, we stay in the mainstream tradition of the English-speaking world by working with a
generic variant of phrase structure grammar. Unlike in other paradigms of syntax which
focus on functional connections between words, the phrase structure grammar approach to
syntax is primarily concerned with describing what is called the constituent structure of
natural language sentences. Constituents are words or groups of words which function as
units within a hierarchical structure assigned to a sentence, which is usually written in the
form of a syntactic tree. Most linguists agree on a set of constituency tests which can
decide for most sequences of words whether they should be considered constituents.

Vast differences between different linguistic theories concern the question how constituents
are labeled, and how their recombination possibilities with other constituents to form larger
structures should be modeled. A useful degree of agreement about the labels can be reached
for a core set of syntactic categories, which divide into word classes and phrase types. In-
dividual words are labeled by word classes, examples being traditional notions like that of
a noun, a verb, or an adjective. The notion of a phrase is again theory-dependent, but the
notion may informally be stated as a constituent around one designated head word, where
the head word determines the outward behaviour of the constituent. The type of the phrase
is usually in some way derived from the class of the head word. To make all these notions
more concrete, Figure 6.1 gives a table of all the syntactic categories that are used in the
example grammar of this chapter, along with their shorthands, and examples giving a rough
impression of what type of constituents these labels apply to.

A adjective red, green, dark, intelligent
ADV adverb very, well, badly, tomorrow, again
AP adjective phrase very old, blue or green, slightly complicated
C complementizer that, whether
CP complementizer phrase that we have arrived, whether he comes
D determiner the, every, some, each, his, that
DP determiner phrase the man, every black car, his work
N noun work, book, computer, algorithm
NP noun phrase short chapter, very dense content
P preposition in, on, at, with
PN proper noun John, Mary, London, Tübingen
PP preposition phrase in London, on the slow bus, at the seaside
PRN pronoun he, she, we, that
S sentence we know it, this is interesting
VI intransitive verb sleeps, walks, snore
VP verb phrase sees him again, gives his wife the keys
VT transitive verb likes, sees, hear

Figure 6.1: Table of syntactic categories used in the example grammar.

85



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

The exact role of these categories in linguistic theory is of no concern to us here, but the list
should contain enough information for the non-linguist reader to comprehend the examples
in this chapter. For a more complete understanding, it is recommended to consult the first
chapters of any standard syntax textbook like the one by Andrew Carnie [47]. In order to
put some flesh on the notion of a syntactic tree, a first example of such a structure for the
sentence “John saw a small cat on the tree” is visualized in Figure 6.2. Note that the leaves
are labelled with word classes, and the non-leaves with phrase types.

S

DP

PN
John

VP

VT
saw

DP

DP

D
a

NP

AP

A
small

NP

N
cat

PP

P
on

DP

D
the

NP

N
tree

Figure 6.2: Example of a syntactic tree over the example grammar.

One of the central challenges of natural language processing is to automatically determine
the syntactic trees assigned to a sentence according to some formal specification of a lin-
guistic theory, a grammar in the more narrow sense we will use here. The entire process is
called parsing, and there are obvious parallels to the use of the word in computer science,
when an expression of a programming language is parsed into a syntax tree in the first stage
of a compilation process. Parsing for programming languages is (or should be) deterministic,
assigning only one structure to each symbol sequence that is a valid expression. In contrast,
natural language utterances are very often ambiguous, meaning that we can most often
assign more than one structure to a sentence, which often reflect different readings, i.e.
different semantic interpretations. Consider a sentence like “she thinks about the shadows
at night”, where the question is the position of the phrase “at night” in the syntax tree.
If we attach it to the noun phrase “shadows”, we get a reading where the thinking might
occur by day, and it is only about the shadows appearing at night. On the other hand, if we
attach “at night” to the entire verb phrase “thinks about the shadows”, then the thinking
also occurs at night. In most cases, a human listener will be able to resolve the ambiguity
given the context of an utterance, but a formal system which does not have any of this
contextual knowledge needs to take the possibility of multiple solutions into account.

For a parser implementation, we need a formal description of the language fragment to be
covered. This specification needs to be expressed in some grammar formalism that the
parser understands. In most general terms, grammar formalisms are systems for defining
formal languages, but there is not much more that all formalisms used in NLP have in com-
mon. Each grammar formalism is necessarily a compromise between expressivity, tractabil-
ity, and, perhaps most importantly, the elegance with which certain linguistic phenomena
(often specific to one language or a group of languages) can be described.

86



CHAPTER 6. EVALUATING INTERACTIVE MUS EXTRACTION

6.2.2 Context-Free Grammars as a Grammar Formalism

A particularly simple approach to modelling a phrase structure grammar mathematically is
to use context-free grammars (CFGs) as known from formal language theory as a simple
grammar formalism. While context-free grammars are demonstrably not powerful enough to
describe all syntactic phenomena which occur in natural languages [48], and although their
practical usefulness is limited if they are not enhanced by a unification-based feature logic
[49] or by a probabilistic model [50], CFGs have for a long time been the de-facto standard
for theory-neutral introductory textbook examples in the field of computational linguistics,
and for teaching the basics of syntactic parsing. CFG as a grammar formalism is also a good
test case because compared to the formalisms used in practice, they are much more acces-
sible to the non-specialist, while still having enough expressive power for defining models
of non-trivial natural language fragments. Another advantage is that most more complex
grammar formalisms can be seen as extensions of context-free grammars, so that many of
the techniques developed and presented here will also be applicable to these formalisms.

Concerning the basics of context-free grammars and related concepts of formal language
theory, any introductory textbook of theoretical computer science should contain every-
thing needed to understand the exposition here. The notation adopted in this chapter is
taken from the very popular undergraduate textbook by Michael Sipser [51]. Consequently,
we will write a grammar in the CFG formalism as a quadruple G = (V,Σ, R, S), where V
contains the phrase labels or non-terminals, and Σ the words or terminals. R is the set
of grammar rules, and the start variable S ∈ V aptly coincides with the sentence label.
A grammar can be specified completely by only enumerating the elements of R, since V
and Σ are implicitly defined by the symbols used in the rules. Using the usual yield and
derivation relations between strings over V ∪Σ, the language accepted by G can be written
as L(G) := {w ∈ Σ∗ | S ∗⇒ w}. A sentence w ∈ L(G) is called licensed or generated by
G in linguistic terminology. We will use T (w,G) to denote the set of parse trees for the
sentence w given the grammar G, which is empty iff w is not licensed by G.

The development of symbolic grammars for (fragments of) natural languages is commonly
called grammar engineering. Like that of a programmer, the workflow of a grammar
engineer consists of grammar writing and grammar debugging. Three types of problems
occur especially often during the process of grammar debugging. The first is the no-parse
problem, which occurs when for some sentence w ∈ Σ∗ which the grammar engineer would
want G to license, he gets w /∈ L(G). In a programming language, this is equivalent to a
syntax error. However, the non-determinism of CFGs for natural languages makes it much
harder than for programming languages to provide useful error feedback which answers the
question why the sentence was not licensed. The missing-parse problem is the situation
where we have T /∈ T (w,G) for some tree T that we would like to see as a parse tree. Note
that in the non-deterministic case, this does not imply wanting that T (w,G) = {T}. It
is well possible that none of the trees in T (w,G) is wrong, but that we are missing some
reading. The spurious-parse problem is dual to the missing-parse problem in that we have
one parse too much, i.e. there is a parse tree T ∈ T (w,G) which is undesired. Note that
this also covers the case where a sentence is licensed by the grammar although it shouldn’t.

The non-determinism involved in production steps makes all of these problems challenging
to track down and resolve. Often, a good intuitive understanding of possible sources of
error is needed to understand where the cause of a problem may be. This makes it difficult
for multiple grammar engineers to collaboratively work on a common grammar, or to ex-
tend grammars which have not been under active development. In the next section, we will
develop a SAT encoding of CFG parsing which allows both the no-parse problem and the
missing-parse problem to be encoded in unsatisfiable SAT instances, making them accessible
to analysis attempts on the basis of minimal unsatisfiable subsets.

87



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Figure 6.3 shows the small example grammar we will be using throughout this chapter. It
forms the basis for the MUS instances we will generate, and we will illustrate the practical
solution of the no-parse and missing-parse problems by means of interactive MUS extraction
via examples that build on this grammar. Rules are notated compactly in the form A → B,
where | is used as a shorthand for disjunctive rules.

S → DP VP A → old | young | small | tall ADV → very
DP → D NP | PN | PRN PRN → everybody | he | she C → that
VP → VI | VB CP | VP PP | VT DP P → on | in | under
NP → NP PP | AP NP | N PN → john | mary
AP → A | ADV A VB → believes | thinks
PP → P | DP VI → sleeps | walks
CP → C | S VT → sees | likes

N → man | woman | dog | cat | street | house | tree

Figure 6.3: The example context-free grammar used to generate the test instances.

6.2.3 Encoding CFG Parsing in SAT for Grammar Debugging

In this section, a new encoding of CFG parsing as a SAT problem will be developed. There
are of course much more efficient parsing algorithms for CFG, but these approaches do not
provide usable conflict information for grammar debugging. The two principal ideas of the
encoding scheme are that models correspond to parses, and that variables talk about the
assignments of symbols and application of rules on ranges in the input string. Since there
are more possible ranges over longer inputs, the size of the encoded grammar grows with the
maximum input length. The encoding is best read in a top-down fashion, i.e. by viewing
the clauses as implications where the antecedents enforce the consequents.

