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Abstract. Compositionality is a key design feature of human language: the mean-
ing of complex expressions is, for the most part, systematically constructed from the
meanings of its parts and their manner of composition. This paper demonstrates that
rudimentary forms of compositional, even proto-syntactic communicative behavior can
emerge, without stipulating sophisticated or purposeful agency, from a variant of rein-
forcement learning applied to signaling games. This helps explain how compositional-
ity could have emerged gradually: if unsophisticated agents can evolve prevalent dis-
positions to communicate compositional-like, there is a direct evolutionary benefit for
adaptations that exploit the systematicity in form-meaning mappings more rigorously.

It is astonishing what language can do. With a few syllables it
can express an incalculable number of thoughts, so that even a
thought grasped by a terrestrial being for the very first time can
be put into a form of words which will be understood by some-
one to whom the thought is entirely new. This would be im-
possible, were we not able to distinguish parts in the thoughts
corresponding to parts of a sentence, so that the structure of the
sentence serves as the image of the structure of the thought.

(Frege, 1923)

Language is undoubtedly a key element in the success of mankind to transmit complex
knowledge from one generation to the other. Language enables such gradual extension
of culturally accumulated knowledge in part because of its flexibility to express a virtu-
ally limitless space of ideas. What gives a language this expressive power is a semantic
property called compositionality. A language is compositional (in the relevant sense
considered here) if the meanings of (most of) its composite expressions (e.g., phrases
made up of words) are systematically derived from the meanings of their parts and the
way in which these parts are combined.

This paper is concerned with the question how compositionality could have evolved,
and it offers a mathematical model, couched in game theory, that shows how the very
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beginnings of rudimentary compositionality in signal use can arise by a variety of re-
inforcement learning. Obviously, since compositionality is such a fundamental design
feature of language, many other contributions exist in the literature that also try to show
how compositional language use could have evolved. The contribution of this paper is
to show how early compositional-like signal use can arise without a presupposition of
questionable cognitive capacities or behavioral learning dispositions of language using
agents; capacities and dispositions that are themselves not independently justified by
evolutionary arguments. Only once compositional-like signal use is present (even if
infrequent), will there be grip for biological selection of traits that exploit and refine
compositional form-meaning mappings. This argument will be spelled out in Section 1,
where I defend a general methodological minimalism in evolutionary modeling, accord-
ing to which the presupposed cognitive abilities of agents should be kept minimal in
order to explain how a particular to-be-explained feature can evolve gradually.

Section 2 then introduces signaling games and recapitulates relevant results from
learning and evolutionary dynamics in these games. Section 3 discusses the Barrett-
Skyrms model of compositional signaling and argues that it fails to capture an ele-
ment of creativity, spontaneity or stimulus generalization. Against this background,
Section 4 introduces spill-over reinforcement learning and shows that spontaneous
compositional-like signal use can arise under favorable parameter settings, but is not
a guaranteed outcome. Section 5 further explores the potential of spill-over reinforce-
ment learning to model order-sensitive signaling, which may be conceived as a form of
proto-syntax.

1 Compositionality & methodological minimalism
It is important to start with a general remark about what compositionality is. The state-
ment that human language is compositional is possibly misleading, and perhaps even
false. Even if human language was indeed compositional, this could never be directly
observed. Rather, compositionality is an assumption —and a good one as such, in terms
of its explanatory power— that serves to explain a number of observables about human
language, namely its productive and interpretative flexibility, its systematicity and its
learnability, among others (Pagin and Westerståhl, 2010a,b). This is also reflected in
the opening quote from Frege’s Gedankengefüge: it is the assumption that language
is compositional that explains productive expression of new ideas and the ability to
understand novel sentences. (Frege’s suggestion that such productivity and systematic-
ity require compositionality can be called into question; after all, even if we cannot
presently conceive of a better explanation, that does not mean that our best explanation
is necessarily true.)

This remark about the nature of compositionality is important, because it tells us
what we need to be looking for in a model that aspires to account for the evolution of
compositionality. Since compositionality as such cannot be directly observed in nature,
we cannot observe it directly in a model either. But we can observe in the behavior of
modeled language users those observable features of human language that make us pos-
tulate compositionality as an explanatory principle. In particular, we should look for
conditions under which agents evolve behavioral dispositions of using complex signals
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spontaneously and creatively in a systematic way to express complex meanings that
they have never encountered before, and similarly evolve behavioral dispositions to re-
act to complex signals in a way that is systematically related to their reactions to the
parts of the complex signals. It is this creative compositionality, as a behavioral dispo-
sition of signaling agents, that I would like to account for, using minimal assumptions
about the agents’ cognitive abilities.

Why the fuss about minimal cognitive abilities? Because otherwise there is likely
a gap in our understanding of the gradual emergence of compositionality. To see this,
it helps to consider alternatives.

The standing assumption in evolutionary modeling of language origins is that be-
havioral patterns of language use that give higher chances of communicative success
lead to higher expected fitness and will therefore increase in proportion over time.
Chance of communicative success is itself a function that depends on the behavior of
the other members in the population. This is why language use is a game problem: the
success of the speaker’s behavior depends on the listener’s behavior and vice versa. As
a consequence, this means that adaptations that change the way language is used and
interpreted face a threshold problem: the number of mutations required before a novel
trait, like compositional language use, can be fitness increasing is rather high, espe-
cially in realistic scenarios where each agent only interacts with a limited number of
other agents and where spurious cognitive abilities may incur a maintenance cost. To
wit, a single agent who speaks a private language that is bad for communicating with
everyone else would likely die a lonesome death, even if this particular communicative
behavior would be highly efficient if used by more than one individual. This highlights
that an explanation of the gradual emergence of compositionality is important.

