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fü

r
S

pr
ac

hw
is

se
ns

ch
af

t
[CLSfS ]

A Hybrid Model for Morpho-Syntactic
Annotation of German with a Large

Tagset

Julia S. Trushkina and Erhard W . Hinrichs

�

jul,eh

�

@sfs.uni-tuebingen.de

Seminar für Sprachwissenschaft

Eberhard-Karls-Universität Tübingen
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[CLSfS ]Morpho-syntactic Annotation

Morpho-syntactic Annotation:

Annotation of lexical tokens with part-of-speech and
inflectional morphology (case, number, gender, and
person)

An Example from German:

Siege gaben Spielern Selbstvertrauen.
Victories gave players self-confidence
NN VVFIN NN NN

NGA;pl 1,3;pl D;pl NGDA;sg

ESSLLI-05 – p.2
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[CLSfS ]Morpho-syntactic Annotation

Morpho-syntactic Annotation:

Annotation of lexical tokens with part-of-speech and
inflectional morphology (case, number, gender, and
person)

An Example from German:

Siege gaben Spielern Selbstvertrauen.
Victories gave players self-confidence
NN VVFIN NN NN

�

NGA;pl

� �

1,3;pl

� �

D;pl

� �

NGDA;sg

�
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[CLSfS ]Ambiguity Rates Across Languages

average # ambiguous tagset

language and source of the statistics analyses tokens size

German (current paper) 7.10 68.87% 718

Czech Hajič & Hladka (1997) 3.65 not avail. 1171

Hajič & Hladka (1997) 2.36 not avail. 882

Turkish Oflazer & Tür (1996) 1.83 50.66% not avail.

English Tapanainen & Voutilainen (1994) 1.77 not avail. 139

German (STTS) (current paper) 1.77 39.57% 54

Romanian Tufiş (2000) 1.71 38.17% 410

Hungarian Tufiş et al. (2000) 1.33 31.90% � 1265

ESSLLI-05 – p.3
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[CLSfS ]Morpho-syntactic Tagging of German

Goal: Automatic, morpho-syntactic annotation
of German with a large tagset that can be
effectively trained on manually annotated data of
moderate size.

Design of Extended Tagset:

Basis: Stuttgart-Tübingen (STTS) tagset with
54 part-of-speech categories for German.
Enrichment of the STTS labels by
morpho-syntactic features such as case,
number, person, gender, tense and mood.
Size of resulting tagset: 718 possible tags.

ESSLLI-05 – p.4
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[CLSfS ]Morpho-syntactic Tagging of German

Goal: Automatic, morpho-syntactic annotation
of German with a large tagset that can be
effectively trained on manually annotated data of
moderate size.

Design of Extended Tagset:

Basis: Stuttgart-Tübingen (STTS) tagset with
54 part-of-speech categories for German.

Enrichment of the STTS labels by
morpho-syntactic features such as case,
number, person, gender, tense and mood.
Size of resulting tagset: 718 possible tags.
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[CLSfS ]The Method

Cascaded, hybrid Architecture, consisting of:

a rule-based component with manually written
disambiguation rules

a statistical component trained on the taz
newspaper portion of the TüBa-D treebank (taz,
1999)

ESSLLI-05 – p.5
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[CLSfS ]The Method

Cascaded, hybrid Architecture, consisting of:

a rule-based component with manually written
disambiguation rules

a statistical component trained on the taz
newspaper portion of the TüBa-D treebank (taz,
1999)
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[CLSfS ]Main Results

The combined model outperforms the
rule-based and statistical modules applied in
isolation.

The best result of the model attains an accuracy
of 92.04%, which corresponds to a 7.34%
improvement of the best results reported by
other researchers for the same task. (Lezius et
al. (1996)

ESSLLI-05 – p.6
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[CLSfS ]The Data

taz newspaper portion of the Tübingen
Treebank of German (TüBa-D/Z) used in:

statistical and combined model experiments
evaluation of all modules

11 361 tokens for test data

5 891 tokens for development data

104 049 tokens were used as training data

The statistical component uses additional
115 098 tokens with no morphological
information for weakly supervised training.