We will now define the SAT encoding of a grammar G = (V,Σ, R, S) for parsing strings of
length n. As a first step, we introduce variables a[i,j] (written a[i,j] in plain text, e.g. in
user interfaces) for encoding statements about the assignment of symbols A to input ranges
[i, j] with 0 ≤ i < j ≤ n. Symbols which are not connected by a unary rule exclude each
other, which we enforce by generating exclusivity constraints

{¬a[i,j],¬b[i,j]} ∀ 0 ≤ i < j ≤ n, ∀A,B ∈ V : A
∗; B

For reasons of efficiency, we are not introducing variables for the terminals Σ, but only for
the word class labels immediately above the words. We are thus parsing sequences of word
classes or pre-terminals instead of terminals. During parsing, the conversion from words
to word classes is then performed in a dictionary-based preprocessing step.

To encode the application of a rule to some range, for each rule A→ B1, . . . , Bm and each
range [i, j] with 0 ≤ i < j ≤ n, we define the variable ab1,...,bm[i,j] (a->b1,...,bm[i,j])
to encode that the rule A → B1, . . . , Bm was applied to the range [i, j]. The presence of a
constituent a[i,j] where A is on the left-hand side of some rule requires the application of
one of these rules, but only if the rule has as most as many symbols on the right hand side
as the range [i, j] is wide:

∀ 0 ≤ i < j ≤ n, ∀A ∈ V : {¬a[i,j]} ∪
⋃

A→B1,...,Bm∈R
m≤j−i

{ab1,...,bm[i,j]}

88



CHAPTER 6. EVALUATING INTERACTIVE MUS EXTRACTION

Note that if all the right-hand sides for A have too many symbols, we receive a unit clause
{¬a[i,j]}, expressing the fact that no constituent of type A can then range over [i, j].

Next, we model the connection between rule applications and the child constituents they
create. A rule execution ab1,...,bm[i,j] can be seen as distributing the range [i, j] over m child
constituents. For m = 1 (a unary rule), the only child must span the entire range:

∀ 0 ≤ i < j ≤ n, ∀A→ B ∈ R : {¬ab[i,j], b[i,j]}

For each rule A→ B1, . . . , Bm with m > 1, we introduce a new variable ab1,...,bm[i,j]:i1:···:im−1

(a->b1,...,bm[i,j]:i1:...:im-1) for each possible splitting i < i1 < · · · < im−1 < j.
Since rules with m > 2 are almost never necessary, the number of splittings does not become
untractably large for typical n < 20 (sentences which are not composed of smaller sentences
only very rarely have 20 or more words). Each application of a rule A→ B1, . . . , Bm implies
that it is applied using one of the possible splittings:

∀ 0 ≤ i < j ≤ n, ∀A→ B1, . . . , Bm ∈ R, m > 1 :

{¬ab1,...,bm[i,j]} ∪
⋃

i<i1<···<im−1<j

{ab1,...,bm[i,j]:i1:···:im−1
}

Next, we express that each splitting variant enforces the presence of all the corresponding
child constituents at the ranges defined by the splitting:

∀ 0 ≤ i < j ≤ n∀A→ B1, . . . , Bm ∈ R, m > 1, ∀i = i0 < i1 < · · · < im−1 < im = j :

m∧
k=1

{¬ab1,...,bm[i,j]:i1:···:im−1
, bk[ik−1,ik]}

Finally, we need to forbid pre-terminals from spanning more than one input position, because
for these categories there are no rule encodings that would enforce the presence of any child
constituents, which would make it possible for a single pre-terminal to span arbitrary ranges
without any check against the input string if we do not explicitly forbid that:

∀A ∈ V where ∃w ∈ Σ : {A→ w} ∈ R, ∀ 0 ≤ i, j ≤ 1 where j − i > 1 : {¬a[i,j]}

The encoding of a CFG grammar that we have just introduced can be used to analyse sen-
tences up to length n by solving it with only a few additional assumptions representing the
input. However, the encoding of the grammar alone is trivially satisfiable just by assuming
that all the antecedents in the implication encodings are false. Only by adding unit assump-
tions {a[i,j]} do we get non-trivial constraints into the problem.

We shall see that a variety of problems can be expressed by simply adding different sets of
unit assumptions to the grammar encoding. The simplest form allows us to use a SAT solver
as a parser. This works by postulating {s[0,n]} along with unit clauses that specify which
categories can be found at which positions in the input. Let us illustrate the procedure
on a simple example sentence which is licensed by the grammar. We parse the sentence
“john sleeps” by generating the encoding of our example grammar for inputs of size 2,
and adding the unit clauses {s[0,2]}, {pn[0,1]}, {vi[1,2]} in a preprocessing step. Instead of
formally proving the correctness of our SAT encoding, we will go through a solver run for
this example step by step, which should contribute to a complete understanding of the way
in which the encoding works. We write down the relevant steps of the solver run:

1. {s[0,2]} is propagated, reducing {¬s[0,2], sdp,vp,[0,2]} to {sdp,vp,[0,2]}

2. {sdp,vp,[0,2]} is propagated, reducing {¬sdp,vp,[0,2], sdp,vp,[0,2]:1} to {sdp,vp,[0,2]:1}

89



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

3. {sdp,vp,[0,2]:1} is propagated, reducing {¬sdp,vp,[0,2]:1, dp[0,1]} to {dp[0,1]},
and {¬sdp,vp,[0,2]:1, vp[1,2]} to {vp[1,2]}

4. {dp[0,1]} is propagated, reducing {¬dp[0,1], dpd,np[0,1], dppn[0,1], dpprn[0,1]}
to {dpd,np[0,1], dppn[0,1], dpprn[0,1]}

5. {vp[1,2]} is propagated, reducing {¬vp[1,2], vpvi[1,2], vpvb,cp[1,2], vpvt,dp[1,2]}
to {vpvi[1,2], vpvb,cp[1,2], vpvt,dp[1,2]}

6. assume {dpdp,pn[0,1]}, clash with {¬dpdp,pn[0,1]}, backtracking

7. assume {dppn[0,1]}, reducing {¬dppn[0,1], pn[0,1]} to {pn[0,1]}, no clash

8. assume {vpvi[1,2]}, reducing {¬vpvi[1,2], vi[1,2]} to {vi[1,2]}, no clash

At this point, we have found a model where the following variables are set to true, and which
exactly corresponds to the model MiniSat generates when run on the instance:

s[0,2], sdp,vp[0,2], sdp,vp[0,2]:1, dp[0,1], dppn[0,1], pn[0,1], vp[1,2], vpvi[1,2], vi[1,2]

This set of facts represents the expected parse tree, with “john” being analysed as a DP
and “sleeps” as a VP. Adding the clause {¬dp[0,1],¬vp[1,2]}, we find that the SAT encoding
of the parse becomes unsatisfiable, showing that no further parse exists.

A parser based on this encoding, which allows the user to specify a CFG in a textual format
and a sentence to be parsed as arguments to a command-line tool, was implemented as a
testing environment. Given the straightforward nature of the encoding, it is surprising to
see that the parser thus constructed is actually usable for sentence lengths up to 25. In the
author’s opinion, this says nothing about the quality of the encoding, but more about the
maturity and efficiency of current SAT solving technology.

We now turn to the question how the no-parse and missing-parse problems are encoded. The
no-parse problem is simply the situation where we encode a parsing problem as above, but
the resulting SAT instance is unsatisfiable. In this situation, we can analyse the infeasibility
by extracting and inspecting MUSes. The difference in the missing-parse case is that we
can postulate constituent labels for ranges in addition to s[0,n] and the input encoding. Any
expected parse can simply be expressed as a set of unit assumptions about consituent labels.
The MUSes in such an instance can give us very specific hints about why our expectation
was wrong.

At this point, it will be helpful to introduce another example. Assume that we have parsed
the sentence “old mary sleeps” for our example grammar, and the SAT-based parsing system
has told us that the problem is unsatisfiable. If a linguist now wants to find out why the
sentence was not licensed, she will in most cases be able to ask a more specific question.
This could be an entire parse tree that was expected, but for some reason not generated as a
model. For the example sentence, this could just be the expectation that “old mary” should
be parsed as a DP. Both entire parse trees and such isolated assumptions can straight-
forwardly be stated as additional unit clauses. For our example, let us add the already
mentioned assumption dp[0,2].

We will let the sentence “old mary sleeps” be our running example for interactive MUS
extraction in the rest of this chapter. For now, we only quote and discuss a refutation proof
generated by MiniSat for this instance, with the purpose of further deepening the reader’s
familiarity with the SAT encoding of CFG parsing. The proof as visualized by a small
ad-hoc helper tool implemented in the Kahina framework is displayed in Figure 6.4. The
resolution steps need to be read in a bottom-up fashion, resulting in the empty clause at

90



CHAPTER 6. EVALUATING INTERACTIVE MUS EXTRACTION

the top. In the proof we can read how all the three possibilities of establishing d[0,2] fail. In
the right branch, the options dpn[0,2] and dprn[0,2] fail because PN and PRN are word classes
which cannot range over more than one word. In the left branch, we see how the option
dd,np[0,2] fails because it would require “mary” to be parsed as an NP, which is impossible
for a proper noun according to the grammar.