Previous accounts have tried to account for the evolution of compositionality, but
have not sufficiently explained its gradual emergence. Often, a distinction is made
between vertical and horizontal evolution. Vertical evolution happens over many gen-
erations where biological selection pushes population towards a higher proportion of
fitter behavioral types. In contrast, horizontal evolution takes place within a few over-
lapping generations, or usually just one generation, by individual learning and cultural
adaptations, due to the plasticity of the agents’ behavioral dispositions. The evolu-
tion of compositionality has been addressed both as an issue in vertical and horizontal
evolution.

Adopting a vertical perspective, Martin Nowak and colleagues used evolutionary
game theory to show that compositional language use is evolutionarily advantageous
in the presence of noise (Nowak and Krakauer, 1999; Nowak, Plotkin, and Jansen,
2000): if signals are transmitted through a noisy channel, then the encoding of mean-
ings in a compositional way makes the reception of signals less error-prone. If we
accept this premis, it is clear that compositional language has an evolutionary advan-
tage over non-compositional language. But the threshold problem remains unsolved:
how could compositional language use arise and spread in the first place, e.g., in a
small population?

Accounts that adopt a horizontal perspective on language evolution appear to offer
more grip on the threshold problem, because they zoom in, so to speak, on the agent
level and the agents’ respective behavior. There are consequently many accounts us-
ing agent-based simulations that aim to address the evolution of compositionality (e.g.
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Oliphant and Batali, 1997; Batali, 1998; Gong, 2007; Tria, Galantucci, and Loreto,
2012). It is impossible to do justice to all contributions that file under this approach.
Instead, I would like to pick one example, not because it is particularly worthy of cri-
tique —in fact, my target is quite ingenious, informative and has consequently been
quite influential—, but because it serves to make a conceptual point about hidden as-
sumptions in agent-based modeling.

Batali (1998) uses recurrent neural networks to model agents’ production and inter-
pretation behavior and shows that compositional language use can arise from repeated
interaction in his setup. Each agent is represented as a neural network that maps a
character string onto a bit vector that represents a point in a semantic space. A net-
work thus represents the agent’s interpretation strategy. Following the lead of Hurford
(1989), Batali assumes that an agent’s production behavior is built on top of his inter-
pretation behavior: when an agent wants to express a meaning given by a bit vector, he
constructs a character string by, essentially, performing a heuristic search through the
space of all character strings and selecting the first one that the agent himself would
interpret as a meaning that is close enough to the one that he wants to communicate.
This is sometimes called an obverter strategy and is also implemented in many instanti-
ations of iterated learning models that produce compositional form-meaning mappings
(e.g. Kirby and Hurford, 2002; Kirby, 2002; Smith, Kirby, and Brighton, 2003).

On the face of it, neural networks may appear to be the most innocuous and natural
modeling choice, without danger of endowing agents with a surplus of unwarranted
abilities. But the obverter strategy is far from being innocuous. It implements pro-
duction behavior that is goal-oriented and geared towards efficient communication. It
also implements an implicit bias towards a close alignment between interpretation and
production (which was the original reason for Hurford (1989) to introduce it). And
it even carries an implicit bias towards compositional meaning mappings, because it
will preferably choose form F for meaning M if the mapping of F to M is similar to
mappings of other form-meaning pairs that is has been trained on.

Agent-based simulations like Batali’s (and much subsequent work in the iterated
learning tradition) are very insightful, because they give sufficient conditions for the
emergence of form-meaning mapping. Knowing about multiple sufficient conditions
is important to obtain a complete picture, and each successful computational model
will tell us about more sets of sufficient conditions. But as long as the sufficient con-
ditions tested include assumptions like the obverter strategy, for whose evolution there
is no independent justification ready at hand, there is also something missing. It is in
this sense, that an approach to horizontal evolution of compositionality should make
minimal assumptions about the agents’ sophistication, in order to show how the phe-
nomenon could gradually evolve: once proto-compositionality emerges (at least spo-
radically) in the behavior of unsophisticated signalers, there is an incentive to evolve
learning or usage strategies that exploit these features, riding piggy-back on the clever-
seeming behavior of dumb agents.

To conclude, we are left with two desiderata. For one, we would like to see
agents that are in some sense capable of reacting to novel stimuli in a systematic,
compositional-like way. For another, we would like to make minimal assumptions
about these agents’ abilities to cognize, learn and tune their behavior towards more
communicative efficiency. In the following I would like to demonstrate that behav-
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ioral dispositions towards seemingly clever, compositional-like creative signal use can
emerge in signaling games under a variant of reinforcement learning, in which agents
lack the ability to sharply discriminate between similar meanings and similar forms.

2 Signaling games & reinforcement learning
Signaling games were invented by David Lewis to give a naturalistic account of con-
ventional meaning (Lewis, 1969). A signaling game features two players, a sender and
a receiver. One round of play proceeds as follows. A chance move determines which
state of the world obtains. The sender observes the state, the receiver does not. The
sender then selects a signal, or message, to send to the receiver. The receiver observes
the message and chooses an act in response. In the simplest case, the play was a success
for both players just in case the act matches the state.

If T , M, and A are (finite) sets of states, messages and acts respectively, then be-
havioral strategies for sender and receiver are functions:

σ ∈ (∆(M))T ρ ∈ (∆(A))M .

Behavioral strategies map choice points of agents to a probability distribution over the
choices they have at that choice point. The sender makes a choice which messages to
send for each state; the receiver chooses an act for each message.