ESSLLI-05 – p.7
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[CLSfS ]Motivation for Combined Model

Tapanainen and Voutilainen’s Law:
Don’t guess if you know!

In other words:

If you can state cautious disambiguation rules
that do not compromise recall, then this is
preferable to surrendering control to a statistical
model.

Then use a statistical model to resolve any
remaining ambiguity.

ESSLLI-05 – p.8
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[CLSfS ]Rule-Based Module

Initial set of analyses for the rule-based
disambiguation module provided by the Xerox
morphological analyzer.

Rule-based disambiguation module developed
in the Xerox Incremental Parsing System (XIP)
platform.

XIP provides two types of disambiguation rules:

Concord Rules
Syntactic heuristics

ESSLLI-05 – p.9
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[CLSfS ]Evaluation of Rule-based Module

ambiguity

module precision recall F-measure LE DE tokens rate

morph. analyzer 13.61% 96.64% 23.86% 100% 0% 68.76% 9.87

POS disamb. 19.93% 96.11% 33.01% 86.01% 13.99% 59.79% 7.39

morph. disamb. 42.53% 94.86% 58.73% 64.51% 35.49% 31.05% 4.96

+ adding analyses 46.93% 95.64% 62.97% 60.12% 39.88% 30.13% 4.44

lexical errors (LE): output of morphological analyzer does
not contain the correct analysis

disambiguation errors (DE): due to overapplication of
disambiguation rules

ESSLLI-05 – p.10
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[CLSfS ]Statistical Tagging Module (1)

uses tagging mode of the PCFG parser LoPar
(Schmid 2000)

each tag is computed by the following formula:

�� � � ��� � � ��	 � 
 � � �� 


i.e. best tag sequence: sequence of those tags
that yield the maximal product of the inside and
outside probabilities among the candidate tags
for a given token

ESSLLI-05 – p.11
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[CLSfS ]Standard Method in Tagging

Standard Method: n-gram models (e.g. TnT
tagger (Brants 2000))

Inefficiency of n-gram models: n-gram taggers
consider only sequences of n words and their
candidate tags, i.e. very local contexts, as the
basis for determining the most likely sequence
of tags for the sentence.

ESSLLI-05 – p.12
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[CLSfS ]A Sample TNT Error

Die Frage nach der Form beantwortet
The question about the form answers

[nom,acc]

er so:
he in this way
[nom]

‘He answers the question about the form in this
way:’

ESSLLI-05 – p.13



E
B

E
R

H
A

R
D

K
A

R
L

S
U

N
IV

E
R

S
IT

Ä
T

T
Ü

B
IN

G
E

N
S

em
in

ar
fü
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[CLSfS ]Statistical Tagging Module (2)

Training corpus:

104 048 tokens from TüBa-D/Z treebank with
transformed tree representations and full
morphology

115 098 partially labelled tokens from
TüBa-D/Z treebank with transformed tree
representations

Tagger Lexicon:

based on TüBa-D/Z training data

enriched by 60 901 tokens from Negra
corpus.

ESSLLI-05 – p.14
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[CLSfS ]Evaluation of Statistical Module

module precision recall F-measure no tag LE DE

statistical 89.20% 88.10% 88.68% 1.23% 11.55% 88.45%

no tag: due to lack of PCFG parse

lexical errors (LE): correct tag is missing from the lexicon.

disambiguation errors (DE): correct tag is eliminated.
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[CLSfS ]Combined Model

Rule-based module as pre-filter for PCFG
module.

Two experiments conducted for PCFG module

Experiment 1:
All analyses left after application of the
rule-based module are provided as input to
the statistical module.
Experiment 2:
Input to the statistical model limited to the
categories that are most reliably tagged by
the rule-based module.

