
M.J.A.R. Research Statement – 2016  1 

Research Statement – Michael Ramscar 

My research seeks to understand how the unique human capacity for thought and language emerge out of the 
processes of human learning. Whereas cognitive psychology traditionally sees language and thought as being 
combinatoric mental processes, my work takes the discriminative nature of learning processes as its starting 
point, and focuses on understanding how thought and language can be understood in discriminative terms. 
This has led me to exploring the way that these learning processes can inform a structural relationship 
between form and meaning, to research that focus on uncovering the culturally evolved information 
structures on which our linguistic and cognitive capacities are founded, and to work that is focused on 
understanding how the developments of the brain’s learning capacities have adapted to take advantage of 
these structures.  

The discriminative perspective that forms the basis of this work offers several benefits: It is compatible 
with the brain’s basic learning mechanisms; It is easily and plausibly formalized; It integrates well with 
information theory (which, as Claude Shannon [1] emphasized, is also based on a discriminative model); And 
it continually generates successful predictions about previously unobserved behavior.  

Although discriminativism has a long history in experimental psychology, it presents a theoretical 
alternative to combinatoric cognitive theories when applied to high-level cognition, and challenges historical 
ideas about the mind typically adopted in cognitive science. Accordingly, I have sought to apply this approach 
broadly in my research, relating it to lifespan development, formal and computational models of learning and 
communication, the brain bases of behavior, the synchronic and diachronic evolution of language, and the 
world outside of my lab. My purpose in doing so is not to show that discriminative models of cognition are 
‘right.’ As George Box noted, all models are wrong, and their value is in their utility. Rather, I have sought to 
illustrate the value of discriminativism to research psychology and linguistics, its practical relevance to everyday 
life, and its theoretical utility to other areas of science.  

This brief description of this work is organized around the broad axes that comprise this approach. 
First, I describe discriminative learning, and why it is a good starting point for understanding human 
cognition. I illustrate this by explaining how it provide a good account of what appears to be a canonical 
combinatoric process, paired associate learning, and how it yields surprising and successful predictions in this 
domain. Second, I describe how it accounts for the way children learn various aspects of language. Third, 
since all animals are capable of discriminative learning, I describe how the development of learning processes 
can explain why children learn language while their pets don’t.  Finally, I describe the distributional structures 
embodied in human communication systems, and describe how a discriminative approach can help account 
for aspects of language that have traditionally been ignored by researchers in the combinatoric tradition, 
including the semantics of person names, and the function of grammatical gender. 

1. Discrimination learning 

Associative learning is one of the best-understood processes in psychology and neuroscience. A critical 
finding in this vast body of research is that learning an association between a behavioral cue (e.g., hearing a 
bell) and a behavioral outcome (getting food) is not a simple process of mentally counting how often hearing 
the bell is followed by food (the association rate). Two other quantitative factors, the background rate of the 
cue (how often the bell is heard without food) and blocking (the predictability of the food given the bell) have 
been found to be critical to determining how informative cues are learned. While high association rates tend 
to promote learning—which is why this process has historically been called ‘associative learning’—blocking 
and background rates serve to inhibit and shape the formation of associations through a process called cue-
competition. The way a dog learns to associate a bell with food is best explained as a process in which the 
dog’s mind implicitly assigns predictive value to the bell. And because the predictive value of the bell is 
affected by everything else in the dog’s environment [2], computationally, what we traditionally think of as an 
‘associative’ process has turned out to be better described in discriminative terms.  
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To illustrate how this process works, the figure below plots data from a paired-associate learning (PAL) 
test [3], in which people hear arbitrary word pairs like north–dog, and later have to recall dog given north.  The 
mean recall accuracy of 20-29 year-olds here is significantly better than that of 30-39 year-olds: 

 
 

Note that the old-young shift in the plot is not linear. As compared to easy PAL items (up-down), hard items 
(dig-guilty) get harder with experience. While this is not easily explained by simple ideas about cognitive 
decline, it is actually predicted by discriminative learning models. These models assume that knowledge is 
represented as a fully connected graph, with every cue linked to every outcome, and that learning serves to 
minimize the mismatch between what experience teaches a learner to expect, and the events that actually 
occur. This means that each time a learner hears jury-duty it will slightly diminish her expectation for jury-eagle. 
Depending on the structure of the environment, these experiences may even lead a learner to negatively 
expect eagle given jury (i.e., learn a negative association between the two). This predicts experience will make 
learning hard pairs harder – because the negative expectations formed for hard pairs will have to be unlearned 
before the pairing can be learned – and consistent with this, a regression analysis of the data in the plot above 
using corpus derived parameters for the association rates, background rate and blocking factors for these 
words pairs accounts for over 85% of the variance in both groups, suggesting both are similarly sensitive to 
the same underlying relations in the items [5]. Performance in other age ranges can be explained similarly [6], 
and analyses show that the critical change in performance across the lifespan is the increased influence of the 
parameters associated with learning negative expectations. This suggests that these data do not reveal a 
decline in learning performance, but rather that older adults’ greater experience of English is making their 
understanding of the English words that do – and critically – do not go together much better discriminated. 
Collaborative work with Ching Chu Sun and Peter Hendrix (Tübingen) further supports this suggestion: 
when tested in German, the PAL performance of older bilingual Chinese speakers—who have far less 
experience of German—is far better than age-matched native German speakers [5].  

