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Abstract

As adults age, their performance on many psychometric tests changes systematically, a finding
that is widely taken to reveal that cognitive information-processing capacities decline across adult-
hood. Contrary to this, we suggest that older adults’ changing performance reflects memory search
demands, which escalate as experience grows. A series of simulations show how the performance
patterns observed across adulthood emerge naturally in learning models as they acquire knowl-
edge. The simulations correctly identify greater variation in the cognitive performance of older
adults, and successfully predict that older adults will show greater sensitivity to fine-grained dif-
ferences in the properties of test stimuli than younger adults. Our results indicate that older adults’
performance on cognitive tests reflects the predictable consequences of learning on information-
processing, and not cognitive decline. We consider the implications of this for our scientific and
cultural understanding of aging.

Keywords: Learning; Language; Memory; Psychometric testing

1. The age of Tithonus

More and more people now live longer and longer lives. With the exception of 18
countries the United Nations describes as “outliers,” increased life expectancy and declin-
ing birth rates are increasing the median age of populations across the globe (Watkins
et al., 2005). By 2030, 72 million Americans will be aged 65 or older, a two-fold
increase from 2000. The proportion of older adults in the world’s population is larger
than ever before, and it is growing at an increasing rate.

While it is clear that more people now live longer than ever before in history, it is less
obvious that this is a blessing. In Greek mythology, Tithonus was the mortal lover of Eos,
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goddess of the dawn. Eos asked Zeus to make Tithonus immortal but failed to mention
“eternal youth,” dooming Tithonus to an eternity of physical and mental decay. The titho-
nean account of aging echoes loudly in the literature of the psychological and brain-sci-
ences, which portrays adulthood as a protracted episode in mental decline, in which
memories dim, thoughts slow, and problem-solving abilities diminish (Deary et al., 2009;
Naveh-Benjamin & Old, 2008), and where researchers seem to compete to set the advent of
cognitive decrepitude at an ever younger age (Salthouse, 2009; Singh-Manoux et al., 2012).
Thus, although studies indicate that older adults are, on average, happier than younger adults
(Charles & Carstensen, 2010), in the light of the foregoing, even this small crumb of com-
fort might be seen as further evidence of their declining mental prowess.

Because it is believed that cognitive abilities wither over the course of adulthood,
population aging is thought to pose a serious threat to the world’s economic well-being
(Watkins et al., 2005): As the proportion of cognitively impaired adults in the population
increases, it is feared they will impose an ever-larger burden on the ever-smaller propor-
tion of society still in full command of its cognitive faculties. Given this uncertain
scenario, understanding the way our minds age could be considered the most significant
matter that the psychological and brain sciences address.

In what follows, we consider the question of whether one might reasonably expect that
performance on any measure of cognitive performance could or should be expected to be
age- or, more specifically, experience-invariant. We shall suggest that, since the answer
to this question is no, many of the assumptions scientists currently make about “cognitive
decline” are seriously flawed and, for the most part, formally invalid. We will show that
the patterns of response change that are typically taken as evidence for (and measures of)
cognitive decline arise out of basic principles of learning and emerge naturally in learning
models as they acquire more knowledge. These models, which are supported by a wealth
of psychological and neuroscientific evidence (for reviews see Schultz, 2006; Siegel &
Allan, 1996; Ramscar, Dye, & Klein, 2013a), also correctly identify greater variation in
the cognitive performance of older adults, and successfully predict that older adults will
exhibit greater sensitivity to the fine-grained properties of test items than younger adults.
Given that the models run (and can be rerun) on computers, the possibility that any dif-
ferences in their performance are due to aging hardware can be eliminated; instead, their
patterns of performance reflect the information-processing costs that must inevitably be
incurred as knowledge is acquired. Once the cost of processing this extra information is
controlled for in studies of human performance, findings that are usually taken to suggest
declining cognitive capacities can be seen instead to support little more than the unsur-
prising idea that choosing between or recalling items becomes more difficult as their
numbers increase.

2. The problem with “processing speed”

Findings from psychometric tests indicate that the rate at which the mind processes
information increases from infancy to young adulthood, and declines steadily thereafter
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(Salthouse, 2011). Increasing reaction times are a primary marker for age-related cogni-
tive decline (Deary, Johnson, & Starr, 2010) and are even considered its cause
(Salthouse, 1996), yet they are puzzling: Practice improves speed and performance on
individual cognitive tasks at all ages (Dew & Giovanello, 2010). Since we continually
practice using our cognitive capacities as we age, why does our performance on tests of
them decline?