Let U : T × A → R≥0 be a non-negative utility function that only depends on the
state and the receiver’s act. The expected utility of a strategy pair is:

U(σ, ρ) =
∑
t∈T

∑
m∈M

∑
a∈A

Pr(t) · σ(t,m) · ρ(m, a) · U(t, a) ,

where Pr(t) is the occurrence probability of state t. A strategy pair 〈σ, ρ〉 is an evolu-
tionary stable state (in a two-population setting, where sender and receiver behavior
can be independently adjusted) iff it is a strict Nash equilibrium, i.e., iff there is no σ′

with U(σ′, ρ) ≥ U(σ, ρ) and there is no ρ′ with U(σ, ρ′) ≥ U(σ, ρ) (Selten, 1980).
Under the simplifying assumption that we have the same number of states, mes-

sages and acts, and that U(ti, aj) = 1 if i = j and 0 otherwise, signals can be said
to acquire a clear-cut meaning in evolutionary stable states, being associated with ex-
actly one corresponding state-act pair (Wärneryd, 1993; Blume, Kim, and Sobel, 1993).
Much recent work has been devoted to complementing the picture of meaning evolu-
tion in signaling games by supplying accounts of abstract evolutionary dynamics that
show under which conditions populations of agents can be expected to converge on
a meaningful use of initially meaningless signals (e.g. Huttegger, 2007; Pawlowitsch,
2008; Huttegger et al., 2010; Huttegger and Zollman, 2011; Franke and Wagner, 2014).

Next to studying vertical evolution of signaling strategies, there is also an increas-
ing understanding of horizontal evolution in terms of agent-based learning dynamics
(c.f. Skyrms, 2010; Huttegger and Zollman, 2011, for overview). A particularly appeal-
ing notion of learning, since austere and well-established, is reinforcement learning
(c.f. Barrett, 2007, 2009; Mühlenbernd, 2011, for applications to signaling games). In
its simplest form, reinforcement learning in signaling games can be conceived of as a
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dynamic process using Polya-urns. Players have one urn for each choice point, filled
with balls corresponding to each act. For instance, at any point in time, B(t,m) is the
number of balls for message m in the sender’s urn for state t, and similarly B(m, a)
is the number of balls for act a in the receiver’s urn for message m. Urns map onto
behavioral strategies:

σ(t,m) =
B(t,m)∑

m′∈M B(t,m′)
ρ(m, a) =

B(m, a)∑
a′∈A B(m, a′)

.

Under basic Roth-Erev reinforcement learning (rl), sender and receiver adapt their
behavioral dispositions after each play of the game (Roth and Erev, 1995). If the last
round of play involved t∗, m∗, and a∗ and yielded a payoff of U(t∗, a∗) = u∗, then the
new urn content B′(·) is like the old one B(·) except that u∗ balls for the chosen type
are added to the urns that were visited, so as to increase the chance of repeating more
successful behavior in the future:

B′(t,m) =

B(t,m) + u∗ if t = t∗ & m = m∗

B(t,m) otherwise .
(1)

Likewise for the receiver.
Basic reinforcement learning between a single sender and a single receiver leads to

meaningful signaling behavior with certainty in the limit if the signaling game has two
messages, acts and equiprobable states and Lewis-style utilities (Argiento et al., 2009).
For more states, messages and acts, simulations show that convergence to perfectly
communicative signaling is also high, but decreasing with the size of the game. For
three messages, acts and equiprobable states, Barrett (2007, 2009) reports that ca. 95%
of simulation runs, starting with urns that all had one ball for each choice, converged to
perfectly communicative signaling behavior. Mühlenbernd (2011) showed that larger
populations of reinforcement learners also acquire successful signaling behavior, albeit
with the possibility of showing regional variations across their network of interaction.

All of this is conceptually interesting, especially because rl makes very little as-
sumptions about cognitive abilities of agents. Reinforcement learners need not be
aware that they are playing a game, or that there is any other player around. Rein-
forcement learning also doesn’t presuppose that agents know what the game is about,
so to speak, in that they would know the utilities. Agents are merely trying to gradually
optimize their behavior by repeating more frequently what showed good results in the
past. It is also a misconception to think that reinforcement learning is a form of super-
vised learning. The only requirement is that agents receive feedback about their payoff

from the last round of play. If this information is not always available, so be it; then
our reinforcement learner will update his urns only when it is available. If information
about success or failure is never available, then adjustments of behavioral dispositions
towards more successful behavior seem hardly possible at all.

3 Compositionality from reinforcement learning
Reinforcement learning can also lead to behavior that looks like a compositional use of
signals. Barrett (2007, 2009) introduced an extension of Lewis’ signaling games with
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(a) Stable strategy profile.

t1

t2

t3

t4

[[〈mA, ·〉]] [[〈mB, ·〉]]

[[〈·,mA, 〉]]

[[〈·,mB〉]]

(b) Compositional meaning of signals.

Figure 1: Example of a strategy pair for a syntactic game that achieves perfect in-
formation transmission (left), together with a possible decomposition of the signal’s
meaning (right).

two senders instead of one. Skyrms (2010) saw that we can equally treat this setup as
one in which the same sender sends two signals consecutively. The receiver responds
to a pair of signals in either set-up. There are then cases in which rl leads agents to use
pairs of signals as if each of its components has a singular meaning that is combined,
by meaning intersection, into the meaning of the pair.

In a syntactic game, as Barrett calls it, there are four world states, t1 . . . t4, and four
receiver acts, a1 . . . a4. As before, the utility function for sender and receiver is the
same, namely U(ti, aj) = 1 if i = j and 0 otherwise. There are also two messages, mA
and mB. Unlike before, the sender can send a pair of messages in each state, and the
receiver conditions his reaction on each pair. There are thus four complex signals, and
therefore perfect, non-redundant information transfer is possible. A strategy profile
that achieves this is pictured in Figure 1a. Numerical simulations show that basic rl
almost always leads to such an evolutionary stable state.

What is interesting about this case is that it allows us to decompose the meanings
of complex signals, as manifested by the behavior of agents, into parts associated with
each component. Figure 1b shows this for the strategy pair of Figure 1a. In general,
in order to achieve perfect information transmission, the pair of signals must commu-
nicate two bits of information. Since each component of the pair has two values, mA
and mB, it is as if each position is independently communicating one bit of information.
More concretely, in the example in Figure 1b, it is as if the first component of the signal
pair gives an answer to the question, conceived as a partition of states, {{t1, t2} , {t3, t4}};
the second component answers the orthogonal question {{t1, t3} , {t2, t4}} (c.f. Lewis,
1988, for this notion of orthogonality). In this sense, basic rl is able to evolve behavior
that looks, from the outside, as if complex signals are meaningful in a systematic way,
combining the meaning of their parts by meaning intersection.