ESSLLI-05 – p.16
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[CLSfS ]Evaluation of Combined Model

experiments precision recall F-measure no tag LE RBE SE

full input 90.23% 86.29% 88.22% 4.37% 0% 42.98% 57.02%

partial input 90.59% 87.67% 89.11% 3.23% 8.12% 19.54% 72.34%

ESSLLI-05 – p.17



E
B

E
R

H
A

R
D

K
A

R
L

S
U

N
IV

E
R

S
IT

Ä
T

T
Ü

B
IN

G
E

N
S

em
in

ar
fü
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[CLSfS ]Error Analysis of Combined Model

errors POS case number gender person tense mood

SE 27.54% 40.51% 2.01% 10.03% 0.94% 0.00% 0.80%

RBE 62.87% 20.79% 1.49% 2.48% 0.00% 0.00% 0.00%

LE 70.24% 5.95% 3.57% 1.19% 0.00% 0.00% 0.00%

all 37.91% 33.85% 2.03% 7.83% 0.68% 0.00% 0.58%

ESSLLI-05 – p.18
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[CLSfS ]Final Experiment with Perfect Lexicon

Problem with previous experiments: lexical
errors in rule-based and statistical module, due
to deficiencies of the morphological analyser or
of the tagger lexicon.

To test viability of the approach as such:
assume a perfect lexicon.

experiments precision recall F-measure no tag LE RBE SE

full input 92.04% 88.35% 90.16% 4.00% 0% 22.93% 77.07%

partial input 91.82% 89.02% 90.40% 3.05% 0% 10.21% 89.79%

ESSLLI-05 – p.19
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[CLSfS ]Final Experiment with Perfect Lexicon

Problem with previous experiments: lexical
errors in rule-based and statistical module, due
to deficiencies of the morphological analyser or
of the tagger lexicon.

To test viability of the approach as such:
assume a perfect lexicon.

experiments precision recall F-measure no tag LE RBE SE

full input 92.04% 88.35% 90.16% 4.00% 0% 22.93% 77.07%

partial input 91.82% 89.02% 90.40% 3.05% 0% 10.21% 89.79%

ESSLLI-05 – p.19
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[CLSfS ]Final Experiment with Perfect Lexicon

Problem with previous experiments: lexical
errors in rule-based and statistical module, due
to deficiencies of the morphological analyser or
of the tagger lexicon.

To test viability of the approach as such:
assume a perfect lexicon.

experiments precision recall F-measure no tag LE RBE SE

full input 92.04% 88.35% 90.16% 4.00% 0% 22.93% 77.07%

partial input 91.82% 89.02% 90.40% 3.05% 0% 10.21% 89.79%

ESSLLI-05 – p.19
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[CLSfS ]Main Results

The combined model outperforms the
rule-based and statistical modules applied in
isolation.

The best result of the model attains an accuracy
of 92.04%, which corresponds to a 7.34%
improvement of the best results reported by
other researchers for the same task. (Lezius et
al. (1996)

ESSLLI-05 – p.20
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[CLSfS ]LoPar PCFG experiments

precision unparsed

sent.

1. baseline: 66.40 5

2. back-up lexicon added 77.65 5

3. topological fields deleted

(except for VC and C) 77.58 5

4. case passed up to NX and NCX 84.23 6

5. gramm. functions (-ON, -OA) added

& passed to SIMPX + rules binarized 84.98 5

6. morph. info passed to NXs & VXFINs 87.62 7

7. FIN label with number passed to SIMPX 88.21 9

8. results on test data 87.69 11
ESSLLI-05 – p.21



E
B

E
R

H
A

R
D

K
A

R
L

S
U

N
IV

E
R

S
IT

Ä
T

T
Ü

B
IN

G
E

N
S

em
in

ar
fü
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[CLSfS ]A Sample Tree from TüBa-D treebank

Yaguchi

NE:nsm

NCX

VF

greift

VVFIN:3sis

VXFIN

LK

nie

ADV

ADVX

auf

APPR:a

die

ART:apf

gängigen

ADJA:apf

ADJX

Konventionen

NN:apf

NCX

PX

MF

zurück

PTKVZ

VC

SIMPX

VROOT
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[CLSfS ]An Example of a Transformed Tree

VROOT

SIMPX-ON:s-FIN:s

NCX-ON:s

NE:nsm

Yaguchi

SIMPX-FIN:s

VXFIN:3sis

VVFIN:3sis

greift

SIMPX

ADVX

ADV

nie

SIMPX

PX

APPR:a

auf

NCX:apf

ART:apf

die

ADJX:apf

ADJA:apf

gängigen

NN:apf

Konventionen

SIMPX

VC

PTKVZ

zurück
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