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Abstract

In games with unawareness players may entertain fairly different representations of their strategic choice situation,
and may also reason about these possibly different subjective conceptualizations of the game they are playing. This
paper uses basic tools from modal logic, especially modal model theory, to represent games with unawareness of
moves and to assess the implications of rationality and various forms of belief therein for this class of games.

1 Introduction
Traditional game theory assumes that a game model captures a strategic choice situation the way that it actually is
(or rather, how it appears to the modeller). Traditional game theory also assumes that this actual (or modeller’s) view
coincides exactly with how the game is conceived by all players at each of their choice points. This assumption is
often summarized plainly as requiring that the game be common knowledge among the players. But, clearly, this
strong assumption is not always warranted. In real life we may often be engaged in strategic choice situations without
reven representing them to us as such, or participants of a strategic choice situation may have rather different ideas of
what options are available and what parameters are relevant to the interactive choice.

In order to accommodate for such diverging subjective conceptualizations of a game, a modest number of models
for these situations have surfaced recently, giving evidence to the rising interest in the epistemic foundations of game
theory, not only as far as the solution concepts, but also as far as the game models are concerned (e.g. Feinberg 2004;
Halpern and Rêgo 2006; Ozbay 2007; Feinberg 2009; Heifetz et al. 2010). Following suit, this paper studies games
with unawareness of moves, i.e., games in which players may be unaware that some relevant choice or parameter
exists, and in which players may have various beliefs about this limited awareness of others. (Section 5.1 discusses a
possible extension to games with unawareness from indistinguishability, i.e., games where players may be unable to
distinguish certain moves or states of affairs.)

The relevant notion of unawareness stems from formal epistemology, situated at the interface between theoretical
computer science, logic and philosophy. It has first been introduced by Fagin & Halpern (Fagin and Halpern 1988) as
a means of solving issues with, foremost, logical omniscience (the problem that in standard model logics of belief and
knowledge agents know all tautologies and consequences of their knowledge). An agent is unaware of a contingency
if, intuitively speaking, she has no mental representation of it and consequently lacks all explicit beliefs about it.
There are different sources of such unawareness, not all of which will have equal properties under all circumstances
(de Jager 2009). For instance, agents may be unaware because they lack certain concepts (e.g., a novice chess player
yet unfamiliar with castling), or they may be unaware because they fail to pay due attention (e.g., a novice chess
player familiar with castling who has temporarily forgotten). The relevant property that concerns us here is that an
agent who is unaware cannot by mere introspection alone level her unawareness. (This also assumes that agents are
not aware of their own unawareness. To give up this assumption raises many interesting issues, to which we tend
briefly in Section 5.2.)

If an agent is partially unaware, then this will also restrict the possible beliefs she may have about what others
believe. An agent who is partially unaware cannot explicitly ascribe beliefs to other agents involving contingencies
that the agent herself is unaware of. Glossing crudely over interesting formal detail here, this is part of the reason why
unawareness is not sufficiently captured as a variety of standard belief (cf. Dekel et al. 1998), and why therefore formal
models of interactive awareness must constrain the space of an agent’s possible explicit beliefs either syntactically by
defining subjective languages exclusively in terms of which each agent can represent to herself any of her ordinary
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or higher-oder beliefs (cf. Fagin and Halpern 1988; Halpern 2001), or semantically by imposing a layered structure
on the state space or space of possible worlds in which the contingencies epistemically accessible to each agent are
located (Modica and Rustichini 1999; Heifetz et al. 2006, 2008; Halpern and Rêgo 2008; Li 2009). (The paper of
Halpern & Rêgo Halpern and Rêgo 2008 provides a good overview and comparison of models.)

In line with this, games with unawareness of moves are games with certain restrictions on players’ beliefs about
(players’ beliefs about . . . ) the structure of the game. Also intuitively, the possibility of unaware players has strategic
implications on rational behavior in games: making others aware may be beneficial (e.g., making consumers aware
of a new product) or extremely unwanted (e.g., making a spouse aware of even the possibility of an affair). Indeed,
restrictions on the players’ (beliefs about) awareness of moves severely impact, in fact weaken, the implications of
rationality. An unaware player chooses rational, if she maximizes her gain in expectation given her subjectively lim-
ited representation of the choice situation. This also means that only in marginal cases would these interactive belief
restrictions of a game with unawareness be amenable to treatment under standard games with imperfect information
and their standard solution concepts.

In keeping with the logical tradition of awareness, this paper offers a manageable alternative representation of
games with unawareness in terms of awareness structures, which are essentially pointed models for a basic modal
language of belief with few additional constraints. Awareness structures capture succinctly which parts of the game
each agent is aware of, and what every player’s higher-order beliefs about other player’s awareness are. These game
models thereby provide a scaffolding for the possible beliefs that players can have about the way the game is played
by rational agents. It is indeed straightforward to extend these models to full-fledged epistemic models in the vein of
Robert Stalnaker (Stalnaker 1994, 1998) in which the implications of (belief in) rationality can be studied. The focus
of this paper is in highlighting the benefits of linking game theory with modal logic. Established results from modal
model theory facilitate the representation, comparison and handling of games with unawareness and their epistemic
models.

The paper is structured as follows. Section 2 introduces the notion of a partial representation of a dynamic
game obtained from pruning the game tree. This will be the main source of unawareness that is captured in the
awareness structures introduced in Section 3. This section shows how awareness structures are versatile hybrids,
game representations and models for a basic modal language to describe awareness states and beliefs about these.
Section 4 extends awareness structures to full epistemic models of games with unawareness and discusses briefly
some of the implications of rationality and belief therein. Section 5 concludes speculatively with a number of possible
extensions of the modal approach taken here.

2 Dynamic Games and Pruning
There are several possibilities of defining a dynamic game. For the present purposes, it helps to look at a dynamic
game as a tree with ornamentation (cf. Kreps and Wilson 1982): the tree defines the basic structure of the play, and
the ornamentation interprets the structure by assigning players to choice nodes, action labels to choices, utilities to
the leaves of the tree etc. The reason why this representation proves helpful in the present context is because it makes
it easy to think about partial representations of a game G as being obtained from G by restricting the game tree while
preserving the labeling. Also, if a partial representation contains parts of the original game tree, it is easy to identify
choice points across two games as being identical.

2.1 Dynamic Games as Ornamented Trees
Definition 2.1 (Dynamic Game with Imperfect Information). A dynamic game with imperfect information is a
structure

G = 〈H, <,N, {Ai}i∈N , P, A, {ui}i∈N ,Pr, {Vi}i∈N〉

that consists of (i) a game tree, (ii) a collection of labels, and (iii) a labeling that assigns labels to elements of the
game tree. In particular:

· 〈H, <〉 is a game tree:

· H is a (finite) set of histories, or decision nodes
· < is a partial order on H such that:
· there is a unique <-minimal element h0, called the root
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· every history h , h0 has exactly one predecessor, namely the unique <-maximal element of the set
{h′ ∈ H | h′ < h}

· elements in Z = {h ∈ H | ¬∃h′ ∈ H h < h′} are called terminal histories
· every non-terminal history h has a non-empty set of successors H(h), defined as the set of all <-minimal

elements in {h′ ∈ H | h < h′}

· 〈N, {Ai}i∈N〉 are labels:

· N = {1, 2, . . . n} is a the set of players with designated player n as Nature
· Ai is a set of actions for player i

· 〈P, A, {ui}i∈N ,Pr, {Vi}i∈N〉 is the labeling:

· P : H \ Z → N is a player function
· A : H × H →

⋃
i∈N Ai assigns action labels to each choice as follows:

· A(h, h′) is only defined if h′ ∈ H(h)
· A(h, ·) 7→ AP(h) is an injection

· ui : Z → R is a utility function for all i ∈ N, i < n
· we write ui(z) for the i-th component of u(z)

· Pr is a function that gives for each nature move h ∈ P−1(n) a probability distribution Prh ∈ ∆(H(h)) over
successors of h
· Vi ⊆ P(H \ Z) is a set of information states of player i such that:
·

⋃
i∈N Vi is a partition of H \ Z

· if v ∈ Vi and h, h′ ∈ v, then P(h) = i and, moreover, A(h, ·) and A(h′, ·) have the same image sets
· notice that Vn is a set of singletons and can be treated as

⋃
Vn .

Observe that with this definition a game may have redundant labels: it may list players in N that never move according
to P, or if it may contain some action of some player i in Ai that is never assigned to any of i’s decision nodes by A.
In the following, attention is restricted to games with non-redundant labels.

Let G be the collection of all dynamic games with imperfect information.