Since only basic rl is used, it is clear that the second desideratum with which
Section 1 concluded is met. There is no sense in which agents’ cognitive abilities
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have been unduly amplified in order to see the desired behavior emerge. But the first
desideratum is not met. The story so far leaves no room for the claim that agents have
acquired a disposition to use complex signals compositionally beyond the ones that
they have already seen. Similarly, there is no reason to assume that the component
parts of complex signals are independently meaningful to the agents. In other words,
since syntactic games constitute a closed system, there is no role for productivity and
generalization. Such a closed system offers little to reduce the threshold problem,
because any mutant learner type with an ability to generalize to novel situations would
still play against a population of agents who will only be able to use complex signals
in a compositional-like way that they have learned as if they were unstructured wholes.
The problem, then, lies in the nature of basic rl in that it does not allow for any sort of
stimulus generalization.

4 Spill-over reinforcement learning
There are many variants of rl beyond the basic variety. There is negative reinforcement
that penalizes unsuccessful behavior by subtracting balls from urns. (We did not allow
for this in our formulation of basic rl in Equation (1), because we required utilities to
be non-negative.) There is forgetting of past reinforcements (c.f. Barrett and Zollman,
2009; Mühlenbernd, 2011, for applications to signaling games). There is lateral inhibi-
tion in which balls are removed from an urn if they are not of the type of the successful
act that was played during the last round, and in which balls of the successful type are
removed from other urns (c.f. Franke and Jäger, 2012, for an application to signaling
games). But there is also a natural way of endowing reinforcement learners with the
potential to acquire behavioral dispositions for choice points that have never been en-
countered before. I call this spill-over reinforcement learning (c.f. O’Connor, 2014, for
another application to account for vagueness in signaling games).

Spill-over rl is a conservative generalization of basic rl. It does not presuppose
that agents are any smarter or more sophisticated than under basic rl. If anything,
it presupposes that they might be less sophisticated. The basic idea of spill-over rl,
expressed in terms of urns and balls, is that whenever balls of type b are added to some
urn u, balls of type b′ are also added to urns u′ in proportion to how similar b is to b′

and u is to u′. Such spill-over to similar choice points and acts is what can be expected
of agents who are not able to properly distinguish the relevant contingencies.

To implement spill-over rl for signaling games, let’s assume that there is a given
similarity metric on the state space, and one on the message space. Let 0 ≤ Sim(t, t′) ≤
1 be the similarity of state t and t′. For our purposes, it suffices to assume that similarity
is symmetric and maximal for identical states. The same applies to similarity between
messages and between acts.

If t∗, m∗ and a∗ have been used in the last round of play for payoff U(t∗, a∗) = u∗,
then spill-over rl has the sender update his behavioral dispositions like so:

B′(t,m) = B(t,m) + Sim(t, t∗) · Sim(m,m∗) · u∗ . (2)

Likewise for the receiver. It is obvious that spill-over rl reduces to basic rl in case
all non-identical states and messages are maximally dissimilar. If not, reinforcements
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spill-over, so to speak, to similar choice points and actions, as if the agent is not able
to distinguish properly between the effects of some act and related acts, or to distin-
guish the effect of some act at similar choice points. It is also clear that spill-over rl
allows behavioral dispositions to change at choice points that have never been encoun-
tered before, and also for choices that have never been utilized before. In this sense,
spill-over rl does allow for a very low-level form of stimulus generalization, without
this necessarily being any higher cognitive attempt of learning a rule or a pattern. A
similar stimulus generalization happens in neural networks, as in Batali’s (1998) ap-
proach, where similar inputs tend to trigger similar outputs simply due to the nature of
representation and information flow in a simple neural network (c.f. O’Connor, 2014).

To get an impression of how spill-over rl works in signaling games, let’s look at
the simplest but non-trivial extension of the syntactic games of Barrett and Skyrms in
which something like creative compositionality could evolve. Let there be three states,
labeled A, B and C, that we consider simple. Let there be three states that we consider
complex, labeled AB, AC, and BC. For the time being, let’s interpret complex states as
some composition of the simple states. For instance, if tA is a state that involves birds,
and if tB is a state that involves water, then state tAB is a state that involves both birds
and water. Notice that under this interpretation of states, only the presence of A and B
matter, but not their order. We will look at an extension of this basic model in which
order is relevant for states and messages in Section 5. Other interpretations than the
one suggested here are possible, and we will come back to this issue in Section 6.

As for messages, let’s assume that there are similarly three simple and three com-
plex messages, labeled just like the states. For the time being, interpret simple mes-
sages as plain emission of a single sound or the production of a single ostensive sign;
complex messages are pairs of signals where order of production of signals does not
matter. In other words, the message mAB should be conceived of as a production of
signals mA and mB in close temporal succession in arbitrary order. As stated before,
there is much room for the interpretation of states and messages, and we will explore
this issue critically later on.

In all that follows, I will simply assume that the receiver’s acts are the states, and
that payoffs are as in Lewis’ games: U(t, t′) = 1 if t = t′ and 0 otherwise.

In order to apply spill-over rl to a signaling game with

T = {tA, tB, tC, tAB, tAC, tBC} and M = {mA,mB,mC,mAB,mAC,mBC}

we need to give a similarity measure on T and one on M. Not to make any stronger
commitments about the nature of complex states and messages than necessary, let’s
simply assume, on top of the natural constraints of similarity, that any two different sim-
ple states/messages are maximally dissimilar and that complex states have parametrized
similarity s ∈ [0; 1] to their component parts. As a consequence of the former assump-
tion, any two complex signals/messages will also be maximally discriminable (as they
contain a clearly distinguished element). To keep matters simple, I will do as if the
same level of similarity s governs state similarity and signal similarity. It will transpire
that dispensing with this simplifying assumption is not difficult, but also not important.
Together, this gives the following table of similarities, that applies to both states and
messages:
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mB

mC

mAB

mBC

mAC

tA

tB

tC

tAB

tBC

tAC

tA

tB

tC

tAB

tBC
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?