Figure 6.4: The smallest refutation proof for the missing-parse example.

With a natural SAT encoding of the parsing problem at our disposal that can easily be
extended by additional assumptions to formalize no-parse and missing-parse problems, we
should ask ourselves whether explanations for the third problem type of grammar engineer-
ing, the spurious-parse problem, cannot be generated in this way, too. Regrettably, the
answer seems to be no. Without any formal notion of what counts as an explanation, we
cannot give a formal proof of this. However, given sufficient understanding of the SAT en-
coding, an informal argument should suffice to establish this point. Consider what happens
if we try to suppress a parse by adding negated constituent range variables to the problem.
If we arrive at an unsatisfiable instance in this way, the refutation proofs generated (and
also inspection of MUSes) will not explain to us why the spurious parse was generated, but
could only be read as answering the question why there are no other parses.

6.2.4 Generating Test Instances

In order to have a wide array of different grammar engineering problems available for our
exploration of interactive MUS extraction in practice, 120 test instances were generated from
the example grammar in Figure 6.3. 100 of these instances encode the parsing problem for
different sentences, of which one half is licensed and the other rejected by the grammar. The
50 unsatisfiable instances can also be seen as instances of the no-parse problem in grammar
engineering. Care was taken to make use of all the grammar rules and words defined in the
grammar, and multiple sentences of every length between 1 and 12 were chosen, with two
outliers giving an impression of larger instances.

Concerning the sentence types, the 50 no-parse problems are a balanced mix of sentences
which are grammatical in English, but not licensed by the example grammar (“he believes
in Mary”), sentences which are slightly ungrammatical because one word is missing (“every
man likes cat”) or the order between two words is incorrect (“a young very woman likes
an old man”), sentences which contain multiple errors (“sleeps cat the tree under”), and
almost random sequences of words which are not analysable even by a human reader with
maximum error tolerance (“every every man man”,“tree under sees”). The instances derived
from these sentences differ in internal structure, since they encode all types of infeasibilities
from a single local problem to utter chaos.

91



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

The other 20 instances are encodings of missing-parse problems, all of them derived from
grammatical sentences which have no parse, but for which expectations can be expressed.
To build instances of the other mentioned type of missing-parse problem, where we expect
multiple readings but one of them is missing, we would need a slightly larger and much more
ambiguous example grammar. Altogether, the test set attempts to sample the full range
of instances as they might arise from grammar debugging systems, in robust processing of
sentences produced by non-native speakers, and in educational settings where the basics of
natural language processing are taught.

Because no commercial interests are involved in an experimental encoding of context-free
grammar engineering, the resulting set of test instances could be released to the public with
all the symbolic information attached. The author hopes that this test set will allow other
researchers to develop and explore new semantically motivated ideas in SAT solving without
having to either rely on benchmark sets that are stripped of any semantics, or being confined
to their specific application. The symbols are defined in the DIMACS files via comments
of the form c [varID] [symbol] between the header and the clause declarations. The full
test set will be made available on the author’s webpage.

6.3 Properties of the Test Instances

As for any new test set, it is of interest to characterize the instances in terms of a few basic
measures. In this section, the test set developed in Section 6.2.4 is first analysed in terms of
the number of clauses, the number of variables, and average clause size. Then, we use the
CAMUS tool [20] for finding all MUSes to analyse the search space for as many instances as
possible, condensing the acquired knowledge into statistics about average number of MUSes
and their sizes. Finally, we compute statistics for the two measures proposed by Kullmann
which are easy to determine, i.e. the sizes of the lean kernel and of the intersection of
all MUSes. All these numbers are summarized in Figure 6.5 for both the no-parse and
the missing-parse problems. In Section 6.3.4, the computed measures are compared to the
corresponding values for common benchmark sets as cited in publications, helping us to
evaluate the representativeness of our test case for applications of MUS extraction.

6.3.1 Problem Sizes and Basic Measures

Given the nature of the encoding, it is not surprising that the no-parse problems for sen-
tences of the same length have exactly the same number of clauses and variables. In fact,
the only difference between the instances of one length is in the unit clauses that describe
the input. The first block of lines in the no-parse table of Figure 6.5 can therefore be read as
exact numbers, there was no need to compute average values. The possibly most interesting
fact to observe about these basic measures is how they grow with input length. Considering
that the encoding introduces separate variables for every partition of every possible range
for every constituent and every rule, the number of variables in the test instances is still
manageable. A semi-formal consideration of the combinatorics quickly explains why this is

so. The number of possible ranges is roughly
(
n
2

)
/2 = n(n−1)

4 . Since most grammar rules are
binary (not only in our example grammar, but in linguistic theory in general), only m − 1
different splittings need to be considered for a range of size m. Altogether, the total number
of range splittings, and thereby of variables for constant grammar size, is in O(n3).

An important question that is not answered by the computed numbers is how much the size
of the encoding grows with grammar size. After all, while in a grammar engineering system
we will never want to debug sentences of more than 15 words (problems in longer sentences
can be reduced to minimal examples by leaving out constituents), the size of the example
grammar used in this chapter is a lot smaller than what one would use in practice. A CFG

92



CHAPTER 6. EVALUATING INTERACTIVE MUS EXTRACTION

for the syntax of a natural language with reasonable coverage tends to contain not less than
a few hundred rules, and uses about 60 different constituent labels. Another glimpse at
the definitions of the encoding tells us that the number of constituents introduces another
square factor (because of the exclusivity clauses), but that the number of rule declaration
and distribution clauses is only linear in the number of rules. Still, this means that the
SAT encoding of a realistic grammar will contain millions of clauses, and that one will need
to confine oneself to sub-grammars to achieve acceptable response times during interactive
MUS extraction for grammar debugging. Extracting and debugging sub-grammars in iso-
lation is already a well-established technique in grammar engineering, so that this problem
does not immediately detract from the viability of our SAT encoding for applications.

An interesting observation about the computed measures is that the average clause size
is always very close to 2, but continually grows with the maximum input length n. The
closeness to 2 is due to the large number of exclusivity constraints which make up most of
the clauses. The increasing tendency is due to the growing number of splittings, which has
no bearing on the number of exclusivity constraints, but produces more clauses of size 3.

6.3.2 Number and Size of MUSes

For computing the statistics about MUS sizes and the number of MUSes in the test in-
stances, the CAMUS tool [20] for enumerating all MUSes was used. As can be seen in the
second block of the results in Figure 6.5, the number of MUSes explodes with the input size.
Even for n = 4, the enumeration of all MUSes was not feasible any longer, not terminating
after half an hour for even a single instance and filling gigabytes of disk space with lists
of clause IDs. Using CAMUS’s option to define timeouts for both phases of the algorithm,
it was possible to at least generate a sample of all MUSes for inputs of length 4, so that
approximate values for the minimum and maximum MUS sizes could be determined. The
values computed in this way are marked with ≥ or ≤, depending on the direction in which
the real results could deviate from the ones that were feasible to compute. For n > 4, CA-
MUS does not even begin to output MUSes within 30 minutes of runtime, because already
its first phase of computing maximal satisfiable subsets takes too long. Fortunately, CAMUS
offers the option to perform a branch-and-bound search in order to find the smallest MUS,
which is of course much more efficient than an attempt to enumerate all MUSes. Using this
option, it was possible to find the smallest MUS in all instances up to n = 5, at which point
the runtime for a single instance amounted to several hours.

For n > 4, the entries in the tables except for minimum MUS size are therefore only very
rough estimates, which were determined by walking through the reduction graph of each in-
stance on ten different paths created by a specialized findAnotherRandomMUS heuristic
that always selects a deletion candidate from the clauses of unknown status in the current
US until a MUS is found. This heuristic has the advantage of disrupting previously found
proofs by attempting to remove clauses involved in them, which leads to a much greater
fan-out into different MUSes than what would happen for completely random deletion can-
didates. The table entries are the largest and smallest sizes of a MUS found in this way, and
the average is only computed over the size of the MUSes encountered for each instance.

The most interesting point these data illustrate is that there is usually a considerable differ-
ence in size between the smallest and the largest MUS. This indicates that simply computing
some MUS will not be enough for a grammar debugging application, since for a sentence of
length 4, a MUS of size 19 will obviously be a lot easier to analyse and understand than
one of size 105. This means that interactive MUS extraction promises to be of use for our
application, provided that the variable symbols will give a grammar engineer useful hints
which deletion candidates potentially lead to significant reductions.