We suggest that the answer to this question lies in the way that psychometric tests
neglect learning and its relationship to the statistical patterns that characterize human
experience. Learning is a discriminative process that serves to locally reduce the informa-
tion processing demands associated with specific forms of knowledge and skill (Ramscar,
Yarlett, Dye, Denny, & Thorpe, 2010; Rescorla & Wagner, 1972). However, age and
experience will inevitably increase the overall range of knowledge and skills any individ-
ual possesses, increasing the amount information in (and complexity of) his or her cogni-
tive systems. Processing all this extra information must inevitably have a cost (Shannon,
1948).

2.1. Learning and the long tail of experience

Statistically, the distribution of human experience is highly skewed: Much of our day-
to-day life is fairly repetitive, involving a small repertoire of common occurrences, such
as reading the newspaper and going to work. At the same time, we encounter a far more
diverse range of infrequent or even unique occurrences (as Wittgenstein, 1953, noted, one
rarely reads the exact same newspaper twice). When data are distributed in this way,
comparisons of means are often meaningless (Baayen, 2001). Consider the problem of
recalling birthdays: We are usually reminded of the birthdays of family members on an
annual basis, and this usually makes us good at remembering them. However, as we
move through life, we learn about other birthdays. Sometimes we hear these dates only
once, such as when we attend a party for someone we barely know. As we learn each
new birthday, the mean exposure we have had to all the birthdates we know declines,
and the task of recalling a particular birthday becomes more complex. Accordingly, it
does not necessarily follow that someone who can recall 600 birthdays with 95% accu-
racy has a worse memory than someone who can recall just six with 99% accuracy.

Psychometric tests do not take account of the statistical skew of human experience, or
the way knowledge increases with experience. As a consequence, when these tests are
used to compare age groups, they paint a misleading picture of cognitive development.
This point can be demonstrated most clearly and effectively in relation to language: It is
a central and largely unique aspect of human cognition, and thanks to recent develop-
ments in machine information processing, its statistics are more readily and objectively
quantified than other aspects of experience. Moreover, almost all psychometric tests
involve some form of linguistic information processing: On any test in which subjects
have to comprehend verbal instructions and then refer to them in memory in order to per-
form a task, performance can be influenced by, and may even simply reflect, individual
differences in linguistic information loads.
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Importantly, linguistic distributions are skewed at every level of description (Baayen,
2001). Consider the relationship between word types (e.g., dog) and tokens (how often
“dog” occurs; Fig. 1). In English, a few words occur very frequently (the, and), such that
half of the tokens in any large natural sample will come from only 100 or so high-fre-
quency types. The relative frequency of these types decreases rapidly (the most-frequent
word may be twice as frequent as the second-most), and frequency differences between
types decrease as their relative frequency declines. This means that the other half of a
large natural sample will be composed of ever-fewer tokens of a very large number of
types, with ever-smaller frequency differences between them. Typically, around half of
these types occur just once.

This is a very long-tailed distribution: the Corpus of Contemporary American English
(COCA; Davies, 2009) contains 425 million entries sampled from a broad range of writ-
ten sources. Repetitions of the most frequently used 100 words account for 208 million
of these entries. The remaining 217 million entries represent 2,800,000 words. Accord-
ingly, although individual low-frequency types are, by definition, rare, their distribution
means the chance of encountering a low-frequency token in any sentence is very high
(M€obius, 2003).

This distribution ensures both that any English speaker learns only a fraction of the
language’s total vocabulary, and that individual speakers’ vocabularies will grow steadily
across the life span. However, the vocabulary tests that are typically used to control for
the growth of knowledge in studies of cognitive aging (Salthouse & Mandell, in press)
assume vocabulary size is age-invariant in adults (Bowles & Salthouse, 2008; Carroll,
1993; Spearman, 1927), an assumption seemingly confirmed by psychometric vocabulary

Fig. 1. The frequencies of the 1,000 most common words in the Corpus of Contemporary American English
(Davies, 2009) plotted by rank.
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measures, which indicate that vocabulary growth in adulthood is marginal, such that
increases are only reliably detected in meta-analyses (Verhaeghen, 2003).