?

?

?

?

?

Figure 2: When playing the game with only simple states and messages, we are
interested in whether agents can implicitly acquire a behavioral disposition that favors
a compositional-like mapping of complex states and meaning.

AB BB CB AB AC BC

A 1 0 0 s s 0
B 0 1 0 s 0 s
C 0 0 1 0 s s
AB s s 0 1 0 0
AC s 0 s 0 1 0
BC 0 s s 0 0 1

What we are after is an account of creative compositionality. So in order to make
sure that we can test agents’ dispositions to act in novel situations, we do need to tin-
ker a little bit with the normal flow of playing and learning in a signaling game. In
particular, we need to have agents play some restricted game, that does not make all of
the states and messages available from the start. We are then interested in the agents’
acquired dispositions in choice points that they have never seen before, and their ac-
quired disposition to use acts that so far were not available to them by modeller’s fiat.
The most natural way of restricting the signaling game at hand, is to have agents play
with only the simple states and messages and to check their evolving implicit dispo-
sitions to use and interpret complex states and messages (see Figure 2). The labeling
of complex states and messages, which informs the assumed similarity structure, then
defines which association of complex states and messages would count as a systematic
compositional mapping.

Notice that under the assumed similarity structure, the game restricted to simple
states and messages only involves maximally dissimilar contingencies (by assumption),
and so we know from Barrett’s simulation results that the emergence of a perfectly
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successful communicative behavior is almost certain. In order to give an analytical
argument why spill-over rl can give us creative compositionality, let’s therefore sup-
pose that the agents have in fact acquired a perfect code to communicate about simple
states with simple messages. Modulo renaming, we are in the situation depicted in
Figure 2. The question to be asked then is what are the implicitly acquired behavioral
dispositions involving complex states and messages?

It suffices to analyze the case for the sender, because the receiver part is parallel.
Likewise, the argument for all three complex states is identical, so we can focus on
the sender’s behavioral dispositions at choice point tAB. The following table lists the
number of balls corresponding to the messages in the columns that are added to urn tAB
when the state-message pairs in the rows are used (by assumption: with the effect of
successful information transmission):

mA mB mC mAB mBC mAC

〈tA,mA〉 s 0 0 s2 0 s2

〈tB,mB〉 0 s 0 s2 s2 0
〈tC,mC〉 0 0 0 0 0 0

If states occur equally frequently, then, averaging out all stochastic fluctuations, we
get the expected non-normalized proportions of balls in the tAB-urn as the sum of each
column. Can the creatively compositional-like choice of mAB in tAB be the most likely
choice? Yes, it can. It is whenever s < 2s2, i.e., whenever s > .5. In other words,
there are parameter values for which a spontaneous compositional-looking choice of
complex signals can be the most likely event in an hitherto unseen choice point. This
is so, even though the agent is not extrapolating a rule from his use of signals, or
reasoning about the most likely interpretations that different signals will receive by
an anticipated listener (as under the obverter strategy). In sum, this limit argument
suggests that creative compositionality can arise as the most likely event for favorable
parameter constellations under spill-over rl.

The critical reader will have many concerns at this moment. I will focus here on
a few obvious worries of a more technical nature and postpone any deeper conceptual
issues until Section 6. Firstly, that the creative compositional choice is the most likely
does not mean that it is likely. True, but it does not have to be for the argument that
matters, namely that spill-over rl can pave the way for an immediate adaptive benefit of
a mutation that exploits the stochastic prevalence of compositional-like regularity with
greater fidelity. Secondly, the argument given presupposes that the “base language”
is in securely in place, and used over a very long time. Otherwise stochastic noise
cannot be satisfactorily excluded, and the creative compositional choice might not be
the most likely after all. As I will show presently with numerical simulations, this
worry is legitimate but not fatal. Even if the “base language” is learned imperfectly
over a relatively small period, the creative compositional choice can still trump all
others. Thirdly, my argument only shows that there are parameter values that give the
desired result, but not that the desired result is necessary under spill-over rl. This is
true, and I believe that this is as it should be. If compositional-like signaling was a near
certainty under a low-level learning account like spill-over rl, we would presumably
have to reject the approach for predicting wrongly that compositional-like signaling
should be much more widespread in nature than it appears to be the case.
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A further technical worry is that lateral inhibition might spoil the picture. Lateral
inhibition is sometimes used in applications of rl to signaling games (e.g. Mühlen-
bernd, 2011; Franke and Jäger, 2012), and frequently in agent-based approaches, such
as the naming game (e.g. Loreto, Baronchelli, and Puglisi, 2010). In a setting that al-
lows for perfect discriminability of choice points and acts, lateral inhibition kicks in
after a successful trial. If that involved state t∗ and m∗, lateral inhibition removes balls
of type m , m∗ from the t∗-urn, and m∗ balls from all other urns. Similarly for the
receiver. But this presupposes perfect discriminability of choice points and acts. Under
spill-over rl, the assumption that choice points and acts are imperfectly discriminably
would also have to affect lateral inhibition. It could be suspected that lateral inhibition
might therefore counteract the effects of spill-over rl and hamper the emergence of
creative compositionality.

There is only one way to address this challenge: define spill-over rl with lateral
inhibition and check whether creative compositional-like choices can still trump all
others. If t∗, m∗ and a∗ have been used in the last round of play for payoff U(t∗, a∗) = u∗,
then spill-over rl with lateral inhibition has the sender update his urns like so:

B′(t,m) = max(0, B(t,m) + Sim(t, t∗) · Sim(m,m∗) · u∗ (3)
− (1 − Sim(t, t∗) · Sim(m,m∗)) · u∗ · i) .