93



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

n
o-p

arse:
le

n
g
th

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
4

1
8

#
in

sta
n

c
e
s

5
5

5
5

5
5

5
5

5
2

2
2

1
1

c
la

u
se

s
3
1
8

982
201

3
3
4
3
1

5
2
5
6

7
5
0
8

1
0
2
0
7

1
3
3
7
3

17026
21186

25873
31107

43296
75118

v
a
ria

b
le

s
3
3

109
2
3
8

4
3
0

6
9
5

1
0
4
3

1
4
8
4

2
0
2
8

2685
3465

4378
5434

8015
15333

a
v
g
.

c
la

u
se

siz
e

1.987
1
.9

9
0

1.99
5

2
.0

0
3

2
.0

1
0

2
.0

1
8

2
.0

2
5

2
.0

3
4

2.041
2.049

2.056
2.063

2.077
2.102

a
v
g

#
M

U
S
e
s

3
6.8

240
2

>
1.4

5
M

–
–

–
–

–
–

–
–

–
–

m
in

M
U

S
siz

e
3

6
9

1
9

2
8

3
9

≤
5
1

≤
6
4

≤
280

≤
308

≤
109

≤
780

≤
1290

≤
2741

m
a
x

M
U

S
siz

e
3

1
1

42
≥

1
0
5
≥

1
1
4

≥
1
9
6

≥
2
9
8

≥
3
2
3

≥
481

≥
469

≥
707

≥
973

≥
1625

≥
3063

a
v
g

M
U

S
siz

e
3

8.9
3
0.7

∼
3
6
.3
∼

6
7.7

∼
1
0
0
.0
∼

1
3
9
.7
∼

1
9
2
.0
∼

372.6
∼

398
.1
∼

386.1
∼

848
.5
∼

1401
.3
∼

2773.4

a
v
g
.

u
n
u

sa
b

le
95.28

6
4
.6

8
44

.0
2

3
4
.5

0
2
8
.0

6
2
3
.7

1
2
0
.4

3
1
7
.8

3
15.80

18.35
12.68

11.51
9.68

7.17
a
v
g
.

n
e
c
e
ssa

ry
0
.3

1
0.43

0
.2

9
0
.2

2
0
.1

6
0
.2

2
0
.0

8
0
.1

4
0.20

0.16
0.09

0.12
0.39

0.08

m
issin

g
-p

a
rse:

le
n

g
th

2
3

4
5

6
7

8
9

1
0

1
1

#
in

sta
n

c
e
s

2
2

2
2

2
2

2
2

2
2

m
a
x
.

c
la

u
se

s
9
83

2
0
1
4

3
4
3
3

5
2
5
8

7
5
1
0

1
0
2
1
0

13376
17028

21188
25876

v
a
ria

b
le

s
1
09

2
3
8

4
3
0

6
9
5

1
0
4
3

1
4
8
4

2028
2685

3465
4378

a
v
g
.

c
la

u
se

siz
e

1
.9

8
9

1.9
9
5

2
.0

0
2

2
.0

1
0

2
.0

1
8

2
.0

2
6

2.034
2.041

2.049
2.056

a
v
g

#
M

U
S

e
s

3
0.132

1.5
2
1

>
7.0

4
M

–
–

–
–

–
–

–
m

in
M

U
S

siz
e

3
1
0

2
6

6
≤

1
2

≤
6

≤
6

≤
40

≤
109

m
a
x

M
U

S
siz

e
16

2
9

≥
5
3
≥

1
0
6
≥

1
1
6

≥
2
9
8

≥
307

≥
470

≥
750

≥
817

a
v
g

M
U

S
siz

e
6
.1

2
4
.6

∼
3
7
.7
∼

7
5
.8
∼

5
7.0

∼
1
7
0
.7
∼

191.5
∼

241
.1
∼

636.4
∼

471
.2

a
v
g
.

u
n
u

sa
b

le
5
7
.8

3
43

.7
2

3
4
.4

9
2
8
.2

5
2
3
.7

1
2
0
.6

7
17.99

15.89
14.22

12.67
a
v
g
.

n
e
c
e
ssa

ry
0.05

0
.3

2
0
.1

3
0
.1

2
0
.0

5
0
.0

4
0.00

0.00
0.01

0.00

F
ig

u
re

6.5:
V

a
rio

u
s

sta
tistics

fo
r

th
e

g
ra

m
m

a
r

en
g
in

eerin
g

test
in

stan
ces.

94



CHAPTER 6. EVALUATING INTERACTIVE MUS EXTRACTION

6.3.3 Unusable and Necessary Clauses

Recall that according to Kullmann’s classification introduced in Section 2.4.2, the unusable
clauses form the complement of the lean kernel, i.e. they cannot be used in any refutation
proof, making them useless for the purpose of MUS construction. The necessary clauses
are the ones which are critical already at the root node of the reduction graph, which is
equivalent to the intersection of all MUSes. The numbers in Figure 6.5 give the percentage
of unusable and necessary clauses, respectively. Both measures were computed using the
author’s own implementations of autarky pruning and stack-based reduction of individual
clauses in reduction graph nodes, both based on Zielke’s version of MiniSat.

The percentage of necessary clauses is a good measure of the overlap between MUSes, which
turns out to vary strongly depending on the structure of the error in the input. In a no-
parse problem, s[0,n] must always be present in all conflict sets, but there are cases where
two isolated infeasibilities (e.g. two missing words) do not interact at all except that they
both depend on s[0,n], making this the only necessary clause. On the other hand, if there is
only one local problem (such as one missing word) in the sentence, the number of necessary
clauses can come close to the minimum MUS size. This is why the benchmark values show
no clear dependency on sentence length except for very short sentences. The cause of the
very low number of necessary clauses for the missing-parse instances is that the MUSes in
these problems often do not overlap at all, since each of the other assumptions alone may
be enough to produce a conflict.

While the number of unusable clauses is very high for short sentences, their percentage
rapidly gets smaller with growing input length. While not all of these clauses can be used
for constructing MUSes (see discussion in Section 2.4.2), the numbers show a clear tendency
for most clauses to be usable in some way to derive a refutation proof. The high percentage
of clauses which are neither necessary nor unusable explains very well where the explosion
in the number of MUSes comes from.

6.3.4 Comparison to Other Benchmark Sets

If we want to generalize our observations about interactive MUS extraction on the new test
set to industrial applications in general, we first need to assess the similarity of our test set
to existings benchmarks. In this section, this will be done using the figures given by Oliver
Kullmann et al. [27] for the Daimler instances in their investigation of clause classification,
and the benchmark data for CAMUS given on Mark Liffiton’s webpage [52].

While our test instances are very small compared to the industrial instances which have been
used in recent SAT competitions, they are roughly comparable in size to the instances for
which global MUS statistics and complete clause classification were found to be still feasible,
and which were therefore analysed by Kullmann et al. and Liffiton. A major advantage of
our application is that using larger grammars and longer inputs, we could create instances
of arbitrary size, so that it will be easy to generate more challenging benchmarks for more
efficient future tools.

A core observation concerning the benchmark data is that the number of unusable clauses
are very low even compared to the Daimler test set, where the corresponding percentages
vary between 43% and 97%. The numbers for other benchmark sets are generally much
higher, since the instances from most other benchmark sets only contain a few MUSes, and
the Daimler instances are famous for containing a comparatively large number. By con-
trast, the percentages of necessary clauses are rather low both in our benchmark set and the
Daimler instances (all below 0.5% in our case, and all below 1.0% except very few outliers
with up to 5.2% in the Daimler case). This figure is of course very different for instances

95



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

with only one or a handful of MUSes, even more so in the cases where the MUSes cover a
large part of the instance.

While some of the Daimler instances with many MUSes also exhibit moderately large dif-
ferences between the size of the smallest and the largest MUS (with the maximum absolute
difference found by Liffition between sizes 112 and 234, and the maximum relative difference
between sizes 10 and 66), the ubiquity of this phenomenon in our test set sets it apart from
all the industrial instances considered by Liffiton.

Altogether, the instances we generated are not similar to industrial instances in every respect,
especially in that the number of MUSes seems to exceed everything previously seen in
benchmark sets, and that the variation in MUS sizes is unusually high. The instances
therefore contain some of the most interesting MUS landscapes in available SAT instances,
but only in a few aspects approximate the industrial applications we set out to emulate.
The only benchmark set for which some conclusions can be drawn is the Daimler test set,
which displays at least some variation in MUS sizes, and a high number of MUSes for a
few instances. For interactive reduction, the grammar engineering test set turns out to be
a particularly attractive test case because it is clear that simply extracting some MUS will
in general not lead to useful explanations.

6.4 Defining the Relevant Clauses

Many clauses of the SAT encoding have the purpose of enforcing the semantics of CFG rules,
but are not informative from the standpoint of a user who is familiar with the formalism.
For instance, a grammar engineer does not need to be told that the categories NP and VP
exclude each other, or that applying a binary rule to a range forces one to split the range
between the child constituents. The clauses which enforce this common knowledge unnec-
essarily inflate the MUSes of our instances, making them difficult to interpret because of all
the clauses that are essential for the encoding to work, but constitute nothing but visual
clutter for a user trying to understand the conflict.

Because of space limitations, we cannot quote a full MUS which would make this problem
immediately apparent. In Figure 6.6, we give the minimum MUS for our example instance
“old mary sleeps”. While the infeasibility encoded in this MUS is relatively straightforward
to comprehend, especially with the corresponding refutation proof in Figure 6.4 as a guide-
line, it is obvious that some clauses such as {¬np[1,2],¬pn[1,2]} and {¬dpprn[0,2], prn[0,2]},
although being necessary for the refutation proof, inflate the size of the MUS without adding
anything to the explanation that could not be derived immediately from knowledge about
categories which exclude each other, or from basic principles of context-free grammar.