2. Learning about the World 

In another line of work, I have shown how conceptualizing language learning in discriminative terms can 
account for a range of puzzling findings. For example, Darwin first noted the specific problem children have 
in mastering the meanings of color words. Seen discriminatively, this problem stems from the ubiquity of 
color, which renders color words heard in isolation uninformative—in any given multi-hued context, what 
does “green” denote? I have shown that once children learn nouns, the properties of the objects referenced 
by nouns can serve as cues to subsequent color words, enabling children to make use of the systematic 
covariance of colors across objects and scenes to discriminate which hue goes with which color word. My 
model of the problem successfully predicts that color word learning is facilitated by post-nominal (“the dog is 
brown”) but not pre-nominal constructions (“the brown dog”) [7]. It also accounts for why the distribution 
of post-nominal color constructions in English and Spanish is identical, despite there being very large 
differences in the overall distribution of color words in the two languages [8].  

A similar analysis accounts for the development of a core mathematical ability, subitization—our ability 
to ‘see’ sets of, say, three objects without counting [9]. The analysis makes use of two basic facts: a) that sets 
become harder to discriminate as they get larger (proportionally, 1 is easier to discriminate from 2 than 11 is 
from 12), and b) that the distribution of numbers in language is highly skewed: 1 is far more frequent that 2 
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which is more frequent than 3, and so on. If we take linguistic mentions of set size as a rough measure of its 
behavioral relevance, this suggests that even in the absence of language, learners will encounter far more 
contexts in which small set sizes are relevant than is the case for larger sets. In simulations in which the 
confusability problem is represented in this way, and training is distributed as it is in language (i.e., in which 
the easiest discriminations are trained the most), sets 1 through 4 are learned relatively easily, after which 
performance begins to degrade, and the discrimination of sets greater than 7 is highly unreliable—a pattern 
which closely approximates adult subitization performance. The model also successfully predicts the training 
contexts that can best support the use of language in improving children’s subitization skills, which appear to 
be an important precursor to later mathematical ability. 

Finally, modeling language learning as a process in which the semantic dimensions of experience are 
discriminated by (and in turn serve to discriminate) predictable linguistic regularities provides an alternative 
account of plural over-regularization (children saying mouses rather than mice). The model accounts both for 
why over-regularizations happen and why they stop, and also critically predicts the kinds of experimental 
interventions that can influence this process. In the model, an irregular form like mice is more semantically 
specific than a regular form like cats. As a result, the production of mice will suffer interference from erroneous 
expectations that are initially supported by the overall cue structure. (Such as, e.g., ‘whenever multiple objects 
are present, expect a sibilant to follow the word form associated with the particular semantics.’) At the same 
time, the model is faced with the challenge of discriminating when mouse and mice are contextually appropriate 
(because clearly, they share semantic dimensions). Compare this to a child learning the correct use of cat and 
cats. About 70% of the noun tokens a child hears are singular, which will support the learning of cat; and even 
if the child fails to discriminate the exact semantic cues to cats (multiple cat things), the likely over-hypothesis 
is going to support the production of the correct form, cats. Meanwhile, the statistics of English will render 
errors like catses highly unlikely. Formally modeled, this analysis makes a surprising prediction: For much the 
same reasons that learning about jury-duty serves to make jury-eagle increasingly less likely, at a certain point in 
the model’s development, hearing cats generates implicit error that makes mouses less likely, thereby decreasing 
the tendency to over-regularize. Empirically, this prediction appears to be right: a study I conducted with 
Melody Dye (Indiana University) and Stewart McCauley (Cornell) found that training older children on 
regular plurals did indeed bring about a reduction in the rate at which they over-regularized irregular plurals 
[10]. Importantly, while this model makes use of exactly the same learning rule as Rumelhart & McClelland’s 
1986 past tense model, it differs dramatically in its framing of the problem. It thus both provides a very 
different insight into phenomena at stake, and highlights an important distinction—between algorithms and 
the way they are conceptualized in models—that is often overlooked in the psychology literature. 