Here, i ∈ [0; 1] is another parameter that captures the strength of lateral inhibition. For
i = 0, the definition above reduces to the previous Equation (2). If i > 0 and u∗ > 0,
lateral inhibition removes m-balls from t-urns proportionally to how similar m and t are
to m∗ and t∗. Removal of balls can never lead to a negative number of balls in an urn.
Notice also that no changes occur if u∗ = 0, so that lateral inhibition does not introduce
negative reinforcement through the backdoor.

Here is another mean field argument parallel to the previous one, but now also
involving possible lateral inhibition. As before, the following table lists the number of
balls corresponding to the messages in the columns that are added to the tAB-urn when
the state-message pairs in the rows are used, if that number is non-negative:

mA mB mC mAB mBC mAC

〈tA,mA〉 s − (1 − s)i 0 0 s2 − (1 − s2)i 0 s2 − (1 − s2)i
〈tB,mB〉 0 s − (1 − s)i 0 s2 − (1 − s2)i s2 − (1 − s2)i 0
〈tC,mC〉 0 0 0 0 0 0

Again, the non-normalized proportions of ball types in the noise-free long run are given
by the sums of each column. A spontaneous compositional-like choice of mAB is the
modal outcome under the mean field expectation if:

i < −
2s2 − s

2s2 − s − 1
.

Figure 3 pictures the area of the two-dimensional parameter space for which that con-
dition is met. This means that lateral inhibition can counteract the effect of similarity
spill-over in the emergence of creative compositionality, but it does not undermine the
effect entirely. If s > .5, there is always some upper bound on i below which creative
compositionality is the most likely outcome.
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Figure 3: The dark gray region is the subset of parameter values for spill-over rl with
lateral inhibition for which a spontaneous compositional-like choice is the most likely
outcome in the mean field expectation.

Mean field arguments inform us about idealized long-term behavior. It remains to
look at short-term dynamics. This can be done by numerical simulations. Figure 4
shows the results of a modest parameter sweep. For all pairs of parameter values s ∈
{.5, .65, .8} and i ∈ {0, .2, .4}, 40 trials of spill-over rlwere simulated. For each of these,
all sender and receiver urns had one ball of each type in the beginning. Strategies then
evolved by actually playing the game and updating urns, as described by Equation (3).
Strategies were recorded after a fixed number of rounds. During the first 10,000 rounds,
the game was restricted to the simple states and messages, but implicit dispositions
involving complex states and messages were tracked. Only the results of the sender
strategies are reported here, because the receiver side is entirely parallel. For each trial
and round, the sender’s evolved strategy was classified as belonging to exactly one
of the following disjoint and exhaustive categories: (i) non-separating, (ii) separating,
but non-compositional, and (iii) compositional. A sender strategy is separating if for
each simple state there is a unique simple message, such that the message is the most
likely choice for the state. A sender strategy is compositional if it is separating and
the sender’s most likely choices in complex states are exactly the complex messages
that would count as compositional-like signaling under the mapping of simple states to
simple messages, suggested by the strategy being separating. (When a sender strategy
is not separating, it is moot to ask whether it is compositional, because we would not
know what the systematic compositional-like mapping of complex states to complex
messages should be.) Figure 4 then gives the proportions of trials whose sender strategy
falls into the three relevant categories.

Ideally, we would like to see parameter values for which most or all trials are sep-
arating and compositional. The worst case, for our purposes, is the second category: a
separating but non-compositional signal use. In other words, we would like to see little
white and a lot of dark gray in the plots in Figure 4, for at least some parameter values.
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Figure 4: For each combination of tested parameter values, the plots show the pro-
portion of trials with a sender strategy that fell into each of the three categories (see
main text for definitions).

And this is indeed what we find. There are pairs of parameter values that almost guaran-
tee creative compositionality already at round 10,000, where senders have never before
seen complex states or used complex messages. This is the case for high enough spill-
over paired with low enough lateral inhibition: the picture that ensues from numerical
simulation is perfectly consistent with the previous mean field analysis. This suggests
that there are parameter values for which spontaneous compositional-like signaling can
emerge, even if agents had only little time to acquire a “base language” from scratch.
(Obviously, the restriction to an initial “training phase” to acquire a “base language” is
artificial, but we need some such restriction in order to test whether agents have evolved
relevant dispositions involving previously unseen choice points and previously untried
acts.)

To conclude, spill-over rl does not guarantee the emergence of compositional-like
signaling behavior, but almost guarantees it for certain values of spill-over and lateral
inhibition. Spill-over rl does not presuppose that agents use or interpret signals in a
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smart, introspective or strategic manner. The compositional-like dispositions can be
seen as a concomitant of an inability to sharply distinguish contingencies. The rela-
tive prevalence of compositional-like signaling can therefore create an environment in
which any mutation that exploits the systematicity in form-meaning mappings more
rigorously would be immediately adaptive. Something like spill-over rl, i.e., any
horizontal learning dynamic, which can produce rudimentary systematicity in form-
meaning mappings by chance alone, therefore helps explain how compositionality
could have evolved gradually. Other low-level learning dynamics could deliver sim-
ilar results. No argument for the supremacy of spill-over rl over potential alternatives
is implied. The point of this paper is merely to give a proof of existence.

5 Order-sensitivity: towards syntactic signaling
The kind and amount of compositionality that spill-over learning produces is very ba-
sic. Although I would maintain that this is exactly as it should be for a gradualist
account of evolving compositionality, there is a sense in which something of substance
in still missing. As long as signals are unstructured sets of signals, like bags of words,
the only meaning compositions that can be accounted for with spill-over rl are com-
mutative meaning compositions, like meaning intersection. To pick up the previous
example, if tA is a state in which birds are present, and if tB is a state in which wa-
ter is present, then order-insensitive tAB could be a state in which birds and water are
present, in whatever way. This is a commutative meaning combination, and it was
shown to pair, possibly compositional-like, with order-insensitive emission of signal
pairs.