6.4.1 A Filter For Don’t-Care Clauses

The type of problem described here appears to arise in many application of SAT solving
where models or conflict sets need to be interpreted. The standard solution for addressing
the issue is the don’t-care variable mechanism introduced in Section 2.2.1. We are inter-
ested in the MUSes of the missing-parse problem F with respect to a set of relevant clauses

{dp[0,2]} {¬dp[0,2], dpd,np[0,2], dppn[0,2], dpprn[0,2]} {¬dpd,np[0,2]:1, np[1,2]}
{pn[1,2]} {¬dpd,np[0,2], dpd,np[0,2]:1} {¬np[1,2],¬pn[1,2]}
{¬prn[0,2]} {¬dpprn[0,2], prn[0,2]} {¬dppn[0,2], pn[0,2]}
{¬pn[0,2]}

Figure 6.6: The unfiltered MUS for the missing-parse problem “old mary sleeps”.

96



CHAPTER 6. EVALUATING INTERACTIVE MUS EXTRACTION

R ⊂ F . A specialized function for selecting the elements of R needs to be defined for every
application, so the don’t-care mechanism was implemented in Kahina in the form of an
abstract ClauseFilter class which has access to the instance, and can be extended for any
application by implementing its single method acceptsClause(int clauseID), returning
false for clauses that are not filtered out (i.e. for C ∈ R), and true for C ∈ F\R.

To motivate the ClauseFilter implementation CfgDontCareFilter which we will use for
our further investigations, we reconsider the example MUS in Figure 6.6. As we recognized
there, clauses of the type {¬a[i,j],¬b[i,j]} are not very informative from the perspective of a
grammar engineer, since the fact that most constituent labels exclude each other is intuitively
clear, and it is easy enough to spot variable pairs which encode two different constituents
for the same range. acceptsClause(int clauseID) is therefore implemented to return
true for these clauses in our CfgDontCareFilter. Clauses of type {¬ab[i,j], b[i,j]} are also
not useful, since they merely enforce the semantics of unary rules, which does not need to
be made explicit to a grammar engineer. A third kind of clause which does not contribute
much to any explanation is the type {¬ab1,...,bm[i,j]}∪

⋃
i<i1<···<im−1<j{ab1,...,bm[i,j]:i1:···:im−1

}
enforcing splits, so we return true for these as well.

6.4.2 Structure and Size of Relevant Clause MUSes

Not surprisingly, applying our relevance filter to the grammar engineering instances leads to
a significant reduction in size. The MUSes are also reduced by a significant factor, making
them much more easily interpretable. Returning to our concrete example, Figure 6.7 shows
the filtered version of our minimum MUS for “old mary sleeps”. Note that the size of this
MUS was reduced from 10 to 6, and it is still just as easily interpretable. Verbalizing the
explanation it encodes, the assumption that “old mary” is a DP means that it has to be
parsed as a PN, as a PRN, or as a sequence of a D and an NP. It cannot be a PRN because
PRNs of length 2 are impossible, and the same is true for the label PN. Parsing it as D NP
would require “mary” to be an NP, which is incompatible to its label PN.

{dp[0,2]} {¬dp[0,2], dpd,np[0,2], dppn[0,2], dpprn[0,2]}
{pn[1,2]} {¬dpd,np[0,2]:1, np[1,2]}
{¬prn[0,2]} {¬pn[0,2]}

Figure 6.7: The filtered MUS for the missing-parse problem “old mary sleeps”.

To demonstrate that this reduction in MUS size is the typical behaviour for all instances,
Figure 6.8 shows the effects of the relevance filter on instance size and average MUS size
(again estimated using ten runs of the findAnotherRandomMUS heuristic used in Section
6.3.2) for five randomly picked sentences from the no-parse test set. We see that average
relevant MUS size does not grow as fast as the average unfiltered MUS size, leading to
significant improvements in maintainability and interpretability.

Sentence |F | |R| ∅ |MUS| ∅ |rMUS|
“man the sleeps” 2.013 190 19.7 12.3
“a young man mary likes” 5.256 672 66.0 47.0
“a man sleeps a tree” 5.256 672 85.9 60.6
“very old woman sees dog on street” 10.207 1.626 91.0 51.7
“cat the sleeps under tree very tall a” 13.373 2.330 126.2 69.9

Figure 6.8: Examples of the effects of the relevance filter on MUS sizes.

97



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

6.5 Interactive MUS Extraction for CFG Debugging

In this section, we analyse the behaviour of our grammar engineering instances in practice
within our interactive MUS extraction system. We configure the system to apply the rele-
vance filter defined in the last section, and collect some experience in applying interactive
MUS extraction in order to form an opinion whether the idea has sufficient potential for real
applications to warrant further exploration.

6.5.1 Interpreting MUSes for Grammar Engineering

Given the structure of the encoding, the MUSes extracted from grammar engineering prob-
lems are best read in top-down fashion, starting with the assumptions. The best way to
analyse a conflict set is to follow the implications, taking the most plausible alternative at
each disjunctive consequent. This will finally lead either to a clash between a positive and
a negative literal of the same variable which gives us a very basic reason why the analysis
failed, or to a point where the reason for the clash becomes apparent using the knowledge
the user has about the grammar.

If we proceed in this way in order to interpret the filtered MUS for our example “old mary
sleeps”, our assumption dp[0,2] leads us to the clause {¬dp[0,2], dpd,np[0,2], dppn[0,2], dpprn[0,2]}.
Here, we already see that none of the choices makes any sense, since a DP is only allowed
to consist of a proper noun, a pronoun, or a determiner followed by a DP. This would tell a
grammar engineer that an additional rule needs to be added which allows an adjective and
a proper noun to combine into a DP. In fact, with the rule DP→ A PN added, the problem
will become satisfiable, fixing the bug in the grammar.

This way of thinking amounts to reading the MUSes of unsatisfiable grammar engineering
problems as suggestions for minimal repairs that could be executed on the grammar in
order to make it license the desired parse or parse tree. Since each MUS can be considered
a different explanation, many different repair suggestions can be generated in this way.

6.5.2 Observations concerning Interactive Reduction

The view of the reduction graph as a space of possible repairs leads to a viable guiding
principle for interactively selecting interesting deletion candidates at the root node of the
reduction graph. In general, grammar engineers will want to prioritize deletion of those
clauses that represent rules which should not be changed according to their respective lin-
guistic theories. Interactive MUS extraction then becomes a way of reasoning about the
grammar, and a method for retrieving instant feedback on the effects of possible changes to
the grammar.

Altogether, we arrive at a grammar debugging workflow which consists of two different work
modes that complement each other. Interactive MUS extraction becomes the method of
choice for navigating the space of possible changes to the grammar, while modifying the
SAT encoding of the bug-ridden parse by postulating additional constituent labels for some
input ranges becomes the primary approach to narrowing down the problem in order to
arrive at more concise explanations, just as we did with the assumption dp[0,2] in the case
of “old mary sleeps”.

6.5.3 Displaying Symbolic Information

To give a user hints about worthwhile reduction attempts, e.g. by informing about the
correspondences between CFG rules and clauses of the encoding, the symbolic information
associated with the variable IDs needs to be made visible in the MUS extraction system.

98



CHAPTER 6. EVALUATING INTERACTIVE MUS EXTRACTION

This was done by allowing symbol tables to be loaded from the comments of DIMACS files,
and by replacing the variable numbers with the corresponding symbols in the instance view
and the US view. The format for the symbols in the CFG encoding is the one we already
defined alongside the more mathematical notation adopted for the discussion here. Since
all the clauses used in the encoding are short, the resulting clause display gives the user a
complete overview of the semantic content of smaller MUSes, which can be read with about
the same ease as the format we used for the MUSes in Figures 6.6 and 6.7.

For larger MUSes, the higher abstraction layer of a block partition must assist in reducing
the conflicting clause set to a smaller number of manageable clause conspiracies. This use
of the block inference mechanism is supported by the current prototype by an interface
BlockContentSummarizer that can implement any function which generates from a block
of clauses and the symbol table an application-dependent string representation for the block.

The first version of the CfgBlockContentSummarizer implementation of this interface sim-
ply retrieves the symbolic representations of the clauses in all blocks of size 1 or 2, and
generates a string that shows the resulting set of sets of symbols. While this worked reason-
ably well for the experiments (see below), once more experience with the typical structure
of inferred blocks has been collected, it will be worthwhile to think about a block summary
function whose output remains closer to the encoded CFG semantics.

6.5.4 Interpreting Blocks with Respect to the Grammar

The main problem of interactive reduction on the no-parse instances turns out to be that
clause set refinement almost always leads to a MUS immediately, which makes the reduc-
tion graph very flat, essentially reducing it to a list of MUSes. This is quite a contrast to
the instances interactive reduction was developed on, as demonstrated by the much more
interesting reduction graphs displayed in previous chapters. The underlying reason for this
behaviour seems to be that there is virtually no redundancy in the encoding, making it
impossible to find shorter variants of proofs, which blocks the essential mechanism behind a
MUS extraction that needs several deletion-based reduction steps. This structural property
of the encoding also makes large parts of the huge search spaces unaccessible if we use clause
set refinement, which is not necessarily undesirable.