Say that an action ai ∈ Ai is available to player i at choice point v if there is an h ∈ v and an h′ ∈ H(h) such that
ai = A(h, h′). A pure strategy si for player i is a function from Vi to actions available at each v ∈ Vi. A behavioral
strategy σi for player i is a function from Vi to a probability distribution over actions available to i at each v ∈ Vi. A
pure (behavioral) strategy profile for game G is a tuple s = 〈s1, . . . , sn−1〉 (σ = 〈σ1, . . . , σn−1〉) of pure (behavioral)
strategies for each player.

Notice that we have not constrained the above definition to ensure perfect recall of all agents. Nothing of substance
hinges on this omission. Rather, it is simply convenient for the central concerns of this paper not to stick to the
perspective of a single player, but rather to the set V =

⋃
i<n Vi of all choice points of non-nature players. Additional

constraints on the temporal coherence of an agent’s beliefs and rational choices (also in the light of unawareness) can
be added if necessary. For the main purposes of this paper —a concise representation of games with unawareness—
none of this is necessary. In line with this, a pure (behavioral) strategy profile will occasionally be characterized as
function from V to (probability distributions over) actions available in each v, where this is feasible.

2.2 Partial Representations from Pruning
Representing a game G as ornamented trees makes it easy to define a partial representation of G as obtained by either
(i) pruning its game tree, or (ii) lumping together a number of branches as subjectively indiscernible. These partial
representations then serve as a means of representing agents’ unawareness of the game. An agent who represents the
actual game as a pruned version of it is unaware of the pruned actions and states of affairs. An agent who represents
the actual game as a lumped version of it cannot distinguish between the lumped actions and states of affairs. We
concentrate on pruning, as this affords less notational effort, and discuss an extension to lumping in Section 5.1.

Intuitively speaking, G′ is a pruning of G, G′ v G, if G′ is constructed from G by removal of nodes from the
game tree of G while all the labeling is preserved as far as possible. If we make sure that no non-terminal nodes in G
become terminal nodes, then the definition of pruning is entirely straightforward.
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Definition 2.2 (Pruning). Take two dynamic games with imperfect information (and non-redundant labeling):

G = 〈H, <,N, {Ai}i∈N , A, P, {ui}i∈N ,Pr, {Vi}i∈N〉

G′ =
〈
H′, <′,N′,

{
A′i

}
i∈N′ , A

′, P′,
{
u′i

}
i∈N ,Pr ′,

{
V ′i

}
i∈N′

〉
.

G′ is a pruning of G, G′ v G, if the following conditions hold:

· H′ ⊆ H (prune the game tree)

· <′=< �H′ (restrict order to elements left)
(define Z′ and H′(h) in the obvious ways)

· Z′ ⊆ Z (no new terminal nodes)

· N′ ⊆ N, and A′i ⊆ Ai (preserve non-redundant labels)

· A′(h, h′) = A(h∗), where h∗ is the unique element such that h∗ ∈ H(h) and h∗ ≤ h′

(preserve labels, even if successors are pruned)

· P′ = P�(H′ \ Z′) (restrict to remaining elements)

· u′i = ui�Z′

· Pr′h = Prh(·|H′(h)) for all h ∈ P′−1(n) (restrict to remaining nature moves)

· V ′i = {v ∩ H′ | v ∈ Vi} \ {∅} . (restrict each information states)

The set of all pruned games of G corresponds one-to-one with the set of all subsets H′ ⊆ H such that Z′ ⊆ Z.
With this it is immediate that the relation v gives rise to a partial order on games, being reflexive, anti-symmetric,
and transitive. Moreover, it is clear that whenever G′ v G we can easily identify choice nodes and information sets
across games. Say that a node h ∈ H reoccurs in G′ iff h ∈ H′. Similarly, for information states of G, consider the
set V =

⋃
i<n Vi of all choice points of non-nature players as the set of (generally relevant) subjective views. Say that

a view v from G reoccurs in G′ iff some h ∈ v reoccurs in Γ′. Abusing notation, write h ∈ G′ and v ∈ G′ whenever
h or v reoccur in G′. For any two games G′ v G, since pruning leaves information states otherwise unaltered, if v
is an information state from G with v ∈ G′, v can be used to refer to a unique information state in G′ even if not all
elements of v reoccur in G′. This kind of trans-game identification, as we could call it, is crucial for the way that we
represent games with unawareness in terms of awareness structures.

3 Awareness Structures
A game with unawareness should be an enriched representation, based on a classical dynamic game G, that specifies
how G occurs to each subjective view v ∈ V =

⋃
i<n Vi, i.e., all information states of non-nature players in G, together

with how each view v1 believes that each view v2 believes that (. . . ) G occurs to vn. Formally, there are several ways
of representing any such an infinite set of intersubjective views. One possibility is to define a game with unawareness
as a collection of classical games with a function that maps each choice point of each game to some choice point in
some possibly different game in the collection (Halpern and Rêgo 2006; Heifetz et al. 2010). Another possibility is to
define a game with unawareness as a collection of games, one for each (relevant) finite sequence of views v1v2 . . . vn

(Feinberg 2009).
This paper suggest a further possibility that has several methodological advantages that will become clear as we

go along. I propose to represent games with unawareness in terms of awareness structures, which are essentially a
special kind of (interpreted and pointed) relational Kripke-structure, as familiar from modal logic.

Definition 3.1 (Awareness Structure). Let G be a dynamic game with imperfect information with information
states V =

⋃
i<n Vi of all non-nature players. An awareness structure based on G is a tuple AG = 〈W,w0, {Rv}v∈V , L〉

such that:

· W is a set of possible worlds,

· w0 is the actual world (specifying the modeller’s view),

· Rv ⊆ W ×W is an accessibility relation for the viewpoint v ∈ V ,

· L : W → G assigns to each world w a game L(w) .

Moreover,AG needs to satisfy the following constraints:

Centering: L(w0) = G,
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Figure 1: A simple awareness structure

Reduction: if wRvw′, then L(w′) v L(w),

Existence: if v is an information state in game L(w), then there is a world w′ such that wRvw′,

Relevance: whenever wRvw′ then v is an information state in L(w) that reoccurs in L(w′),

Introspection: for all v the relations Rv are transitive and Euclidean.1

Given awareness structureAG, define the set of worlds accessible from w via a sequence v1v2 . . . vn of views from
V as:

Rv1 (w) =
{
w′ ∈ W | wRv1 w′

}
Rv1 ...vn−1vn (w) =

⋃
w′∈Rv1 ...vn−1 (w)

Rvn (w′) .

Also define accessibility relation R∗ as accessibility via some chain of Rv-s:

R∗(w) =
{
w′ ∈ W | ∃v1 . . . vn : w′ ∈ Rv1 ...vn (w)

}
.

For convenience, we will restrict attention to awareness structures which are connected in the sense that W = R∗(w0).2

In awareness structureAG = 〈W,w0, {Rv}v∈V , L〉, each world w ∈ W is associated with a game L(w) by interpreta-
tion function L. By reduction, connectedness and transitivity of v, any L(w) is a partial representation of G obtained
from pruning the game tree. We look at accessibility relations Rv ⊆ W ×W for each information state v that occurs
in the actual game G, because these are the views that we have to assign a subjective representation of G to. Notice
that it is possible to identify information states from G uniquely in all its prunings by reoccurrence. The existence
and relevance constraints make sure that all and only choice points in L(w) are associated with a recognizable choice
point in some game L(w′). More concretely, the existence constraint ensures that all choice points in game L(w) are
associated with some subjective view. The relevance constraint ensures that (i) only occurring choice points associate
with a subjective view of the game, and that (ii) whenever wRvw′ it is clear which choice point in L(w′) we are relating
v to, namely the unique subset of v that is an information state in L(w). Finally, the introspection constraint forces the
proper behavior of nested beliefs an agent may have about her own conceptualization of the game.

Here is a simple example. The awareness structure in Figure 1 has only two possible worlds W = {w0,w1}. The
game L(w0) is actual: first it is player i’s choice between actions a and b, then player j chooses between c and d, or
e and f . However, this is not how all players conceptualize the game at all choice points. Subjective views are given
by the accessibility relations, where all necessary reflexive arrows are omitted for readability. Thus, according to the
awareness structure in Figure 1, player i is aware of the game as it is, and so is player j after observing b. However,
player j is not aware of her action f after observing a: in game L(w1), which is how ja construes the game in the
actual world w0, the action f is pruned away.

1A relation R ⊆ W ×W is Euclidean if w1Rw2 and w1Rw3 implies w2Rw3.
2Worlds that are not connected to actual world w0 in this sense are irrelevant for the interpretation of modal expressions with a “local” semantics,

and we will only be interested in those.