Unfortunately, psychometric vocabulary measures are virtually guaranteed to fail to
detect vocabulary growth in adults because they attempt to extrapolate vocabulary sizes
from sets of test words that are biased toward frequent types (Heim, 1970; Raven, 1965;
Wechsler, 1997). However, the distribution of word-types in language ensures both that
adult vocabularies overwhelmingly (and increasingly) comprise low-frequency types, and
that an individual’s knowledge of one randomly sampled low-frequency type is not pre-
dictive of his or her knowledge of any other randomly sampled low-frequency type. This
makes the reliable estimation of vocabulary sizes from small samples mathematically
impossible (Baayen, 2001).

2.2. Simulation Study 1: Why linguistic distributions confound vocabulary estimates

To illustrate these points, we analyzed the statistical properties of a state-of-the-art test
designed to measure the vocabularies of advanced learners of English (Lemhoefer & Bro-
ersma, 2012). The test samples 40 items (more than most standard vocabulary measures,
Bowles & Salthouse, 2008), and its design explicitly seeks to control for the way that the
shape of linguistic distributions makes vocabulary measurement a problem (unlike most
psychometric vocabulary measures). The upper left panel of Fig. 2 plots the words
employed in the test by their rank-frequency in the distribution of English lemmata in the
CELEX lexical database (Baayen, Piepenbrock, & Gulikers, 1995; in linguistics a lemma
is defined as a “canonical form,” such that the frequency of the lemma walk comprises
the individual frequencies of walk, walks, walked, etc.; basing this analysis on lemmata
frequencies ensured for more conservative estimates than counting inflected word forms
as separate items). As can be clearly seen, all of the types in the Lemhoefer and
Broersma test clearly belong to the higher frequency part of the English lexicon: Over
half of the lemmas in the CELEX database are lower in frequency than the test items.

To illustrate the way that the distribution of word types affects the measurement of
vocabulary growth over time, we constructed a word frequency distribution using the
lognormal-poisson model (Baayen, 2001), with parameters estimated from the distribution
of English lemmata. We then simulated 20 speakers incrementally sampling from this
distribution. (A simplifying assumption made here was that speakers sample the language
at the same rate.) The black circles in the upper right panel of Fig. 2 plot increase in
vocabulary size with “age” for one simulated learner (because the amount of language
individuals are exposed to varies dramatically [Hart & Risley, 1995], for the purpose of
these simulations, “age” is defined in terms of the number of lemma tokens a learner has
experienced, rather than time). As can be seen, although vocabulary size continually
increased in the simulations, the rate at which new lemmata were encountered in the
simulations decreased as learners’ experience grew. The gray circles then show the
vocabulary common to all 20 simulated speakers. This shared vocabulary is typically less
than half a speaker’s own vocabulary, and further, the rate at which new common
lemmata are encountered (i.e., learned) as compared to non-common lemmata decreased
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with age, such that the heterogeneity of the vocabularies in the simulation increased over
time.

Consistent with this observation, one of the highly educated reviewers of this article
noted that he had never encountered the word lemmata prior to reading it here. Given that
we can safely assume that the reviewer knows many technical terms that we have not
encountered, this may help illustrate why knowing that someone has one very low-fre-
quency word—such as lemmata—in his or her vocabulary is of little to no benefit when
it comes to predicting whether the person knows another very low-frequency word. It
might also, in turn, help illustrate why it is inevitable that any word anyone might reason-
ably consider including in a “general” vocabulary test will tend to have a fairly high fre-
quency relative to the overall vocabulary of the language, namely because the whole

(A) (B)

(C) (D)

Fig. 2. The non-linear dynamics of vocabulary growth. A: Upper left: the relative frequencies of the Lem-
hoefer and Broersma (2012) vocabulary test items. Each vertical gray line represents an individual item, and
the black curve plots the empirical lemma rank-frequency distribution of English. B: Upper right: the black
circles plot an individual vocabulary growth curve, while the gray circles plot the vocabulary that this simu-
lated speaker has in common with the 19 other speakers in the simulation. C: Lower left: the same simulated
learner’s score on the vocabulary measure over time (because language exposure rates vary dramatically
across individuals [Hart & Risley, 1995], age is expressed in these plots as a function of the size of the sam-
ple an individual has experienced, rather than time). D: Lower right: error (actual vocabulary – predicted
vocabulary) as a function of age.
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point of including any particular word in a non-exhaustive measure is to make inferences
from it, and very-low frequency words are next to useless in that regard. Because the
way words are distributed in language means that most of an adult’s vocabulary com-
prises low-frequency types (with similar distributional properties to the word lemmata:
highly familiar to some people; rare to unknown to others), this may also in turn help
clarify just why the assumption that one can infer an accurate estimate of the size of the
vocabulary of an adult native speaker of a language from a small sample of the words
that the person knows is mistaken.