While the reduction graph thus turns out to be of only very limited use for our application,
some of the other components provide information that goes beyond a mere list of selectable
reduction candidates. The main reason for this is that the block views split up MUSes of
a few dozens of clauses into more managable units, indicating repeated parts in different
MUSes and making connections between clauses more directly visible.

While it is true that every MUS provides a different explanation of the unfeasibility, the vi-
sualization components of the interactive MUS extraction system make it possible to inspect
the overlaps and the differences between these explanations. The intersection of all MUSes
is often very small (as discussed in Section 6.3.3), and it is interpretable as a core that is
common to all the explanations. In each of the MUSes that are discovered via interactive
reduction, this core of the conflict information is enhanced by a few small blocks of clauses
which together cause a conflict. Being able to compare multiple different ways in which the
conflict arises makes it much easier to find the core of an infeasibility.

These observations are illustrated very well by Figure 6.9, where we see a state of the user
interface in the middle of an interactive MUS extraction process for our missing-parse ex-
ample problem. The screenshots show the information displayed for two different MUSes.
The MUS of size 6 is the one from Figure 6.7, which we already analysed in Section 6.4.2.
The inferred block cuts this MUS into four parts: three blocks of size 1, and one block of

99



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Figure 6.9: Two different MUSes for the missing-parse example in the prototype.

size 3. By comparison to the corresponding display for the MUS of size 10, we see that
the assumption {d[0,2]} is not part of that MUS, but its removal had to be compensated by
three additional blocks of size 1, and the block {{s[0,3]}, {¬sdp,vp[0,3]:1, dp[0,2]}} of size 2. It
is obvious that the clauses of this block contribute to a derivation of {d[0,2]}, the assumption
that was used by the smaller MUS. Considering the three other additional blocks, we see
that one of them states that S→ DP VP is the only rule which can be used to label a range
with the sentence symbol S, and the other two show that the splitting alternative sdp,vp[0,3]:1
does not work out, completing the derivation of {d[0,2]}.

To see the merit in making MUS overlaps transparent, note that the visualization shows that
the MUSes share the blocks {{¬dp[0,2], dpd,np[0,2], dppn[0,2], dpprn[0,2]}, {¬prn[0,2]}, {¬pn[0,2]}},
{{¬dpd,np[0,2]:1, np[1,2]}}, and {{pn[1,2]}}. While these five clauses do not yet constitute a
MUS, it is obvious that they encode the core of the infeasibility, which can be extended to
a MUS by adding any set of clauses that in some way derive the additional {d[0,2]}.

6.6 Conclusion

In this chapter, we have endeavoured to assess the potential of interactive MUS extraction
in an application. The unavailability of instances that include symbolic information forced
us to develop a novel application of SAT solving, which was done in one of the author’s
core areas of knowledge, namely the syntactic analysis of natural language. We confined
ourselves to context-free grammars as a traditional common ground for the various gram-
mar formalisms currently used in NLP, and developed a SAT encoding of problems which
commonly occur during grammar debugging.

A set of 120 test instances was generated from this encoding, including 70 instances which
represent typical grammar debugging problems. Our analysis of these instances by means
of the available tools showed an explosion in the number of MUSes for non-trivial sentence

100



CHAPTER 6. EVALUATING INTERACTIVE MUS EXTRACTION

lengths. At the same time, the smallest MUSes found all have a managable number of
clauses, which could further be reduced by an application-specific relevance filter to about
two thirds the size.

Looking at the applicability of interactive MUS extraction for these instances, we saw that
the structure of the reduction graph is typically very flat because clause set refinement al-
most always generates a MUS. However, the possibility to generate new explanations by
defining parts of the grammar which are not desired as parts of it enables the user to sys-
tematically generate different MUSes which explain the infeasibility from different angles.
An adaptation of the partition block view for displaying a semantic summary of the content
of smaller blocks was found to be extremely helpful. The block partition proved a powerful
tool for comparing different unsatisfiable subsets, making it possible to isolate the core of a
grammar bug very quickly.

One problem of the current display of semantic information, which exclusively relies on
the symbols generated for the encoding, is that effective interpretation of the conflict sets
presupposes a certain familiarity with the inner workings of the encoding. One possible
way of improving this aspect would be to order the clauses in the MUS display into a
tree structure that is similar to a refutation proof, but does not contain any of the clauses
that were rejected by the relevance filter. Another approach would be to develop a scheme
for computing semantic block summaries that abstracts away from the encoding details
and presents the contained information in a format that is closer to the usual notation of
linguistic rules.

101





Chapter 7
Conclusion and Outlook

This final chapter begins by summarizing and assessing the results of the thesis from both
a theoretical and a practical perspective. The second part concerns the current state of the
prototype system for interactive MUS extraction, focusing on structural weaknesses as well
as various teething troubles that remain to be resolved. The final section presents three
promising avenues for future work based on the results of this thesis.

7.1 Interactive MUS Extraction as a Paradigm

The guiding idea for this thesis was to turn deletion-based MUS extraction into an interac-
tive process, with the goal of allowing experts to use their domain knowledge while looking
for good explanations of infeasibilities. This general idea has been thoroughly explored
and partially evaluated in the four main chapters of the thesis. For a recapitulation of the
results, however, it is best not to follow the chronology of chapters. Instead, the theoret-
ical concepts and considerations will be discussed separated from practical aspects of the
implementation, which are discussed together with the experimental evidence derived from
running the prototype system on a novel benchmark set.

7.1.1 Theoretical Results

Starting from the basic idea of explicitly modelling the search space of deletion-based MUS
extraction as a graph of USes, this reduction graph was conceived as a subset lattice. The
discussion has shown that many of the core concepts in MUS extraction can be seen from a
new angle if they are interpreted as information about the subset lattice.

We have analysed the information that can be gained from successful and unsuccessful re-
duction attempts in the deletion-based MUS extraction paradigm, and developed a scheme
for learning and retrieving this information for a maximum of information reuse during in-
teractive search space exploration. We have shown that a clausal meta instance over the
selector variables can store information about all the encountered satisfiable subsets, and
this in a way that makes it possible to retrieve the clauses which are implied to be critical
in some US by unit propagation of selector variables alone. Dually, redundancy information
can be stored and retrieved by maintaining a second meta instance in DNF.

The general idea of expressing connections between clauses as meta constraints over selector
variables was shown to have other potential applications such as an axiomatization of the
desired MUS size or a generalized variant of group-based MUS extraction.

103



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

Block-based representations were then developed mainly in order to derive more compact
representations of a clausal meta instance, but they were found to be interesting from a
theoretical perspective as well. Two general possibilities for inferring a block structure over
selector variables and thereby over clauses were explored in some detail. The block partition
structure was shown to be of use as a method for expressing GMUS extraction, whereas the
block tree structure was found to be closely related to the Tseitin encoding of formulae in
negation normal form.

The final theoretical contribution of this thesis is the development of a SAT encoding of
CFG parsing, with the purpose of not only building a parser, but a system that generates
feedback information in the form of MUSes if a parse has failed. We have also seen that
this SAT encoding can easily be extended by additional assumptions in order to encode
missing-parse problems as encountered in symbolic grammar engineering.

7.1.2 Experimental Results

In order to provide a usable prototype implementation of interactive MUS extraction, the
preparations for this thesis have also involved extensive implementation work. The core com-
ponents of the resulting prototype system are an interactive visualization of the reduction
graph with color-coded state information in a US inspection view, and a parallel archi-
tecture which allows user-defined reduction agents to be used for automated search space
exploration. Both automated reduction agents and the user have access to state-of-the-art
techniques in MUS extraction, based on fully integrated new implementations of both model
rotation and lean kernel extraction.

A central focus of the implementation work was on putting into practice the meta instance
approach developed in theory. Only the clausal meta instance for storing and deriving
reducibility information was added to the system, since the technique of clause set refine-
ment renders explicit maintenance of fall-away information too cost-inefficient. Both block
inference schemes were implemented in the system, and the efficiency of a block partition
representation in terms of the compression rate was determined experimentally on a small set
of randomly selected benchmark instances. The user interface was extended by experimental
display components for direct interaction with the block structures, leading to interesting
alternatives to the standard interactive MUS extraction workflow.

One of the central purposes of the implementation was to evaluate the usefulness of the
new interactive MUS extraction paradigm in practice. However, the unavailability of test
instances that contain the symbolic information necessary for such an evaluation has made it
difficult to find an adequate testing environment. By developing a SAT encoding of context-
free grammar engineering problems, a major effort was made to address this problem by
approaching a task from the author’s area of knowledge. However, the benchmark set gen-
erated from this application turned out to have properties which, while being interesting in
themselves, are not shared with typical benchmark instances from industrial applications.
For this reason, our analysis of these instances fell short of providing conclusive evidence for
or against the general applicability of interactive MUS extraction. Still, a few useful initial
observations indicating the paradigm’s practicality could be made.