5



i

ja

〈2, 2〉

c

〈3, 1〉

d

a

jb

〈1, 0〉

e

〈0, 1〉

f

b

w0 i

ja

〈2, 2〉

c

〈3, 1〉

d

a

jb

〈1, 0〉

e

〈0, 1〉

f

b

w1

i

ja

〈2, 2〉

c

〈3, 1〉

d

a

jb

〈1, 0〉

e

b

w3

ja

i

Figure 2: Awareness structure that captures uncertainty of awareness

In summary, the awareness structure in Figure 1 encodes exactly which nodes of the actual game each player
at each choice point is aware of. But this is not all that is represented in this awareness structure. There is also
higher-order information, so to speak, about, for instance, how player i conceptualizes how ja conceptualizes the
game. Using terminology I will justify below, we could say that player i knows that ja is unaware of f , but also that,
for instance, i knows that jb knows that ja is unaware of f . However, ja does not know that he is unaware, as the only
world she has access to is w1.

Coincidentally, all of the higher-order information represented in Figure 1 does not include any uncertainty, but
that is not necessarily the case for all awareness structures, as Figure 2 demonstrates. Here player i doesn’t know
whether ja is aware of f , but jb does know that ja actually is. And, both ja and jb know that i is uncertain about ja’s
awareness state.

These examples and the locutions I have used to describe the representations suggest that awareness structures are
a representation of beliefs of the players that are relevant for reasoning about awareness of moves of the game. Indeed,
formally speaking, the constraints on awareness structures closely ressemble a basic modal logic of belief (c.f. Halpern
2003). Normally, modal logics for belief feature accessibility relations that are serial, transitive and Euclidean.3 The
latter two are taken over immediately, and existence plays the role of seriality in awareness structures. On top of that,
however, awareness structures have additional constraints. We may think of the reduction constraint as essentially
imposing a lattice structure on the state space W to which agents’ beliefs are susceptible, much like in logics of
interactive unawareness (e.g. Heifetz et al. 2006, 2008; Li 2009). So, what kind of beliefs are represented exactly
in awareness structures? To answer this question, we will define a simple modal language to talk about games with
unawareness, and use awareness structures as formal models for this modal language.

3A relation R ⊆ W ×W is serial if for all w1 ∈ W there is a w2 ∈ W such that w1Rw2.
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3.1 Modal Language of Games with Unawareness
Fix a game G with nodes H and look at the simple modal language LG given by

ϕ := h | ¬ϕ | ϕ ∧ ϕ | ^v(ϕ) .

In words, LG is the smallest set of formulas that contains all h ∈ H and that is closed under negation, conjunction and
the modal operators ^v for each view v ∈ V from G. We define disjunction ∨, material implication→ and material
equivalence↔ in the usual way. Also, we define the modal operator �v as the dual of ^v, as usual: �vϕ = ¬^v¬ϕ.

The language LG is a basic modal language based on a set of proposition letters made up of H and awareness
structures are straightforward models for this basic language. Fix awareness structure AG = 〈W,w0, {Rv}v∈V , L〉 and
define the following basic semantics for expressions in LG:

A,w |= h iff h ∈ L(w)

A,w |= ¬ϕ iff A,w 6|= ϕ

A,w |= ϕ ∧ ψ iff A,w |= ϕ and A,w |= ψ

A,w |= �v(ϕ) iff A,w′ |= ϕ for all w′ ∈ Rv(w) .

If proposition h is true in world w we should interpret this as saying that node h occurs in the game that would be
actual if w was the actual world. Formula ^vϕ expresses that the player at choice point v considers it possible that ϕ,
and, similarly, �vϕ expresses that the player at v believes that ϕ.

Using standard definitions, we can also express what it means for an agent at v to know something and when a
proposition is common belief or common knowledge. We say that the agent at v knows ϕ if ϕ is true and the agent
at v believes it. The common belief operator cannot be defined in terms of expressions from LG (because we would
need an infinite conjunction of simple belief formulas) but it may be added when convenient:

A,w |= CBϕ iff A,w′ |= ϕ for all w′ ∈ R∗(w)

Finally, for the purposes of this paper, define common knowledge simply as true common belief.
Most importantly, we can express that the player at v is aware of node h by forumla^vh. It will become transparent

in the following that the language LG, if interpreted on awareness structureAG, really expresses two things: (i) what
each agent at each viewpoint would be aware of in each world, if that world was actual, and (ii) what each agent at
each viewpoint would believe in each world, if that world was actual, about what everybody else (believes about what
everybody else . . . ) is aware of.

Of course, awareness structures are not just unrestricted models for LG. The definition of awareness structures
imposes certain constraints on the accessibility relations and the games that can be associated with each world. But
what exactly is the relation between awareness structures and normal modal models for the language LG? Clearly,
under the above semantics we can think of function L(w) in awareness structures as a valuation function, based on the
set of proposition letters H. By construction of pruning, suitable subsets H′ ⊆ H will be associated with exactly one
pruned version of the underlying G. This is why, effectively, an awareness structure is just a special kind of pointed
modal model, i.e., a model with a designated actual world w0 that is furthermore guaranteed to make certain formulas
true. This is the content of the following proposition whose proof is in the appendix.4

Proposition 3.2. A pointed modal model M = 〈W,w0, {Rv}v∈V , L〉 for language LG is an awareness structure based
on G iff, based on the standard semantics, for all h ∈ H, v ∈ V and w ∈ W the following statements are all true:

No New Terminal Nodes: M,w |= h→ z(h)

Centering: M,w0 |= h

Reduction: M,w |= ^vh→ h

Existence: M,w |= v∗ → ^v>

Relevance: M,w |= ^v> → (v∗ ∧ ^vv∗)

Introspection: M,w |= �vϕ→ �v�vϕ and M,w |= ¬�vϕ→ �v¬�vϕ .

4As for notation, let z(h) be the disjunction h1 ∨ · · · ∨ hn for all terminal successors of h, let v∗ = (h1 ∨ h2 ∨ · · · ∨ hn) be the disjunction of all
choice nodes in information state v, and let > denote “top”, a forumla that is true in all possible worlds.
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These constraints on modal models guarantee that further formulas from LG are valid on the class of awareness
structures, i.e., that theses formulas hold of all awareness structuresA and worlds w that occur inA. If formula ϕ is
valid in this sense, we write |= ϕ. The most surprising validity is certainly that, where relevant, the meaning of modal
operators ^v and �v coincide for literals h and ¬h. This is crucial in order to understand what awareness structures
model precisely. So, first fix what “relevant” means here, by defining the set of belief types that occur in AG as the
set BAG = {〈w, v〉 | w ∈ W ∧ v ∈ L(w)}.

Proposition 3.3. For all belief types 〈w, v〉 ∈ BAG and all h ∈ H: A,w |= ^vh ↔ �vh .

A proof of this is easy, once we acknowledge a generally noteworthy fact about awareness structures.

Fact 3.4. Given awareness structure AG, each belief type 〈w, v〉 is associated with exactly one game, for which we
write L(w, v).

Proof of Fact 3.4. We need to show that for all w and v, for all w1,w2 ∈ Rv(w) we have L(w1) = L(w2). This is a
direct consequence of the conjunction that Rv is Euclidean and that v is anti-symmetric. �

Proof of Proposition 3.3. That A,w |= ^vh → �vh follows from Fact 3.4 and that A,w |= �vh → ^vh for occurring
belief types is also obvious, because if 〈w, v〉 ∈ BAG , then by the existence constraint Rv(w) is non-empty, and so if all
w′ ∈ Rv(w) make h true, then there is a world w′ ∈ Rv(w) that makes h true. �

Proposition 3.3 states a possibly surprising, but crucial result on the expressivity of awareness structures. To
rephrase it once more, it says that, where relevant, certain distinctions that could be expressed byLG on normal modal
models cannot be expressed by LG on the restricted set of modal models that satisfy the constraints of awareness
structures. What this means is that LG, if evaluated on awareness structures, can only express exactly one first-order
propositional attitude: whether an agent is aware of h or not. Call these statements awareness statements. With
Proposition 3.3 and the definition of modals, it is clear that we can express the awareness statement that “the player
at v is aware of h” by any of the formulas ^vh, �vh, ¬^v¬h or ¬�¬vh. Similarly, we can express the awareness
statement that “the player at v is not aware of h” by any of the formulas ^v¬h, �v¬h, ¬^vh or ¬�vh. Although this
is a restriction on expressivity due to the constraints on models, this is how it should be if we model awareness of
moves: an agent is aware of a node if and only if she believes it is part of the relevant structural description of the
game. Plain uncertainty about nodes is different in kind and can be modelled within the confines of classical game
models if necessary.