 
3. Language and the Development of Learning 

This line of work has examined the differences in the ways children and adults learn. A recent experiment is 
illustrative of the basic approach [11]: In it, children were trained on novel word meanings while the 
background rates of the objects paired with the accompanying labels were manipulated. Children first saw 
two different novel objects ‘A’ and ‘B’ together, and heard them labeled ambiguously as a “DAX.” 
Subsequently, ‘B’ was presented with a new object, ‘C,’ and another ambiguous label – “PID.” This training 
was repeated, and then the children were presented with all three objects, and asked to identify the “DAX,” 
the “PID,” or a “WUG” (which they hadn’t heard before). Because ‘B’ occurs with “PID” and “DAX,” it has 
a higher background rate than ‘A,’ making ‘A’ more informative about “DAX” than ‘B’. For the same reason, 
‘C’s informativity about “PID” is greater than ‘B’s. And importantly, B’s higher background rate makes it less 
informative about “WUG” than either ‘A’ or ‘C’ (which are equally informative about “WUG”). In 
informational terms, ‘A’ is DAX, ‘C’ is PID, and ‘A’ or ‘C’ are WUG. The two-year-olds we tested agreed.  

While the children matched the objects and labels based on informativity, adults did not. They agreed 
about ‘A’ and ‘C’ but chose ‘B’ as the WUG—presumably because A and C were taken. However, while the 
adults here seem to have behaved “logically,” the model we used to predict the children’s behavior is the 
exact same one that proved so successful at accounting for adult PAL learning. Why the difference? The 
obvious answer is that in this small, constrained task, adults think hard about their answers, and in the course 
of doing so, over-ride whatever they learned about the informativity of the objects in training. This is 
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especially interesting because, when considered from a discriminative perspective, communication relies on 
speakers and listeners sharing a common code. A listener uses a speaker’s words, intonation, gestures, etc. as 
cues to help discriminate what a speaker intends to mean from what might have been meant. Although the 
codes shared by speakers need not be identical—not least because in most, if not all, speech acts a sender 
intended to bring about learning in a receiver—it does require them to be proximate. This raises an important 
question. In the models described in the previous section, I assumed that learners faithfully estimate the 
informativity of their environment. Yet the adults in the labeling task actively ignored the informativity of the 
cues they were trained on. Given that this is the case, how do language users manage to develop proximate 
models in the first place?  

The answer, I suggest, lies in the fact that the ability to select amongst specific responses—and ignore 
informativity—is a function of the brain’s frontal regions; and of course, in humans, these regions are very 
slow to develop. In a complementary line of work [12,13], I consider how the nature of prefrontal 
development serves an adaptive function in the acquisition of language and culture. Because the development 
of the top-down learning of the kind exhibited by adults in this experiment is delayed, all normally developing 
children initially sample their linguistic and cultural environments in much the same naïve bottom-up way. As 
a result, when the structure of those environments is regular—as linguistic data tends to be—they develop 
very similar models of their environment. Empirically, the PAL data I described above lends support to this 
idea: the fact that corpus data can predict averaged adult behavior so well across the lifespan indicates that 
linguistic data is indeed highly structured, and that typically developing adults converge on similar language 
models. My suggestion that this is facilitated by early sampling constraints on learning offers a mechanistic 
recasting of the widely accepted relationship between language and theory of mind. From this perspective, 
theory of mind is not what drives language development. Rather, naïve sampling causes children to develop 
the highly similar linguistic and cultural models critical to language acquisition, and by dint of making the 
actions and intentions of others more predictable, helps develop theory of mind. This idea may also help 
explain why, in disorders where prefrontal development is accelerated—such as autism [14]—language and 
theory of mind development are both impaired. 

4. The discriminatory nature of human communication 

The three lines of work above laid the foundations for my most recent work, which is best described as 
uncovering the nature and structure of the cultural software that feeds into the functional system of learning 
and processing examined above, and which serves to facilitate human communication and thought. 

Beginning with recent work from Korea and China showing that Sinosphere family names are 
exponentially distributed [15], I have shown how the naming systems of all the world’s languages appear to 
share an interesting property: In Korean, family names – which come first in speech – convey the least 
information (i.e., Kim Yong-il, Kim Il-sung), whereas in English it is given names – Michael – that are 
uninformative. The sets of first name tokens are always vastly smaller than the sets of later names, and they 
are exponentially distributed (indeed, historically, the distribution of English given names and Korean family 
names was identical). This is notable because although lexical distributions have long been thought to follow 
power laws, and many suggestions have been made to explain this [e.g., 16], there are many reasons to believe 
that exponential distributions are preferable to Zipfian power distributions in communication, not least 
because: 1. they are optimal for the purposes coding and 2. they are memory-less [1]. That is, 1., it can be 
proven that the average message length encoding a set of items – in terms of communicated bits – can be 
minimized if they are distributed exponentially; and 2., the exponential distribution is unique in being the only 
continuous distribution to have the memory-less property. This property is usually explained in terms of 
waiting times: If wait times between encounters with other individuals are distributed exponentially, then 
because of the way exponential distributions interact with the laws of conditional probability, we can prove 
that the probability of encountering someone after any waiting period tn is independent of the time that has 
elapsed since t1, the time a last person was encountered. This means that similarly, in a situation where names 
are distributed exponentially, the chances of randomly being introduced to someone named John at any given 
point in time is independent of whether or not the last person you were introduced to was called John. In 
other words, empirical distributions of names both maximize coding economy, and if we assume that names 
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implement a Markovian process that iteratively serve to discriminate identities, then their memory-less 
properties maximize the likelihood that people sampling from name distributions will all learn the same 
models of them.  