Nevertheless, the SAT instances thus created have very unusual structural properties con-
cerning the number of MUSes as well as the great size differences between them. These
properties make the test set potentially valuable for the SAT community, not only because
it is derived from an application that has not been very visible to the automated reasoning
community, but especially because the instances can be freely redistributed with all the
symbolic information attached.

104



CHAPTER 7. CONCLUSION AND OUTLOOK

7.2 Shortcomings of the Prototype Implementation

The interactive MUS extraction system described in this work has a range of shortcomings
that still limit its practical usefulness at the moment. Some of the problems are due to
the slightly ad-hoc system architecture that leads to performance issues on larger instances,
others are due to the immature user interface. In this section, the most prominent problems
of both types are discussed along with possible future solutions.

7.2.1 Architectural Limitations and Performance Issues

Some of the view update computations in the current version of the prototype are relatively
time-consuming, especially that of custom content summaries for the block displays, and the
recomputation of the reduction graph view. If large parts of the search space are explored
interactively, the latency introduced by the slow view updates becomes rather noticable.
These problems could be alleviated by more efficient implementations of graph layout and
list rendering algorithms, but they will never cease to appear on larger instances if the user
expects all views to be up to date.

The problem with some view computation times was aggravated by the difficulty to imple-
ment a regime which updates interacting views so often that the user is always presented
with the current state of the model in all views, without wasting a lot of computation time
on unnecessary redraws. In essence, this problem can only be avoided if each component
remembers at any time whether it needs to be redrawn. Monitoring this need for redraws
again presupposes an implementation of the corresponding mechanism in all the data mod-
els. Kahina is beginning to be extended by support for such a mechanism, so it might only
be a matter of time until a solution for this problem is provided.

In addition, while the algorithms such as block inference and assumption propagation are
implemented well enough to work for instance sizes up to 10,000 clauses, beyond that the
long computation times detract from the ease of workflow. It is very probable that these
problems can be remedied by more efficient data structures and less naive implementations
of the algorithms, but it appears that especially the possibilities for concurrent reduction
will need to be restricted to make the system practicable for larger instances.

7.2.2 Weaknesses of the User Interface

The user interface of the prototype is at some places not optimally intuitive. For instance,
this concerns the clause selection mechanism which has some potential to confuse users who
are not familiar with the subselection workflow. Another case in point is the obscurity of
the exact operations that are executed in response to a double click in the block display. At
least some feedback should be displayed to explain what is happening under the hood.

Another general problem of the current version is the lack of instantaneous feedback when
an action was started that needs some time to compute. It is always possible to find out
what the system is doing by inspecting the console output, but the user interface alone leaves
the user with incomplete information about the current state. If the user then assumes that
an action was not started properly and issues new commands while others are pending,
bad interactions including GUI freezes can occur, e.g. if a different node in the reduction
graph is selected while a user-executed reduction step is pending. In a release version, these
problems must be resolved by making the current state more transparent in the interface,
and by blocking options that might cause unpredictable interactions that compromise system
stability. It should also be possible to cancel pending operations in case of problems.

105



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

7.3 Future Work

In this final section, we discuss three major areas in which further work that builds on the
results of this thesis suggests itself. These opportunities arise from both the theoretical and
the practical part of the thesis, but also from further exploring the proposed application of
SAT technology in grammar engineering systems.

7.3.1 Further Investigation of Meta Constraints

Some open questions about the concepts introduced in this thesis might be worth answering.
For instance, the question remains open whether block trees could be given more semantics
by analyzing the space of possible block trees derivable by block inference, and connecting
properties of this search space to features of SAT instances. Another open question is in how
far both block inference algorithms can be applied to the dual case of a meta instance that
collects unsat wedges in the form of minterms, and how the implied fall-away information
could efficiently be extracted from this DNF instance.

We have only touched the surface of possible applications for the general idea of working
with meta constraints over selector variables. The generalization of GMUS extraction and
the axiomatization of MUS size discussed at the end of Chapter 4 are merely a few initial
ideas in this direction. The possibility of explicitly constraining in arbitrarily complex ways
which clauses may occur together in conflict sets, or defining clauses to automatically fall
away under certain conditions, results in a framework in which many existing approaches
to extracting minimal explanations might be unified. New applications in defining relevant
sets of minimal unsatisfiable cores might arise from this as well, a topic area that will need
to be discussed with experts from different application areas.

7.3.2 Extensions and Improvements to the Prototype

The most obvious future extensions of the prototype would be the introduction of special
modes for GMUS and minimal unsatisfiable subformula extraction that build on the close
connections to block structures investigated in Chapter 5, but do not make it necessary for
the user to generate the relevant meta constraints for each instance before importing them
into the interactive system, as it would need to be done in the current version.

Another major extension would consist in adding expansion agents as the dual mechanism to
reduction agents, unifying insertion-based and deletion-based MUS extraction in one search
space visualization. This would imply the need to maintain two different meta instances, a
CNF instance for storing sat wedges in the form of clauses, and a DNF instance for storing
unsat wedges in the form of minsets.

7.3.3 Exploring SAT-based Grammar Engineering

The encoding of grammar engineering problems for context-free grammar is of value to
computational linguistics because it shows that SAT encodings might well be a practicable
approach to modelling and solving grammar engineering problems. It will therefore be
interesting to develop similar encodings for the more complex grammar formalisms that are
used in practice. A promising avenue for further research would then be to implement an
experimental grammar engineering system around interactive MUS extraction, allowing for
interactivity between elements of the grammar definition and the corresponding clauses of
the SAT encoding. This could also involve the development of methods for making use of
refutation proofs in order to enhance the readability of MUS-based explanations.

106



Bibliography

[1] Robert Allen Reckhow. On the lengths of proofs in the propositional calculus. PhD
thesis, 1976.

[2] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus. In J. Siek-
mann and G. Wrightson, editors, Automation of Reasoning 2: Classical Papers on
Computational Logic 1967-1970, pages 466–483. Springer, Berlin, Heidelberg, 1983.

[3] David A. Plaisted and Steven Greenbaum. A Structure-Preserving Clause Form Trans-
lation. Journal of Symbolic Computation, 2(3):293–304, 1986.

[4] G. Audemard and L. Simon. Glucose’s Home Page. Web, 2012. Access date: 2012-11-16.
http://www.lri.fr/∼simon/?page=glucose.

[5] Institute for Formal Models and Verification. PrecoSAT. Web, 2012. Access date:
2012-11-16. http://fmv.jku.at/precosat/.

[6] Bioinformatics, and Empirical & Theoretical Algorithmics Laboratory, University of
British Columbia. SATzilla: Portfolio-based algorithm selection for SAT. Web, 2012.
Access date: 2012-11-16. http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/.

[7] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, July 1962.

[8] João P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm
for satisfiability. In Proceedings of the 1996 IEEE/ACM international conference on
Computer-aided design, ICCAD ’96, pages 220–227, Washington, DC, USA, 1996. IEEE
Computer Society.

[9] João P. Marques Silva and Karem A. Sakallah. GRASP: A Search Algorithm for Propo-
sitional Satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

[10] The SAT association. The international SAT Competitions web page. Web, 2012.
Access date: 2012-11-16. http://www.satcompetition.org/.

[11] Niklas Eén and Niklas Sörensson. The MiniSat Page. Web, 2012. Access date: 2012-
11-16. http://minisat.se/MiniSat.html.

[12] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability Testing - SAT
2003, 6th International Conference, Santa Margherita Ligure, Italy, May 5-8, 2003
Selected Revised Papers, volume 2919 of Lecture Notes in Computer Science, pages
502–518. Springer, 2003.

107



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

[13] Alexander Nadel. Boosting minimal unsatisfiable core extraction. In Roderick Bloem
and Natasha Sharygina, editors, 10th International Conference on Formal Methods in
Computer-Aided Design (FMCAD 2010), Lugano, Switzerland, October 20-23, pages
221–229, 2010.

[14] Viktor Schuppan. Towards a Notion of Unsatisfiable Cores for LTL. In Farhad Arbab
and Marjan Sirjani, editors, FSEN’09, pages 57–72. School of Computer Science, Insti-
tute for Research in Fundamental Sciences (IPM), Iran, 2009.

[15] Hans Kleine Büning and Oliver Kullmann. Minimal Unsatisfiability and Autarkies. In
Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages
339–401. IOS Press, 2009.

[16] Inês Lynce and João P. Marques Silva. On Computing Minimum Unsatisfiable Cores.
In Theory and Applications of Satisfiability Testing - SAT 2004, 7th International Con-
ference, Vancouver, BC, Canada, 10-13 May 2004, Online Proceedings, 2004.

[17] Maher N. Mneimneh, Inês Lynce, Zaher S. Andraus, João P. Marques Silva, and
Karem A. Sakallah. A Branch-and-Bound Algorithm for Extracting Smallest Minimal
Unsatisfiable Formulas. In Bacchus and Walsh [53], pages 467–474.

[18] Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny. Finding All Minimal
Unsatisfiable Subsets. In Proceedings of the 5th ACM SIGPLAN International Confer-
ence on Principles and Practice of Declarative Programming, PPDP ’03, pages 32–43,
New York, NY, USA, 2003. ACM.