Of course, an equivalent of Proposition 3.3 does not hold for arbitrary formulas. For arbitrary ϕ, only the trivial
statement holds that for all occurring belief types 〈w, v〉 ∈ BAG we have:

A,w |= �v(ϕ) → ^v(ϕ) .

The reverse is generally not the case. This means that LG, evaluated on awareness structures, captures quite the
usual interactive beliefs about which awareness statements are true. In summary, we find that awareness structures
can express two things: (i) all relevant awareness statements, and (ii) all relevant beliefs about (beliefs about . . . )
awareness statements.

What is left to argue is that this is exactly the right portion of expressivity that we need in order to represent games
with unawareness of moves. To motivate this, consider another example. Take the game G0 in Figure 3, a simple
two player extensive form game, with nodes H = {h0, . . . , h4}, two players i and j with one choice each, and labels
and outcomes as given in the diagram. What is a modeller interested in, when describing a game with unawareness
of moves based on this game? In a classical game, the game structure is common knowledge. That means that all
awareness statements ^vh are common knowledge. In specifying, even in thinking about a game with unawareness,
we register all deviations from this rule. For instance, in a particular case we might be interested in modeling a
situation where both players are aware of the game as it is, i.e., aware of all nodes, while player j knows that player
i believes that player j is unaware of action c, i.e., unaware of node h3. This modeling intention is expressible by a
conjunction of (i) truth and falsity of all awareness statements and (ii) all beliefs about (i) and, recursively, (ii). This
is expressible formally in the language LG0 . For the current example, the most relevant statements are:5

1. ^ih ∧ ^ jh for all h ∈ H

2. C(^ih ∧ ^ jh) for all h ∈ {h1, h2}

5Strictly speaking, the common belief operator is not in LG , but that is insubstantial as we may replace it with the equivalent infinite conjunction
of regular belief statements.
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h0 : i

h1 : j

h3 : 〈0, 2〉

c

h4 : 〈2, 0〉

d

a

h2 : 〈1, 1〉

b

G0

Figure 3: Simple Dynamic Game

G0w0

G0w1

h0 : i

h1 : j

h4 : 〈2, 0〉

d

a

h2 : 〈1, 1〉

b

w2

i
j

Figure 4: Awareness structure based on game G from Figure 3

3. �i¬^ jh3

4. � j�i¬^ jh3

If our modeling intention is consistent —we surely find out when it is not— we find an awareness structure that
models the formal description of our modeling intention, for instance, in the one given in Figure 4, where there are
three possible worlds W = {w0,w1,w2} where both w0 and w1 are associated with game G0 from Figure 3. It is easy
to verify that this awareness structure makes all the formulas above true, and it is in this sense that it is a proper
representation of the game with unawareness of moves that we had wanted to model.

The example illustrates two things. Firstly, it highlights the close connection between, on the one hand, the in-
tention what to model and a language to express that intention in and, on the other hand, a formal language and its
models to make all this precise. As awareness structures play a dual role, as either game models or modal models for
a language that describes our modeling intentions, these structures mitigate between modeling intention and actual
model, and they additionally provide a check-back whether what we are modeling is consistent and as-intended. Sec-
ondly, the example also suggests once more that a game with unawareness is sufficiently described by an exhaustive
list of awareness statements and corresponding beliefs. If that is so, LG, evaluated on suitable awareness structures,
has just the right expressivity to mitigate between game model and intuition.

In further defense of this latter claim, let me address two more possible objections. Both concern the idea that
perhaps our semantics of LG should be made richer to express more fine-grained intuitions about what agents are
aware of, and what they believe about others’ awareness. Both objections will receive the same line of defense: as far
as modeling a game with unawareness is concerned, drawing finer distinctions is not necessary. Moreover, if we stick
to the above classical semantics, we can take over standard results from modal model theory without any necessary
amendment. This will be crucial in the following, but first here are the possible objections I would like to dismiss:
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Firstly, according to our semantics A,w |= ^v(h1 ∨ h2) just in case there is a world w′ ∈ Rv(w) such that either
h1 reoccurs in L(w′) or h2 does. However, intuitively, a sentence of the form “the agent at choice point v is aware
of h1 or h2” may get a stronger reading, namely that “the agent at choice point v is aware of h1 and she is aware
of h2 in v”. This is not a problem exclusively for the present approach but a general problem of providing possible
worlds semantics to modals scoping over disjunctions (cf. Kamp 1973). Similar concerns apply to implication under
modals in our case. None of this, however, is crucial for our purposes here, because it is not the intention of this
construction to give a proper semantics of all natural language ascriptions of awareness states. All we need is a
proper interpretation for simple awareness statements and beliefs about these. (In fact, we could as well restrict the
language LG to contain only bare “proposition letters” h, their negation ¬h, and conjunctions of these.)

Secondly, the given semantics may appear too simplistic, because it does not acknowledge a certain partiality
in belief ascriptions. Obviously, if a belief type 〈w, v〉 does not occur in AG, then the above semantics makes all
formulas of the form �v(ϕ) true in world w. It therefore seems as if we should rather define a three-valued logic in
which the truth value of �v(ϕ) may also be left undefined. However, it is clear that the simpler bivalent logic does
not hamper descriptions of games with unawareness in terms of formulas from LG. For one, we surely do not need
the undefinedness of some formula �vϕ at some world to fully express our intuitions about a game with unawareness.
And even if it was necessary to express our intuitions, there would be a way of expressing “undefinedness” also in
a bivalent logic, as only for non-occurring belief types will the formula �v⊥ be true. (Here, ⊥ is the “bottom”, a
formula that is false in every world.) Moreover, it is beneficial to stick to a standard bivalent interpretation, so that we
can use standard results of modal model theory without amendement, as we shall see presently.

3.2 Equivalence of Awareness Structures
As we have seen, awareness structures are both representations of games with unawareness and models for a simple
modal language that describes games with unawareness. Relating our game representations to a language therefore
helps judging whether the representational format is appropriate. But there is yet another advantage in interpreting
awareness structures as models for a modal language. Under the assumption that LG is indeed just expressible
enough to describe all features of unawareness of moves that we as modellers care about in games with unawareness,
the modal model perspective also offers a straightforward, off-the-shelf means of identifying two awareness structures
as relevantly equivalent (beyond trivial isomorphism).

Definition 3.5 ((Modal) Equivalence). Fix two awareness structuresA andA′ based on the same game G. We say
thatA andA′ are (LG-)equivalent A ≡L

G
A′ just in caseA,w0 |= ϕ iffA′,w′0 |= ϕ for all forumlas ϕ ∈ LG.

Since LG is a standard modal language, and since awareness structures give a standard semantics to expressions
in LG, all of the textbook results about (modal) equivalence apply to our representation of games with unaware-
ness (cf. Blackburn et al. 2001; Blackburn et al. 2007). Modal model theory commands a number of results that
relate structural properties of models to modal equivalence in the above sense. To give an impression of what this
means, we can construct a minimal awareness structure from any image-finite awareness structure by a process called
bisimulation contraction. Here is the idea.

Definition 3.6 (Bisimulation). Fix two awareness structures A and A′ based on the same game G. A bisimulation
betweenA andA′ is a relation Z ⊆ W ×W ′ such that:

(a.) if wZw′ then L(w) = L′(w′),

(b.) if wZw′ and wRu, then there is a u′ ∈ W ′ such that uZu′ and w′R′u′, (forth condition)

(c.) if wZw′ and w′R′u′, then there is a u ∈ W such that uZu′ and wRu . (back condition)

For our purposes, say thatA andA are bisimilar if there is a bisimulation Z betweenA andA′ such that w0Zw′0.

An awareness structure is image-finite whenever the sets Rv(w) are finite for all w, v. For image-finiteA andA′, it
follows from the so-called Hennessy-Milner theorem (see Blackburn et al. 2001, page 69) thatA andA′ are bisimilar
iff they are modally equivalent.

This gives a straightforward mechanism to compute a minimal representation of a game with unawareness from
an image-finite awareness structure A. Take the union of all bisimulations between A and itself, which is obviously
also a bisimulation between A and itself. This maximal bisimulation on A identifies equivalence classes of worlds
with equal modal properties. Bisimulation contraction is the process of forming a new model from these equivalence
classes and relating equivalence classes |w| and |w′| with Rv in the reduced structure whenever there are worlds in |w|
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and |w′| that are related by Rv in the to-be-contracted structureA. The bisimulation contraction of image-finiteA will
be the smallest model modally equivalent toA.