But there are ways of combining meanings that are not commutative. In English,
the compound noun water bird denotes a type of bird, and the compound noun bird
water denotes a type of water: quite different things. It would be speculative to say
that commutative meaning compositions are more basic than non-communitative ones.
At the same time, what is most interesting about compositionality in human languages
is that the systematicity in form-meaning mapping is governed in large extent by the
syntactic structure of the form. The story told so far falls short of touching on anything
like structured signaling. These considerations suggest that it would be desirable to
see whether the present approach, using spill-over rl in signaling games, could also
possibly extend to something like an explanation of the evolution of a proto-syntax
that informs semantic interpretation: if not fully structured signals, then at least order-
sensitive signals that are mapped, as if a compositional syntax-semantic rule is fol-
lowed, onto non-commutative meaning compositions.

The following paragraphs offer a few preliminary ideas on how a gradual evolu-
tion of “proto-syntactic compositionality” could be explained in terms of a low-level
learning account like spill-over rl. The logic of the overal argument is basically the
same as before. If spill-over rl can produce, as the most likely choices, spontaneous
behavior that looks like a generalization of a syntax-driven form-meaning mapping,
then this helps explain the gradual emergence of such a phenomenon, because in an
environment where such systematicity in signaling exists, mutations that exploit the
systematicity more rigorously can be immediately adaptive, thus alleviating the thresh-
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old problem. The amount of syntactic regularity that agents should implicitly track
should ideally be small, at least to start with. The following therefore explores a case
in which the kind of syntax-driven form-meaning mapping is really very rudimentary:
I would like to show that order-sensitive compositional-like form-meaning mappings
can spontaneously evolve under spill-over rl.

The simplest example in which this could occur is just an extension of the game
that we looked at in the previous section, only that we now need to distinguish complex
states and messages with respect to the order in which their simple parts occur. So, we
now have a game with:

T = {tA, tB, tC, tAB, tBA, tAC, tCA, tBC, tCB} and
M = {mA,mB,mC,mAB,mBA,mAC,mCA,mBC,mCB} .

For instance, mAB is a sequence of messages where first mA is produced and then
mB, whereas mBA is a sequence of messages where first mB is produced and then mA.
Similarly, tAB is a state that differs from tBA, for instance, in that either the first or the
second occurring state is the main meaning component, to which the other meaning
component is added as a modifier. Again, I would like to postpone until later a more
in-depth reflection on what states and messages could represent, and why these and
only these are taken into account here.

In order to apply spill-over rl to this case, measures of similarity are necessary.
For continuity, it is best to keep all previous assumptions in place, except to make
room also for similarity between states and messages that share a component part in
the same position. Barring a better motivated choice, I propose to use a parameter
r ∈ [0; 1] that captures similarity between order-sensitive complex pairs as inverse
Hamming distance, which gives us:

AB BB CB AB BA AC CA BC CB

A 1 0 0 s s s s 0 0
B 0 1 0 s s 0 0 s s
C 0 0 1 0 0 s s s s

AB s s 0 1 0 r 0 0 r
BA s s 0 0 1 0 r r 0

AC s 0 s r 0 1 0 r 0
CA s 0 s 0 r 0 1 0 r

BC 0 s s 0 r r 0 1 0
CB 0 s s r 0 0 r 0 1

A minimal situation in which agents could show behavior that looks like they are
exploiting an acquired order-sensitive form-meaning mapping is shown in Figure 5.
The setup assumes that a “base language” is in place, and that also a pair of form-
meaning mappings is in use that determines what would count as an order-sensitive
compositional form-meaning mapping. The question then is: will spill-over rl produce
the systematic order-sensitive compositional-like choice for unseen choice points?

A mean field argument, similar to the previous one, suggests that it can, at least for
some values of parameters s, i and r. With the form-meaning mapping that is assumed
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Figure 5: If a “base language” is in place, and if at least one pair of complex states
and messages fixes the potential order-sensitivity, can spill-over rl bestow implicit
dispositions on agents that looks like they have generalized the order-sensitive com-
positional form-meaning mapping?

to be in place, the changes in the urns for the state tAC are (with the implicit proviso
that entries in this table are never negative):

mA mB mC mAB mBA

〈tA,mA〉 s − (1 − s)i 0 0 s2 − (1 − s2)i s2 − (1 − s2)i
〈tB,mB〉 0 0 0 0 0
〈tC,mC〉 0 0 s − (1 − s)i 0 0
〈tAB,mAB〉 rs − (1 − rs)i rs − (1 − rs)i 0 r − (1 − r)i 0
〈tBA,mBA〉 0 0 0 0 0

mAC mCA mBC mCB

〈tA,mA〉 s2 − (1 − s2)i s2 − (1 − s2)i 0 0
〈tB,mB〉 0 0 0 0
〈tC,mC〉 s2 − (1 − s2)i s2 − (1 − s2)i s2 − (1 − s2)i s2 − (1 − s2)i
〈tAB,mAB〉 r2 − (1 − r2)i 0 0 r2 − (1 − r2)i
〈tBA,mBA〉 0 0 0 0

Under the (certainly debatable) assumption that all five of the available states are
equiprobable, the expected number of balls of each type in the urn for tAC is, again,
simply given by the sum of each column. We see immediately that a choice of mAC is
always at least as probable as a choice of mBA, mCA, mBC and mCB. This means that a
choice of a signal that would look like the order-sensitive form-meaning rule had been
applied in reverse is never the most likely. Moreover, there are parameter triples for
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Figure 6: The area below the surface is the part of the parameter space for which the
sequential messages mAC is the most likely choice in state mAC in the mean field of
playing with the restricted base language and two sequentially consistent composi-
tional state-message pairs.

which mAC is indeed the most likely choice of signal. Figure 6 shows the subspace of
the three-dimensional parameter space in which rule-like order-sensitive signaling is
the modal response as the area under the plane. As before, spill-over parameters s and
r need to be sufficiently high, especially s > .5, and lateral inhibition i must not be too
high. If we look at the special case of r = s, the case actually reduces to the previous
one, and the subplane of the parameter space where rule-like order-sensitive signaling
is the modal choice is the dark gray area in Figure 3, as before.