This brings us to the bottom left panel of Fig. 2, which plots how scores on the Lem-
hoefer and Broersma vocabulary test increased as the simulations sampled from the distri-
bution. Initially, test scores rose rapidly, but by middle (and hence older) age, they had
asymptoted. The lower right panel then shows that, under the assumption that the test
score is a linear predictor of vocabulary size, the Lemhoefer and Broersma test underesti-
mates early vocabulary sizes, then overestimates middle period vocabulary sizes before
underestimating the number of lemmata that are learned with still more experience.
Accordingly, these test scores are far less sensitive to variance in older vocabularies: A
split for N > 250,000, defining an old speaker group, and N < 150,000 for the same
speakers in their youth, revealed a difference of 1.91 in the variance of the older test
scores as compared to 33.22 for the younger scores (F[159, 103] = 17.44, p < 0.0001); as
Fig. 2B shows, while it is empirically the case that the variance in the vocabularies of
the older group was greater than that of the younger group, the test scores suggest that
the opposite is true.

These results should not be taken to mean that vocabulary measures are useless (e.g.,
they have a role to play in estimating the progress of language learners; Lemhoefer &
Broersma, 2012). What we hope they help make clear is why the insensitivity of vocabu-
lary tests to vocabulary growth in adults is not a sign that vocabulary learning ceases at
some point in time. (A moment’s reflection on this point might suffice for some readers:
As our reviewer’s observation shows, it is abundantly clear that even highly educated
adults continue to encounter new words on a regular basis throughout the course of their
lives.) Given that current studies of aging systematically fail to control for the way
vocabulary (and other forms of) knowledge continues to increase throughout adulthood,
we next examine the influence that vocabulary growth can be expected to have on cogni-
tive processing.

3. Simulating the effects of vocabulary learning on information processing

Normally developing infants are initially sensitive to all the fine-grained phonetic dis-
criminations made by the world’s languages. However, as she learns her native vocabu-
lary, a child’s sensitivity to non-native phonetic distinctions diminishes (Werker & Tees,
1984). This is not usually taken to indicate that cognitive decline begins in infancy.
Indeed, this loss of sensitivity can be seen as an inevitable result of learning: In
discriminative learning, the values of an initially undifferentiated set of cues are shaped
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by experience, which drives the discovery of the cue values that best predict a learner’s
environment (Ramscar et al., 2010; Sutton & Barto, 1998; Rescorla, 1988; Rescorla &
Wagner, 1972; Sutton & Barto, 1998). Because this process involves learning to ignore
uninformative cues, it explains why decreasing sensitivity to uninformative phonetic
information goes hand in hand with increased knowledge of informative phonetic distinc-
tions (Ramscar, Suh, & Dye, 2011).

The learning component of the model we use to simulate the way experience affects
reading works in precisely this way. The Naive Discriminative Reader (NDR; Baayen,
Milin, Durdevic, Hendrix, & Marelli, 2011; in sub) is a two-layer network in which letter
unigrams and bigrams (b, bo, br, etc.) serve as input cues, and lexemes (the target words
that must be discriminated in reading) serve as outcomes. The values of the n-gram cues
are initially undifferentiated and are set competitively as the model learns to predict lexe-
mes from the letters it “reads.” Every n-gram cue is linked to each lexeme outcome to
form a set of subnets, and the cue-weights in these subnets are set by the equilibrium
equations of the Rescorla-Wagner learning rule (Danks, 2003). These weights are com-
pletely determined by the distributional properties of the model’s training corpus, and
simulated latencies derived from them capture a very wide variety of empirical effects in
reading (Baayen et al., 2011; in sub).

3.1. Simulation Study 2: How does vocabulary growth influence lexical decision speeds?

To first examine the effects of adult vocabulary growth on lexical processing, we simu-
lated the effects that experience might be expected to have on lexical decision tasks, in
which subjects make a speeded judgment as to whether a letter string is a word or not.
There are at least two ways in which experience can be expected to influence this process:
First, we might expect that increased experience of any given word will make people bet-
ter at recognizing it, such they will be quicker to respond to a higher frequency word such
as where than a lower frequency word like whelp (and it is well established that this is the
case: Lexical decision responses are slower for lower frequency words than higher fre-
quency, which in turn suggests that lexical decision measures ought not be expected to be
experience invariant). Second, we might expect that recognition will not only depend on
how often someone has seen any given word but also on the total number of words that he
or she knows. Imagine two people, one who knows 20,000 words and another who knows
40,000 words. All other things being equal, we might expect that the first person will be
faster at establishing that a newly presented word is in her vocabulary than the second per-
son, simply because she has a smaller space of words to search in through memory (in
reality, of course, these two factors will almost certainly interact, since people who have
larger vocabularies will almost inevitably also have had more reading experience).