If awareness structures are not image-finte, a more complicated structural property ascertains modal equivalence:
bisimulation in the models’ ultra-filter extensions. Sketching this here would lead too far astray, and therefore suffice
it to notice that modal model theory may provide us with tools to assess expressibility, equivalence and minimality
of game representations, which is certainly a very welcome contribution to game theory. (The interested reader is
referred to chapter 2 of Blackburn et al. 2001 for details about modal equivalence via ultra-filter extensions.) The
notion of equivalence of a game is tied to the set of formulas in LG that describes the situation from an intuitive point
of view.

3.3 Further Properties of Awareness Structures
Awareness structures conservatively extend classical game models. A classical game G is modeled by any awareness
structure for which L(w) = G for all of worlds w. It is easy to check that in any such structure, the game G will be
common knowledge in the sense that all awareness statements of the form ^vh are common knowledge. There are
infinitely many such awareness structures, all of which are modally equivalent. But, of course, there is an obvious
minimal representation with just one world w0, L(w0) = G with Rv(w0) = {w0} for all v.

Unlike previous functional approaches (Halpern and Rêgo 2006; Feinberg 2009; Heifetz et al. 2010), relational
awareness structures can straightforwardly express uncertainty of another agent’s awareness, without relegating this
to additional uncertainty in the underlying game itself. We have seen an example of this in Figure 2. In this context,
consider an additional constraint on awareness structuresAG:

Certainty: for all belief types 〈w, v〉 ∈ BAG , the set Rv(w) is singleton.

This constraint rules out uncertainty of another agent’s awareness. The interested reader is encouraged to check
that awareness structures with this constraint are effectively equivalent to Feinberg’s game models with unawareness
Feinberg 2009. (There are only minor differences that relate to the present definition of pruning.)

Any non-trivial awareness structure AG embeds a hierarchy of (smaller) awareness structures, in the following
sense. For any world w fromAG, we can look at the w-generated submodelA′ constructed fromAG as follows:

· w′0 = w,

· W ′ = R∗(w)

· R′v = Rv�W ′ for all v ∈ L(w)

· L′ = L�W ′ .

In words, we take w as the new actual world, collect all worlds accessible from w in A and restrict Rv and L accord-
ingly. AlthoughA′ is based on L(w), and this need not be identical to G, it is nonetheless obvious that all reoccurring
information states v ∈ L(w) refer uniquely to information states in L(w) and all its partial representations. Modulo
naming of information states, it is easy to check that this construction satisfies all the constraints of Definition 3.1.6

In effect, we may look at an awareness structure as a hierarchy of games with unawareness, in which subjective views
subsume subjective views.

Looking at awareness structures as comprising other awareness structures is helpful when thinking about solutions
to games with unawareness. Above we noticed that a classical game G is represented as an awareness structure with
L(w) = G for all worlds w. With this, it makes sense to say that an awareness structureAG contains a classical game
G′ v G whenever there is a world w inAG with L(w) = G′ such that the w-generated submodel is modally equivalent
to the classical game G′. If a sequence of view v1, . . . , vn leads to a world w whose w-generated submodel is modally
equivalent to a classical game, we say that that sequence terminates in a classical game. We can then say that an
unawareness structure terminates in classical games if there is a finite n such that any sequence of views with length
n terminates in a classical game.

Not all awareness structures will have this property or be modally equivalent to one that does. (Feinberg gives an
example of a game with unawareness that would afford an infinite, non-terminating succession of worlds and views
(Feinberg 2009).) However, plausibly, most practically relevant unawareness structures will have this property, and
those that do may lend themselves to a rather naı̈ve algorithmic solution procedure based on any solution for the
terminal classical games, as we will see in Section 4.2. But, in order to properly speak properly of solutions for
games with unawareness, we should take the step to full-fledged modal game models.

6This also follows from the fact that w-generated submodels preserves modal satisfaction in world w (cf. Blackburn et al. 2001, p.56).
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4 Modal Game Models
The main objective of this section is to show how awareness structures are easily extended to full epistemic models
for reasoning about games with unawareness. These models help study the implications of rationality and various
forms of belief in rationality in the class of games with unawareness of moves. This section argues tentatively that
characterizations of equilibrium as rational choices under true belief are problematic for games with unawareness.
Contrary to that, solutions that select for behavior compatible with common belief in rationality, or certain variations
of it, seem reasonable and, replicating similar results of Feinberg 2009 and Heifetz et al. 2010 in terms of modal
models, are shown always to exist.

In order to represent the players’ behavior and their behavioral beliefs, awareness structures readily extend to full
modal game models similar to those proposed by Robert Stalnaker (Stalnaker 1994, 1998). Whether a given modal
game model is a viable extension of a given awareness structure is tied to the notion of modal equivalence. We should
conceive of awareness structures, then, as something like a scaffolding which defines the possible beliefs of players
which a full epistemic model will fill in accordingly.

Definition 4.1 (Modal Game Model). Fix an awareness structureAG. (For convenience, assume thatAG is image-
finite.) A game model forAG is a structure

MAG = 〈W,w0, {Rv, Pv}v∈V , L, {σw}w∈W〉 ,

such that 〈W,w0, {Rv}v∈V , L〉 is an awareness structure that is modally equivalent to AG, Pv : P(W) → R≥0 is an
additive measure function for each view v that assigns a non-negative level of credence to each proposition, i.e., subset
of possible worlds, and σw is a behavioral strategy profile for game L(w) such that for all w′ ∈ Rv(w): σw(v) = σw′ (v).7

We explicitly allow for models with Pv({w}) = 0 for some w and v (for reasons that will become clear), but we require
that if Rv(w) , ∅ then Pv(Rv(w)) > 0.

A model then incorporates or rather extends its underlying awareness structure, but it need not be isomorphic to
it; in fact, it will often add worlds for a specification of the players’ beliefs about opponent behavior and beliefs; but
when it does, then it is constrained so as to preserve all relations of (beliefs about beliefs about . . . ) awareness. This
is then where the connection with the language LG comes in once again, and where the notion of modal equivalence
is crucial: it is needed to determine when a larger structure, the model, preserves the information of a smaller one,
the awareness structure.

Just as for awareness structures, define the set of all belief types of a modelM as the set BM = {〈w, v〉 | Rv(w) , ∅}.
A model fixes the behavior of all its belief types 〈w, v〉 as a probability distribution σw(v) over successors of v in L(w).
This could be interpreted as a strategy even in the game G, not only in L(w). But, most importantly, it must be faithful
to the local subjective view of the agent, because we require that σw(w) = σw′ (v) for all w′ ∈ Rv(w). Effectively
this means that (i) an agent cannot play actions she is unaware of and that (ii) every agent knows her probabilistic
choice. In any model, both of these statements are common knowledge between players (see below for a definition of
common knowledge in game models).

A model also fixes the probabilistic beliefs of all belief types in the usual way. For proposition ϕ ⊆ W define the
probabilistic belief of type 〈w, v〉 as:

πw,v(ϕ) =
Pv(Rv(w) ∩ ϕ)

Pv(Rv(w))
.

It may be the case that an accessible world w′ ∈ Rv(w) is assigned credence Pv({w′}) = 0. Although Stalnaker’s
models do not allow for this, it is reasonable here, because we would like to ask whether reasoning about rationality
could rule out uncertainty about an opponent’s awareness. (See example in Figure 5 and the relevant discussion
below.)

Therefore define an amended accessibility relation, R+
v such that w′ ∈ R+

v (w) iff w′ ∈ Rv(w) and Pv({w′}) , 0.
With this, say that the belief type 〈w, v〉 believes a proposition ϕ inM, iff R+

v (w) ⊆ ϕ. That the player at v believes in
proposition ϕ is itself a proposition, denoted by

Belvϕ =
{
w ∈ W | 〈w, v〉 ∈ BM and R+

v (w) ⊆ ϕ
}
.

7To write σw(v) = σw′ (v) is sloppy notation. Certainly, L(w′) may contain only a subset of the successor of v that L(w) contains. In that case,
the requirement is that σw(v) places the same probability as σw′ (v) on all successors that do also occur in L(w′).
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That every view point believes in ϕ is the proposition
⋂

v∈V Belvϕ. Common belief of proposition ϕ in w is defined as
usual as truth everywhere in the transitive closure of R+

v starting from w: CBϕ =
{
w ∈ W | R+∗

v (w) ⊆ ϕ
}
. A proposition

ϕ is true in world w if w ∈ ϕ. As before, knowledge is true belief, and common knowledge is true common belief.
One crucial set of propositions that agents have probabilistic beliefs about is the behavior of all agents (including

correct beliefs about their own behavior). In particular, a game model assigns to each of its belief types 〈w, v〉 a belief
in the form of a behavioral strategy profile σ〈w,v〉 given by:

σ〈w,v〉(v′, a) =
∑
w′∈W

πw,v({w′}) × σw′ (v′, a) .