This shows that it is possible to see the beginnings of something like order-sensitive
compositionality arise spontaneously from spill-over rl. Admittedly, there are many
open issues. The following section tends to some of the most pressing.

6 Reflection
Let us take a step back and ask why the models presented here evolve compositional-
like behavioral dispositions, at least for some parameter values. This is important in
order to deflect the potential criticism that a disposition towards compositional-like
signaling was deliberately engineered-in.

It is obvious that the key element for emerging dispositions for spontaneous compositional-
like signaling is spill-over. Lateral inhibition is not responsible for the evolution of
creative compositionality. It even slightly hampers its emergence. Spill-over was de-
fined in terms of two similarity measures: one between states and one between mes-
sages. Reinforcements then percolate, so to speak, to similar states and similar mes-
sages. Agents are likely to choose acts in choice points that they have never used or
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seen before if these acts are similar to acts that have proven effective at similar choice
points. This is a simple and general principle of learning under imprecise delineation
of contingencies. It is not an unmotivated design to make agents acquire goal-oriented
language-like behavior.

For contrast, consider what spill-over rl is not doing. It is not looking at a stock
of observed form-meaning pairs, and extrapolating a general rule or pattern from it.
It is not inspecting the similarity between a state and a signal directly. It is also not
looking at the similarity between any state-meaning pair that it has learned to associate
and another state-meaning pair that is has not yet learned to associate. Decisions under
spill-over rl are not based on reasoning about the effects that different choices could
have (as in the obverter strategy), thus presupposing that agents know that they are
playing a game with another player and what the goal of the game is.

Although this is not necessary, spill-over of behavioral reinforcements can be seen
as something smart too. Particularly the order-sensitive parameter r from the model of
Section 5 is arguably less innocuous than the simple spill-over parameter s. This raises
an interesting question about the evolution of different abilities to track similarities.We
should consider evolutionary competition among different individual learning rules,
and ask whether certain forms of similarity-tracking are likely to evolve. Exploring
this fascinating and important issue must unfortunately be left to another occasion (but
see Zollman and Smead, 2010; Smead and Zollman, 2013, for related work).

The models I presented could be criticized for their abstractness, in particular for
the lack of a more specific commitment about the interpretation of simple and complex
states and signals. To a certain extent, I have committed myself to an interpretation
already. Simple messages are single emissions of independently individuated sounds,
gestures or the like. Complex signals are pairs of such signals either order-insensitive
or order-sensitive. This is rather concrete. It gets fuzzier on the meaning side, as is
to be expected. Complex states are states in which the individuating elements of sim-
ple states are combined, either commutatively or non-commutatively. This is vague
and allows for all sorts of interpretations of simple states and meaning operations. But
at the same time, any more specific interpretation would suggest that this interpreta-
tion was most relevant or prevalent in the course of evolution of compositionality. I
would not know presently how to defend any such claim, and therefore must leave this
unspecified.

Nevertheless the interpretation of the game models raises further interesting and
critical concerns. Firstly, it is debatable as to whether compositionality evolved from
combining more basic simple elements creatively into bigger chunks, or whether it was
rather the reverse, i.e., that there were complex signals first associated with complex
states of affairs, whose component parts were then gradually deemed more and more
meaningful in their own right (thereby changing the complex-complex mappings as
well).Actually, the model presented in Section 3 is compatible with both views, because
of the properties of the similarity relation. In spite of this, I feel more comfortable with
the first interpretation, because it seems more natural under the assumption that agents
have minimal information processing powers. To assume that agents use long signals
that are individuated by their parts and their composition seems to presuppose more
cognitive ability.

These latter considerations also raise a more foundational issue concerning the in-
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dividuation of contingencies in a game model. This problem has many faces. Here
is a very tangible one:why does the model of Section 5 where signal pairs are order-
sensitive also include repetitions of simple signals, such as mAA? The more general
formulation of this problem is: how do we make sure that the contingencies in the
game model (choice points and acts) are reasonable descriptions of the way that the
agents themselves represent the situation? (Here “representation” does not mean “con-
scious representation”; even basic rl presupposes that choice points and acts are rep-
resented somehow.) To answer this problem in its entirety is way beyond the scope of
this article. The problem is shared by many if not almost all other models of language
evolution. Conceived in this way, we are brought back to the previous issue of study-
ing the evolution of similarity measures. Even more generally we would ideally like to
account for the co-evolution of perceptual categories and signaling behavior. Since so
many factors will play a role in such an extensive model, this is a giant’s task. Enough
reason to stick to something more workable yet insightful first, like the modest models
presented here.

There are other recent approaches that nicely complement the material presented
here. Steinert-Threlkeld (2014) discusses a model where basic rl can assign a func-
tional meaning component to part of a complex signal. More concretely, a special
signal can be sent and combined with another independently meaningful signal. Given
Steinert-Threlkeld’s set-up, sender and receiver behavior can evolve that assigns the
special signal the function of negating the complement signal. This is very interesting
but calls for further exploration, because the set of available interpretations of the spe-
cial signal is as of yet rather restricted and geared towards an interpretation as a function
word. Alternatively, Brinkhorst (2014) introduces a further extension of urn-based re-
inforcement learning in which senders can learn to send arbitrarily complex structured
signals. In Brinkhorst’s model the sender’s signaling behavior is defined by an exten-
sible set of urns, which variably determine which if any signal to send next and which
urn to visit subsequently. This way, senders essentially evolve a probabilistic finite-
state automaton that generates structured signals whose complexity is upper-bounded
only by the receiver’s co-evolving ability to “parse”.
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