To shed some light on whether the increased vocabulary search that adults encounter
as their linguistic experience expands can be expected to have an influence on the speed
of their lexical decision responses, we trained two NDR models on data drawn from the
Google Ngrams Corpus (Brants & Franz, 2006), a very large, naturalistic data set. (Ngram
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is a term used to describe strings of words and letters in computational linguistics: “you
go there” is a word trigram, and xy is a letter bigram.)

We should note at the outset that when it came to training the models, there was and
is no clear answer to the question of what the “correct” sample size for each of them
might be. The rate at which new words occur in both speech and text varies dramatically
according to context and text type (Hayes & Ahrens, 1988), and individual rates of expo-
sure to text are equally variable (Anderson, Wilson, & Fielding, 1988). Accordingly,
assumptions about “average readers” must inevitably have an artificial quality. For the
purposes of this investigation, we assumed that reading isolated words is largely deter-
mined by written frequencies rather than spoken frequencies, and that the reading exper-
tise measured by response speeds in a lexical decision task largely depends on reading
experience. To estimate this experience, a conservative reading rate for adults of 85
words/min, 45 min/day, for 100 days/year was adopted. Twenty-one year olds were thus
assumed to have 12 years experience reading at this rate, and 70-year olds a further
49 years. Model 1, which simulated reading to age 21 (a typical age for “young adult”
subjects in studies), thus “read” 1,500,000 word tokens, and Model 29,000,000 word
tokens, simulating reading to age 70 (the typical age for “old adults”). These input
parameters were set prior to the simulation results being analyzed.

Furthermore, although the development of large corpora has made simulations of
learning from realistic samples of language possible, the automated optical character
recognition (OCR) methods used in their construction record a great many misspellings
and other spurious items among the unique strings in these samples. Counting these as
words is likely to seriously bias estimates of the true distribution of word types in the
corpus (Liberman, 2013). To limit the likelihood of spurious items biasing the models’
learning, the training sample was drawn from the Google Trigram Corpus. This contains
only trigrams with 40 or more occurrences in the Google Corpus, thereby omitting
around 50% of its lowest frequency unigram strings (this sample is far more likely to
contain OCR errors). To further reduce noise in the models’ training, the training sam-
ple was further restricted by limiting it to the 14,822,311 trigrams in the Corpus that
contain one of the test words used in the English Lexicon Project (Balota & Spieler,
1998).

Sampling from this small subset of the Google Trigram Corpus inevitably meant that
the training samples omitted large numbers of legitimate low-frequency strings, such that
models encountered far fewer low-frequency words than are likely to occur in a true
experiential sample. These very conservative assumptions thus biased the simulations
against our hypothesis, since they will tend to result in an earlier asymptote in vocabulary
learning than training on the actual underlying distribution.

The input to each network model comprised the letters and letter-bigrams that occurred
in each training trigram token. For the trigram “in the box,” for instance, the input cues
were the letters i, n, t, h, e, b, o, and x and the bigrams #i, in, n#, #t, th, he, e#, #b, bo,
ox, and x# (# denotes an orthographic space). Each lexeme in the trigram then served as
an outcome, that is, for the trigram “in the box,” the outcomes were the lexemes in, the,
and box.
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3.2. Results and discussion

In keeping with the results of Simulation Study 1, the old model acquired a much lar-
ger vocabulary than the young model: The former “learned” 32,536 word types, and the
latter 21,307. (These estimates are very conservative: As we noted above, the Trigram
Corpus contains only around 50% of the unique string types in the complete Google
Corpus. Even with this highly constrained input, vocabulary expansion was far from
asymptote after 3 million trigram tokens.)