With this, we say that a belief type 〈w, v〉 is rational inM iff σw(v) is a best response in game L(w, v) to the belief
σ〈w,v〉. A player i is rational in world w iff 〈w, v〉 is rational for all relevant belief types with v a choice of player i.
This is then a notion of “subjective rationality”: the choice of the agent must be optimal in the game as she sees it,
not in the game L(w). This is basically where a notion of unawareness in games gets its bite from: even though all
players are rational within their subjective representation of a game, their choices need not be objectively rational.
The proposition that the player at choice point v is rational is:

Rati =
{
w ∈ W | player i moves at v in L(w) → 〈w, v〉 is rational

}
and the proposition that everybody is rational is Rat =

⋂
i<n Rati. The proposition that there is common belief in

rationality is CB Rat. The following claims are fairly easy to prove.

Claim 4.2. If the player at v believes that she is rational in w, then 〈w, v〉 is rational.

Claim 4.3. There is common belief of rationality at world w iff all belief types 〈w′, v〉 ∈ BM with w′ ∈ R+∗(w) are
rational.

We are interested in the implications of rationality and various forms of belief in it at the actual world w0. The
question is what does the behavior at w0 look like in all models for a given game with unawareness that satisfy
additional constraints on rationality and beliefs.

4.1 Equilibrium as Rational under Mutually True Belief
For a start, consider the simplest epistemic interpretation of equilibrium in a two-player static game as a set strategies
both of which are mutually known, and both of which are rational given this knowledge (cf. Stalnaker 1994; Aumann
and Brandenburger 1995). The single most striking fact is that, under this characterization, not every game with
unawareness has an equilibrium in this sense. The reason is that mutually true beliefs and mutual rationality may be
in conflict, for instance, if some agent is not aware of another player’s awareness of a dominant choice.

Of course, this depends in part on how we define what it means for a behavioral belief to be true. For our purposes
here, the following is a reasonable definition that should be uncontroversial against the background of simultaneous
move games. Say that a belief type has a true behavioral belief if σ〈w,v〉 = σw. So, in particular, for a behavioral belief
to be true, the belief type 〈w, v〉 has to be aware of all choice nodes that occur in L(w) and no actions that 〈w, v〉 is
unaware of may be played with positive probability in w.

Here is a non-trivial example that illustrates that mutually true beliefs and rationality can be inconsistent assump-
tions in games with unawareness. Consider the strategic game G1 and the pruned version G2 where column player
only has one choice:

G1 l r

u 0,2 2,0
d 1,1 1,1

G2 r

u 2,0
d 1,1

Let i be the row player and j be the column player, and assume that the game with unawareness is given by the
following awareness structureAG1 :8

w0 : G1 w1 : G1 w2 : G2

i j

8Strictly speaking, we have not defined unawareness structures for simultaneous move games, but it is clear how the definition would have to be
amended to cover this basic example.
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So, in this game with unawareness player i incorrectly believes that j is unaware of action l.

Claim 4.4. There is no model based on awareness structureAG1 such that at w0 player j is rational and player i has
a true belief about player j’s strategy.

Proof. There are infinitely many models based onAG1 but all of these have to contain an awareness structure modally
equivalent to AG1 . We may therefore think of the worlds in any model M based on AG1 as falling within (modal)
equivalence classes |w0|, |w1| and |w2| based on modal equivalence with the respective worlds inAG1 . Obviously, the
actual world w′0 inM will be in |w0|.

Action l strictly dominates r for player j, and she is aware of it in w0. So, if we assume that in model MAG1
,

player j is rational in w′0, then we have to assign σw′0
( j, l) = 1. Additionally, player i’s behavioral beliefs in w′0 are

given by σ〈w′0 ,i〉( j). This however, is computed based on the strategies assigned to j in worlds in |w1| and so these will
have to conform to the actions available in worlds in |w2|. The only behavioral belief possible for i in w′0 is therefore
σ〈w′0 ,i〉

( j, r) = 1. �

This shows that games with unawareness need not have equilibria, if understood in this way. The problem high-
lighted by the example is simply that some behavioral beliefs are not possible in games with unawareness. Certainly,
we can weaken the epistemic condition for equilibrium in games with unawareness in several ways. But the problem
then is to find a reasonable weaker requirement that still preserves the spirit of equilibrium of mutually best responses
that would perpetuate under knowledge at w0. Weaker notions are liable to be too weak in this respect.

Suppose, for instance, that instead of requiring truth in the actual world, we require truthful behavioral beliefs
only in those worlds that correspond to classical games (cf. Feinberg 2009). This may seem reasonable, because in
those worlds no behavioral beliefs are blocked by unawareness. What kind of behavior would this select for, if we
would require rationality in the actual world? The answer is simple: there will always be a solution, but in some
games with unawareness this weaker requirement of true behavioral beliefs is entirely vacuous. In some of these
cases the solution, i.e., the behavior that is selected for in the actual world of all models, is only constrained by
rationality at w0, and so may be nothing more than a set of strategies none of which is strictly dominated according to
the subjective views of players at w0. To see this, take an arbitrary game G and an awareness structure in which every
v conceptualizes the game with just one choice for each v′ , v.

Other variations of the truthfulness requirement may be conceivable, and the jury is still out whether some reason-
able characterization of equilibrium along these lines exists for games with unawareness. Based on the considerations
above, however, it seems that equilibrium, characterized somehow by rationality and truthful behavioral beliefs, does
not square well with games of unawareness. The problem certainly is the truthfulness requirement in structures that
may exclude certain beliefs.9 A radical moral that could be drawn from this is that, perhaps, (epistemic interpreta-
tions of) solutions for games with unawareness should not require truthfulness at all, but should rather strengthen the
impact of rationality, so as to require higher-order belief in rationality.

4.2 Common Belief in Rationality
It follows from Claim 4.3 that if a model M is connected —and it suffices to restrict attention to these— there is
common belief in rationality in actual world w0 iff all belief types ofM are rational. So what does common belief in
rationality imply for the behavior of players in w0? First of all, we should take note that common belief in rationality
is never an inconsistent assumption for games with unawareness based on a finite game.

Proposition 4.5. For any awareness structure AG based on a finite game G there is always a model MAG with
common belief in rationality at w0 of the model.

The proof, given in the appendix, makes use of another basic fact known from modal model theory, namely
the fact that every pointed modal model, and hence every awareness structure too, can be unfolded into a modally
equivalent model that is a tree (see Blackburn et al. 2001 p. 62-63). If A is an awareness structure, then let T (A) be
the unfolded tree derived fromA. The idea is so intuitive that a formal description of the construction is unnecessary:
the model T (A) is obtained from A by treating all paths through A as worlds of the model T (A) with accessibility
relations and assignments L(·) preserved in the obvious way.

9None of this says anything yet about the appropriateness of equilibrium for games with unawareness under diachronic interpretations, e.g.,
as the outcome of learning or population dynamics. Here, a convincing case would have to be made how an agent, or certain relevant parts of a
population could remain unaware of certain parts of the game, although the game is played repeatedly. Whether any such interpretation is reasonable
will also hinge on the kind of the agents’ unawareness, e.g., whether it is more conceptual or rather attentional in nature.
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The unfolded tree representation of an awareness structure is helpful also beyond the proof of Proposition 4.5.
The setMT (A) of all models based on A that contain T (A) as its awareness structure could be considered something
like the class of all canonical models for the game A. If we are interested in the implications of rationality and
belief in it, then certain possible distinctions in the model will cancel out when we compute a belief types’ behavioral
beliefs. This makes it clear all distinctions relevant to the (beliefs about) rationality of a choice of a belief type in A
can be expressed by a model inMT (A). In other words, when we are interested in the set of solutions selected by, for
instance, common belief in rationality, we need to look all models inMT (A), but we can safely ignore others.10

The canonicity of the tree-based models yields a simple algorithmic way of computing all behavior compatible
with common belief in rationality for awareness structures that terminate in classical games by unravelling. If A
terminates in classical models, then for each branch in T (A) there is a root-closest world w such that the w-generated
submodel is a classical model. The set of strategies compatible with common belief in game A is obtained from
taking all solutions selected by this criterion in the classical games of each branch, and then computing the set of all
best responses at each step up to the actual world w0.