[19] James Bailey and Peter J. Stuckey. Discovery of Minimal Unsatisfiable Subsets of
Constraints Using Hitting Set Dualization. In Proceedings of the 7th International
Conference on Practical Aspects of Declarative Languages, PADL’05, pages 174–186,
Berlin, Heidelberg, 2005. Springer-Verlag.

[20] Mark H. Liffiton and Karem A. Sakallah. Algorithms for Computing Minimal Unsatis-
fiable Subsets of Constraints. J. Autom. Reason., 40(1):1–33, January 2008.

[21] Martin Lahl. Beweisbasierte Berechnung von minimal unerfüllbaren Kernen. Diplom-
arbeit, Universität Tübingen, May 2012.

[22] Hans van Maaren and Siert Wieringa. Finding Guaranteed MUSes Fast. In Büning
and Zhao [54], pages 291–304.

[23] Paolo Liberatore. Redundancy in logic I: CNF propositional formulae. Artificial Intel-
ligence, 163(2):203–232, April 2005.

[24] João P. Marques-Silva and Inês Lynce. On Improving MUS Extraction Algorithms. In
Karem A. Sakallah and Laurent Simon, editors, Theory and Applications of Satisfiability
Testing - SAT 2011, 14th International Conference, Ann Arbor, MI, USA, June 19-22,
2011. Proceedings., volume 6695 of Lecture Notes in Computer Science, pages 159–173.
Springer, 2011.

[25] Anton Belov and João Marques-Silva. Accelerating MUS extraction with Recursive
Model Rotation. In Per Bjesse and Anna Slobodová, editors, 11th International Con-
ference on Formal Methods in Computer-Aided Design (FMCAD 2011), Austin, TX,
USA, October 30 - November 02, pages 37–40, 2011.

[26] Siert Wieringa. Understanding, Improving and Parallelizing MUS Finding Using Model
Rotation. In Michela Milano, editor, Principles and Practice of Constraint Programming
- 18th International Conference, CP 2012, Québec City, QC, Canada, October 8-12,
2012. Proceedings, volume 7514 of Lecture Notes in Computer Science, pages 672–687.
Springer, 2012.

108



BIBLIOGRAPHY

[27] Oliver Kullmann, Inês Lynce, and João Marques-Silva. Categorisation of Clauses in
Conjunctive Normal Forms: Minimally Unsatisfiable Sub-clause-sets and the Lean Ker-
nel. In Armin Biere and Carla P. Gomes, editors, Theory and Applications of Satisfi-
ability Testing - SAT 2006, 9th International Conference, Seattle, WA, USA, August
12-15, 2006, Proceedings, volume 4121 of Lecture Notes in Computer Science, pages
22–35. Springer, 2006.

[28] Oliver Kullmann. On the use of autarkies for satisfiability decision. Electronic Notes
in Discrete Mathematics, 9:231–253, 2001.

[29] Oliver Kullmann. Investigations on autark assignments. Discrete Applied Mathematics,
107(1-3):99–137, 2000.

[30] Mark H. Liffiton and Karem A. Sakallah. Searching for Autarkies to Trim Unsatisfiable
Clause Sets. In Büning and Zhao [54], pages 182–195.

[31] OKsolver-2002. Oksolver. Web, 2012. Access date: 2012-11-19. http://cs-
svr1.swan.ac.uk/∼csoliver/OKsolver.html.

[32] Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin. Formal Methods for the Valida-
tion of Automotive Product Configuration Data. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 17(1):75–97, January 2003. Special issue on con-
figuration.

[33] Éric Grégoire, Bertrand Mazure, and Cédric Piette. Tracking MUSes and Strict In-
consistent Covers. In Formal Methods in Computer-Aided Design, 6th International
Conference, FMCAD 2006, San Jose, California, USA, November 12-16, 2006, Pro-
ceedings, pages 39–46. IEEE Computer Society, 2006.

[34] Barry O’Sullivan, Alexandre Papadopoulos, Boi Faltings, and Pearl Pu. Representa-
tive Explanations for Over-Constrained Problems. In Proceedings of the Twenty-Second
AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver, British
Columbia, Canada, pages 323–328. AAAI Press, 2007.

[35] Johannes Dellert, Kilian Evang, and Frank Richter. Kahina, a Debugging Framework
for Logic Programs and TRALE. The 17th International Conference on Head-Driven
Phrase Structure Grammar, 2010.

[36] Kilian Evang and Johannes Dellert. Kahina - Trac. Web, 2012. Access date: 2012-11-24.
http://www.kahina.org/trac.

[37] Stephan Kottler, Christian Zielke, Paul Seitz, and Michael Kaufmann. CoPAn: Explor-
ing Recurring Patterns in Conflict Analysis of CDCL SAT Solvers - (Tool Presentation).
In Cimatti and Sebastiani [55], pages 449–455.

[38] Yuliya Lierler and Peter Schüller. Parsing Combinatory Categorial Grammar via Plan-
ning in Answer Set Programming. In Esra Erdem, Joohyung Lee, Yuliya Lierler, and
David Pearce, editors, Correct Reasoning, volume 7265 of Lecture Notes in Computer
Science, pages 436–453. Springer, 2012.

[39] M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances in gringo Series 3. In
J. Delgrande and W. Faber, editors, Proceedings of the Eleventh International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR’11), volume 6645
of Lecture Notes in Artificial Intelligence, pages 345–351. Springer, 2011.

[40] Department of Information and Computer Science, Aalto University. ASP-
TOOLS: A Tool Collection for ASP. Web, 2012. Access date: 2012-11-28.
http://www.tcs.hut.fi/Software/asptools/.

109



INTERACTIVE EXTRACTION OF MINIMAL UNSATISFIABLE CORES JOHANNES DELLERT

[41] João P. Marques Silva. The Impact of Branching Heuristics in Propositional Satis-
fiability Algorithms. In Pedro Barahona and José Júlio Alferes, editors, Progress in
Artificial Intelligence, 9th Portuguese Conference on Artificial Intelligence, EPIA ’99,
Évora, Portugal, September 21-24, 1999, Proceedings, volume 1695 of Lecture Notes in
Computer Science, pages 62–74. Springer, 1999.

[42] Lintao Zhang. On Subsumption Removal and On-the-Fly CNF Simplification. In
Bacchus and Walsh [53], pages 482–489.

[43] James M. Crawford and Larry D. Auton. Experimental Results on the Crossover Point
in Satisfiability Problems. In Richard Fikes and Wendy G. Lehnert, editors, Proceedings
of the 11th National Conference on Artificial Intelligence. Washington, DC, USA, July
11-15, 1993, pages 21–27. AAAI Press / The MIT Press, 1993.

[44] Hantao Zhang and Mark E. Stickel. An Efficient Algorithm for Unit Propagation.
In Proceedings of the Fourth International Symposium on Artificial Intelligence and
Mathematics (AI-MATH’96), pages 166–169, Fort Lauderdale (Florida USA), 1996.

[45] Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In Peter van Beek, editor, Principles and Practice of Constraint Programming - 11th
International Conference, CP 2005, Sitges, Spain, October 1-5, 2005. Proceedings, vol-
ume 3709 of Lecture Notes in Computer Science, pages 827–831. Springer, 2005.

[46] Yael Ben-Haim, Alexander Ivrii, Oded Margalit, and Arie Matsliah. Perfect Hashing
and CNF Encodings of Cardinality Constraints. In Cimatti and Sebastiani [55], pages
397–409.

[47] Andrew Carnie. Syntax: A Generative Introduction. Blackwell Publishing, 2007.

[48] Stuart M. Shieber. Evidence against the context-freeness of natural language. Linguis-
tics and Philosophy, 8(3):333–343, 1985.

[49] Bob Carpenter. The Logic of Typed Feature Structures. Cambridge University Press,
1992.

[50] Eugene Charniak. Statistical Parsing with a Context-Free Grammar and Word Statis-
tics. In Benjamin Kuipers and Bonnie L. Webber, editors, Proceedings of the 14th
National Conference on Artificial Intelligence and Ninth Innovative Applications of
Artificial Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence,
Rhode Island, pages 598–603. AAAI Press / The MIT Press, 1997.

[51] Michael Sipser. Introduction to the Theory of Computation. Thomson, 2006.

[52] Mark Liffiton. Mark Liffiton - CAMUS. Web, 2013. Access date: 2013-01-22.
http://sun.iwu.edu/∼mliffito/camus/.

[53] Fahiem Bacchus and Toby Walsh, editors. Theory and Applications of Satisfiability
Testing - SAT 2005, 8th International Conference, St. Andrews, UK, June 19-23, 2005,
Proceedings, volume 3569 of Lecture Notes in Computer Science. Springer, 2005.

[54] Hans Kleine Büning and Xishun Zhao, editors. Theory and Applications of Satisfiability
Testing - SAT 2008, 11th International Conference, Guangzhou, China, May 12-15,
2008. Proceedings, volume 4996 of Lecture Notes in Computer Science. Springer, 2008.

[55] Alessandro Cimatti and Roberto Sebastiani, editors. Theory and Applications of Satis-
fiability Testing - SAT 2012, 15th International Conference, Trento, Italy, June 17-20,
2012. Proceedings, volume 7317 of Lecture Notes in Computer Science. Springer, 2012.

110