For names at least, this offers a solution to a key question in psychology and linguistics: how do learners 
ever manage to converge on the grammar that makes spoken communication possible? Further, empirically, 
names are a relevant linguistic distribution: Although any name can appear after I’d like you to meet...!, most 
other nouns will not occur here, which means a hearer has partial semantic prior to a name (a name is 
coming…), and the parts of the name then serve to reduce semantic uncertainty about a specific identity. I 
then examined whether other, similarly relevant distributions share this property. This work has shown that 
the distributions of the sets of items in English verb alternations [17] and the distributions of nouns that 
condition on the variance in lexical collocations in child directed speech (in CHILDES) are all exponentials. 
Taken together with the results I described above, these findings support a very different model of language 
to that normally assumed in cognitive science, since they further suggest that all of human communication 
involves the same kind of discriminative processing as names, in which linguistic signals serve to reduce 
semantic uncertainty, instead of “conveying” meanings. Thus while linguistic signaling can be thought of in 
compositional terms from this perspective (in that signaling makes use of sequences of discrete form 
contrasts), the process that hearers use to comprehend linguistic messages (i.e., meanings) is discriminative. 
Hearers do not ‘extract’ meanings that are combinatorially ‘encoded’ in signals, as linguists have long 
supposed, but rather it appears that hearers use signals to help them discriminate the semantic message 
speakers intend them to receive from the messages they might have sent (which is exactly how, Shannon 
[defines ‘communication’ 1]). What makes this communicative process possible is the fact that the speaker 
and listener both share the richly structured common codes that systematically patterns forms with meanings 
that my recent work describes. 

5. Further applications of this approach 

5.1 Grammatical gender: historically linguists have considered grammatical gender systems—which assign 
nouns to seemingly arbitrary classes—to be useless linguistic artifacts. However, from a discriminative 
perspective of communication the role of gender immediately becomes apparent: It helps to reduce 
uncertainty about upcoming nouns. Artificial language learning studies with Inbal Arnon (Hebrew University) 
[18] have shown how the gender of nouns facilitates their later retrieval, and a series of corpus studies with 
Melody Dye, Richard Futrell (MIT) and Petar Milin (Sheffield) indicate that the gender of most German 
nouns is predictable from their acoustic and semantic properties. What makes German gender seem 
perplexing is that this is not true of high-frequency nouns. Yet their gender assignment is neither random, nor 
arbitrary; rather, the likelihood of two high frequency nouns appearing in similar lexical contexts is predictive 
of their being in different gender classes. Seen from this perspective, German gender looks like any other 
grammatical system: high frequency types forming an exception class which maximizes discriminability, 
whereas simply because of their lower frequencies, types which cannot be lexicalized behave paradigmatically. 

5.2 Adult lexical processing: Work with Harald Baayen and our group in Tübingen has extended these 
ideas to adult language processing. In so doing, we have developed the notion of a “lexome” to deal with 
some of the problems that simple ideas about “words” present when considered across the lifespan. The 
theoretical basis of the lexomes is best illustrated by considering an example: As young children, we have only 
a rudimentary grasp of the various regular plural allomorphs (e.g., the different realization of the final sibilant 
in cats and dogs). However, adults not only discriminate a range of plural allomorphs (dog/z/ versus cat/s/), but 
when played recordings of plural noun from which the plural morpheme segment are deleted (i.e. cat/s/ with 
the /s/ deleted), an adult will hear a weird plural, not a singular. This is because, in normal speech, adults 
articulate the ‘common’ phonetic features of dog and dogs differently. Given that linguistic knowledge seems to 
be continuous, lexomes serve to discretize useful—if artificial—‘points’ in linguistic systems for descriptive 
and modeling purposes. For example, our models of reading assume that orthographic cues (and context) 
serve to discriminate lexomes, and when trained on large samples of corpus data, they have proven adept at 
predicting and explaining a broad range of psycholinguistic data [15,16].  
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