4.3 Belief in Rationality Under Structural Consistency
Rational choice under common belief in rationality is a fairly weak requirement. We can extend the previous modal
model constructions to implement additional forward induction reasoning, for instance. This paper does not aspire
to go into detail here (but compare the elaborate discussion in Heifetz et al. 2010). We will contend ourselves with
a simple construction that allows for a non-trivial application that shows the relation between beliefs expressed in
awareness structures, and how these pertain under considerations of rationality. An easy example will show how that
uncertainty about awareness in awareness structures may be ruled out by belief in rationality in game models.

In order to extend the idea of extensive form (correlated) rationalizability —with its forward induction rationale
(cf. Pearce 1984; Battigalli 1996; Stalnaker 1998)— to epistemic models for games with unawareness in the present
setting, we need to strengthen the notion of a possible behavioral belief. Notice simply that, until now, we have
allowed a player at choice point v to have behavioral beliefs about opponent behavior that, if correct, would never
lead to v in the first place. To strengthen the implications of belief in rationality we would therefore want to place an
additional constraint on players’ behavioral beliefs in our models, namely that they be structurally consistent, at least
where this is compatible with higher-order belief in rationality.

Recall that the behavioral belief σ〈w,v〉 captures what the player at v would believe about her opponents’ behavior if
world w was actual. Therefore define that σ〈w,v〉 is structurally consistent iff the strategies σw′ for all w′ ∈ Rv(w) reach
node v with probability 1 in game L(w). The requirement that all belief types have structurally consistent beliefs and
that they believe in the opponents’ rationality can obviously be inconsistent. Rationality and any higher-order belief in
it should be applied only if that is consistent with structural consistency. A version of extensive-form rationalizability
for games with unawareness can be defined rather straightforwardly in terms of modal models as follows.

All canonical tree-based models in MT (A) not only share the same unawareness structure T (A), but also, since
T (A) is a tree, each world w , w0 in T (A) identifies a unique belief type in each model. (More than one world may
identify a given belief type but that is insubstantial.) It is therefore feasible to associate with each world w , w0 from
T (A) and modelM ∈ MT (A) the behavioral beliefM(w) that the unique belief type associated with w has inM. So we
can say, only somewhat sloppily, thatM(w) is structurally consistent, or that it is a belief in everybody’s rationality.
Finally, define for a class of modelsM′ ⊆ MT (A) the setM′(w) = {M(w) | M ∈ M′} of behavioral strategies associated
with the belief type identified by w in some model inM′.

Using the canonical tree-based models, we can single out the behavior in games with unawareness that is consis-
tent with any higher-order belief in rationality where this is consistent with structural consistency. LetM0

SC be the set
of all tree-based models all of whose types have structurally consistent beliefs. Then define inductively for all k ≥ 1
(see the proof of Proposition 4.5 for the definition of Rk(w) andMk):

M
k
SC =

{
M ∈ Mk−1

SC | ∀w ∈ Rk(w0) (Mk(w) ∩Mk
SC(w) , ∅ → M(w) ∈ Mk(w))

}
.

The sets Mk
SC contain models with beliefs compatible with level-k belief in rationality where this does not violate

structural consistency. The behavior in the actual world of all models in the set
⋂

kM
k
SC is the set of behavior that

is consistent with common belief in rationality, wherever possible. The proof of the following claim is a simple
extension of the proof of proposition 4.5.

Claim 4.6. The set
⋂

kM
k
SC is non-empty for any game with unawareness.

10This makes a neat parallel to Feinberg’s construction of games with unawareness (Feinberg 2009). Feinberg’s infinite collection of finite
sequences of views are all the worlds of models inMT (A) wheneverA satisfies the certainty constraint.
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Figure 5: Uncertainty of awareness and forward induction

The following example shows how, although an awareness structure has an agent uncertain about whether another
agent is aware of some contingency, the forward induction reasoning captured in this solution can render parts of this
uncertainty incompatible with (higher-order) belief in rationality. Consider the game with unawareness in Figure 5.
Here, all view points of player i are treated alike. So, the actual game is G1, but player j is uncertain whether player
i is aware of player i’s move f at all of her choice points. This uncertainty, although part of the game description,
can be leveled based on considerations of rationality. Intuitively speaking, if j has structurally consistent beliefs at
her only information state in this game, she must believe that i played a. But then, there is no model in which j
can believe that i is rational that assigns positive probability to a world that is modally equivalent to w2 of the given
awareness structure, because in these worlds the choice a is strictly dominated by b. But if j is certain that i is aware
of f , her best choice is d, although it is not necessarily when she cannot rule out that i may be unaware. The upshot is
that parts of the uncertainty about unawareness of others can be straightened by considerations of rationality in some
games. For this to be possible, however, it crucial to allow the definition of models to assign a credence level of zero
Pv({w′}) = 0 for some worlds w′ ∈ Rv(w).

5 Extensions
The main contribution of this paper is a demonstration of how modal logic can be helpful in the representation of
games with unawareness. The last section showed that awareness structures are already halfway towards a modal
game model, and that constraints on these models can, if properly executed select reasonable behavioral solutions
via assumptions on rationality and belief formation of agents. In the following section I would like to point to a few
conceivable extensions of this approach that again speak for a connection of game theory with modal logic in several
respects.
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5.1 Unawareness from Lumping
So far, we have only attended to games with unawareness of moves. Consequently, the crucial reduction constraint of
our awareness structures regulated that accessible worlds must be partial representations obtained from lumping. We
can relax this condition to accommodate other forms of unawareness. Another way in which agents may be unaware
in a strategic situation is when they cannot distinguish between several contingencies. This kind of unawareness has
so far not been studied systematically in previous models. But it is a very natural one in many situations: some agents
may simply not know to make a difference between certain states of nature or action choices.

In order to model unawareness from indistinguishability, we may introduce a second reduction relation obtained
by lumping branches of the game tree together, while again retaining as much of the labeling as possible. Obviously,
not all conceivable ways of such lumping may yield manageable game representations, and these, arguably, do not
represent natural cases of unawareness from indistinguishability. For simplicity, we therefore restrict attention to
cases where, roughly speaking, what is lumped together are actions of a single player at one of her choice points (plus
some more convenient restrictions — see below).

Since a proper definition of lumping is actually rather cumbersome, let us start with a simple intuitive example
(see Figure 6). Suppose at history hp of some game it is player i’s turn to choose from successors H(hp) = {h1, h2, h3}

labeled by A(hp, ·) as action choices A(hp, h1) = a, A(hp, h2) = b, A(hp, h3) = c. It then may be the case that some
player j (not necessarily different from i) can not distinguish the actions a and b, but can distinguish action c from
the former two. (We could think of a European who definitely knows the difference between a handshake and a
bow, but cannot distinguish between different types of bowing, that may show different levels of respect in certain
Asian cultures.) This can be represented by assigning to j a partial representation of this game in which the histories
H(hp) are lumped together into a set H′(hp) = {{h1, h2} , h3} with action labels A(hp, {h1, h2}) = {a, b}, A(hp, h3) = c.
In other words, we will represent those actions that cannot be distinguished as a set of histories, together with the
corresponding set of labels as new action label.

To keep things simple, such lumping is only allowed when the play that follows histories h1 and h2 in the original
game is identical, as far as the player and action labeling is concerned. Conceptually speaking, this is not necessary:
it is conceivable, for instance, that an agent could be unable to discriminate actions immediately after which different
players move. However, excluding this and other aberrant forms of misconceptualization simplifies the definition of
lumping.

Definition 5.1 (Lumping). A game Γ′ is a lump of Γ, Γ′ vl Γ, iff Γ′ is derived from Γ by zero or more successive
lumping steps. A game Γ′ is derived from Γ by one lumping step if Γ′ and Γ are identical, except that the branches
emanating from two nodes h1 and h2 in Γ are replaced with a merged branch in Γ′.

Merging branches starting at nodes h1 and h2 is only feasible if (i) h1 and h2 have an identical predecessor
hp and (ii) the branches are identically labelled except for utilities. More concretely, that means that if H≤(h1) =

{h ∈ H | h1 ≤ h} and H≤(h2) = {h ∈ H | h2 ≤ h} are the branches emanating from h1 and h2 respectively, then we
require there to be a bijection f : H≤(h1)→ H≤(h2) such that for all h, h′ ∈ H≤(h1):

· h < h′ iff f (h) < f (h′)

· P(h) = P( f (h))
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· A(h, h′) = A( f (h), f (h′)), wherever defined

· if P(h) = n, then Prh = Pr f (h)

· if h1 < h, then h and f (h) are in the same information state.

The merged branch H≤(ht) is then obtained by taking H≤(h1) and replacing each node h ∈ H≤(h1) with the set
node

⋃
{h, f (h)}, while retaining the order and labeling in the obvious way. As for the terminal nodes of the merged

branch, we assign utilities in lump Γ′ that are derived by some “implicit belief”. Let p ∈ [0; 1] and define for all
terminal nodes zt =

⋃
{z, f (z)} in the merged branch:

u′i (z
t) = p × ui(z) + (1 − p) × ui( f (z)) .

It remains to be specified how the merged branch is appended to hp, the predecessor of merged nodes h1 and h2

in Γ. The lump Γ′ assigns the action labeling

A′(hp, ht) =
{
A(hp, h1), A(hp, h2)

}
to the maximal element ht of the merged branch. Moreover, if hp is a nature move, then we should assign some prior
probability Pr′hp

to nature’s moves in hp (see also the discussion below). Finally, we require that if h1 and h2 are part
of information states v1 and v2 respectively, then ht is part of information state

vt =
{
ht

}
∪ v1 ∪ v2 \ {h1, h2} .

This is to ensure that anything (believed) indistinguishable in h1 and h2 (is believed to) remain indistinguishable in a
representation that lumps h1 and h2 together.

The above definition leaves the prior probabilities Pr′hp
unspecified, when hp is a nature move. A natural idea

would be to conserve the values of Prhp wherever possible, and to assign probability Pr′hp
(ht) = p × Prhp (h1) + (1 −

p)×Prhp (h2), where p is again the “implicit belief” hidden in the lumping. This additive assignment of probabilities to
sets of states is entirely deterministic, in the sense that there is a unique prior that results from lumping (see de Jager
2009 for more on this additive assignment of probabilities of coarse-grained states.) This, however, may occasionally
be too inflexible, especially in the light of certain empirical results on subjective probability assignments. Fox and
Levav (2004) argue that human laboratory performance in probability assignment tasks, such as, for instance, the
Monty-Hall puzzle, can be explained based on the assumption that subjects assign flat probabilities to either naively
coarse-grained, or to more sophisticated fine-grained partitions of logical space (cf. Grünwald and Halpern 2003).
If we want to allow for flat probabilities irrespective of granularity we should not further restrict the definition of a
lumping step across the board.

No matter how probabilities are assigned to indistinguishable states, the lumping relation vl also gives rise to
a partial order on the set of games G, just as the pruning relation did. Pruning and lumping are two different,
but compatible ways of representing a subjectively restricted conceptualization of a given game. As a single agent
may certainly (be believed to) fail in both ways to represent a game correctly, it makes sense to define a partial
representation of game G, in the sense of the reduction constraint on awareness structures, as the transitive closure of
prunings and lumpings of G.

Other than the meaning of partiality in the reduction constraint, nothing has to change to have awareness structures
represent games with unawareness from ignorance and indistinguishability of moves. Notice that it is still possible to
identify all information states of any game in any of its pruned-lumped partial representations: even if only some of
the nodes in some information state v from game G reoccur partly lumped together in a reduced game G′, there will
be a unique referent of v in G′.

The only non-trivial amendments in the extension to unawareness from indistinguishability concern (i) an ex-
tension of the modal language LG to talk about indistinguishability and (ii) the calculation of expected utilities in
models, which will have to take into account implicit beliefs hidden in the lumping. It remains to be seen how this
form of unawareness behaves under different requirements on rational behavior and beliefs therein. To represent it,
awareness structures are certainly flexible and modular enough.

5.2 Awareness of Unawareness
In the present framework, we can easily model an agent’s awareness of another agent’s unawareness. However, we
cannot model an agent’s awareness of her own unawareness. Halpern & Rêgo have suggested adding virtual moves to
a game representation that captures the subjective conceptualization of an agent who is aware of her unawareness (cf.
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Heifetz et al. 2010). The modal perspective taken in this paper suggests a different and more principled approach. In
a recent paper (Halpern and Rêgo 2009), Halpern & Rêgo give an amended propositional modal logic for reasoning
about awareness that also allows to reason about one’s own unawareness of propositions. Using this, we could
construct awareness structures as special models of the extended modal language of Halpern & Rêgo. As far as the
game representation is concerned, this approach would be entirely straightforward.

The interesting aspect of this project would be to see how an agent’s awareness of her own unawareness behaves
under strategic reasoning. The crucial question is what an agent who is aware of her unawareness should do if she
observes behavior that is incompatible with the assumed rationality of opponents. Without awareness of unaware-
ness, belief in irrationality of an opponent may be unavoidable. But, depending on the source of unawareness, if
unawareness is not conceptual, but rather arising from computational limitations or matters of inattentiveness, then
agents should perhaps try to rationalize their observations, if needed, by revision of their conceptual representation of
the strategic situation.

The question how, by which process, an agent can actively and consciously become aware of a relevant con-
tingency that could rationalize an observation by introspection is beyond the scope of (present-day) rational choice
theory. But no matter what the process is, rational choice theory can model the revisions necessary for a successful
rationalization in terms of awareness dynamics. Here, we could try to exploit the somewhat uncomfortable parallel
between belief revision and awareness dynamics (Hill 2010). Modal models of belief revision in terms of orderings of
possible worlds abound. More crucially, models where, as would be necessary for revising unawareness, the revisions
are not introspectively accessible to an agent at the outset, are also readily available (cf. Board 2004). This, however,
is as of now mere speculation and has to be left for another occasion.

6 Conclusion
In conclusion, this paper has suggested to represent games with unawareness in terms of, basically, pointed and
relevantly constrained models for a basic modal logic of belief. The notion of modal equivalence tied to the language
with which to capture agents’ beliefs about unawareness has been crucial in several respects, foremost to extend
awareness structures to epistemic models of the game with unawareness. Basic results from modal model theory
proved helpful in assessing the implications of rationality and belief in rationality in games with unawareness.

A Proofs
Proof of Proposition 3.2. In Section 2.2 we observed that a pruning of a given game G corresponds one-to-one with
a suitable substet H′ ⊆ H of nodes. Suitable here means that H′ may not introduce new terminal nodes. It is obvious
that for all w the set {h ∈ H | M,w |= h→ z(h)} depicts exactly this property.

As for the equivalence of constraints, centering is trivial, and so is reduction. Existence is easily checked when
we notice that (i) v∗ is true in v iff v reoccurs in L(w) and that (ii) ^v> true in a world w iff there Rv(w) , ∅. These two
observations also explain the characterization of the relevance constraint. Finally, introspection needs no argument,
as this is well known. �

Proof of Proposition 4.5. Fix an arbitrary awareness structureA and construct from it its unique modally equivalent
unfolded tree T (A). Let M be the set of all models which contain exactly the awareness structure T (A). Since then
all these models share the set of possible worlds and accessibility relations, we can safely refer to these as simply W
and Rv in the following.

For convenience define different relevant sets of accessible worlds in models fromM for all k ≥ 1:

Rk(w) =
{
w′ ∈ W | ∃v1, . . . , vk : w′ ∈ Rv1 ...vk (w)

}
.

The set Rk(w0) are then the worlds accessible via k steps from the actual world. With this, define inductively the sets
Mk as the sets of all models fromM in which there is, what we may call, level-k belief in rationality:

M
1 =

{
M ∈ M | R1(w0) ⊆ Rat is true inM

}
M

k+1 =
{
M ∈ Mk+1 | Rk(w0) ⊆ Rat is true inM

}
.

The sets Mk are non-empty for any k. To see this, first notice that for any classical game and choice point in that
game, there is always a belief and strategy in that choice point such that the strategy is rational given that belief. Now,
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consider the caseM1. From the remark we just made, it is clear that, since all models inM are based on a tree model
T (A), it is always possible to assign strategy profiles to all worlds w′′ ∈ R2(w0) such that the behavior of choice point
v such that w′Rvw′′ for the unique —as T (A) is a tree— predecessor of w′′ is rational in L(w′′). The argument for
the inductive step is parallel. If Mk is non-empty, then so is Mk+1. Take any arbitrary w ∈ Rk+1(w0) and repeat the
argument from the induction base with w instead of w0.

The remaining question is whether
⋂

kM
k is non-empty. Define the sets S k as the set of all pure strategies that lie

in the support of w0 for some model in Mk. Obviously, S k+1 ⊆ S k, but also S k , ∅ for all k. Remains to notice that
the set of probabilistic strategies that are rational under some belief are completely determined by the pure strategies
that are. Since there are only finitely many pure strategies in a finte game G the result follows. �
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