The empirical reaction times used to evaluate the models were taken from a data set
of lexical decision latencies for a set of 2,906 monosyllabic English words ranging from
two to eight letters in length constructed by Balota, Cortese, and Pilotti (1999). The laten-
cies were collected for two age groups: younger subjects (mean age: 21.1) and older sub-
jects (mean age: 73.6; the full data set and more information about its acquisition is
available at: http://www.artsci.wustl.edu/~dbalota/lexical_decision.html). In a lexical deci-
sion task, a string appears on a computer screen, and subjects either recognize it as a
word (e.g., WHELP) and respond “word,” or else fail to recognize it (e.g., WHERP) and
respond “non-word.” To simulate the processing behind these judgments, simulated lexi-
cal decision times (SRTs) for each of the words in the Balota et al. test set were esti-
mated as a function of the activations in the NDR models given the ngram cues in the
input words (Baayen et al., 2011; a more detailed description of the method is given in
the Appendix).

To investigate the frequency by age interaction, we fit a generalized additive model
(GAM; Hastie & Tibshirani, 1986) to the data using the R package mgcv (Wood, 2006,
2011). The basic structure of a GAM model is:

y ¼ Xbþ fi x1; x2; . . .ð Þ þ . . .þ e; ð1Þ

where y is the response variable, X is a linear predictor, and fi are smooth functions of
the covariates xk. The parametric part (Xb) of a GAM is identical to that of standard
regression models. The non-parametric part f(x1, x2,…) consists of a number of smooth
functions (fi) and allows for non-linearities to be modeled more successfully.

The observed and simulated reaction times were then modeled as a smooth on the
Google unigram frequencies of the words (Brants & Franz, 2006). The Google unigram
frequencies of the items in the test set ranged from 1,337 to 19,401,194,714. To remove
rightward skew from the distribution, raw frequencies were log-transformed and any
logged frequency values further than 2.5 standard deviations from the mean (0.8% of the
data) were removed to prevent overfitting near the edges of the distribution.

Fig. 3 plots the differences in simulated response times (SRTs) between the two mod-
els (old–young) over the frequency range of the Balota et al. (1999) items, as well as the
same differences for the observed latencies of older and younger adults. The smooths for
both were created using the by variable of the smooth function in the mgcv package
(Wood, 2011). To meet the assumption of normally distributed residuals, the GAM
models were fitted on inversely transformed reaction times.
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The SRTs and the observed latencies were highly correlated across the frequency
range: r = 0.78. Furthermore, the models successfully predict an important qualitative dif-
ference in the empirical word-frequency effect: While sensitivity to the frequency differ-
ences among the test words appeared to asymptote at higher frequencies in both models,
frequency sensitivity in the younger model also leveled off at lower frequencies, such that
the model only exhibited sensitivity to frequency differences in the mid-spectrum of word
frequencies in the test set. In contrast, the SRTs of the older model increase as word fre-
quencies decline across the lower frequency range, such that the difference between the
SRTs of the older and younger models rises as word frequencies decline (Fig. 3B). This
pattern was also found in the empirical data, which, when analyzed, revealed that the
older adults were much better attuned to frequency variation in the lower band of the
word frequency spectrum than the younger adults (Fig. 3A).

Detailed consideration of the discriminative learning process helps explain these
results. In learning, weights on the links between cues and outcomes get adjusted in two
ways: Links strengthen when a cue and outcome co-occur, and weaken if cues occur
without outcomes. Thus, when “where” is encountered, the link between the bigram WH
and the lexeme WHERE is strengthened, while, since WH has occurred without WHELP,
WH-WHELP is weakened.

In learning, high-frequency words are encountered often, at fairly constant rates (consis-
tently reinforcing WH–WHERE, and weakening WH–WHELP); however, low-frequency
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Fig. 3. A: Left panel: fit of a generalized additive model to the response latency differences (old–young)
across the frequency range between young and old adults for a set of 2,906 English words (Balota et al.,
1999). B: Right panel: fit of a generalized additive model to the difference in the simulated response latencies
(old model–young model) for the same items. The slope on the left side of each plot is caused by differences
in the sensitivity of older and younger adults (and the older and younger models) to variance in the lower fre-
quency range of the test items. Whereas the younger adults (and younger model) were insensitive to fre-
quency differences in the lower range, the response times of older adults (and the SRTs of the older model)
slowed as the word frequencies at this end of the spectrum declined.
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words only occur sporadically, so WH–WHELP is reinforced and WH–WHERE weakened
less often. These imbalances generate “selection pressures” that appear to shape the distri-
bution of cues in the lexicon (see also Zipf, 1949). Thus, the high-frequency items in the
test set are shorter (t[2901] = %10.58, p < 0.001) and have higher bigram frequencies
(t[2901] = 8.98, p < 0.001) than the low-frequency items, which means that low-fre-
quency items contain both more, and rarer, cues (Table 1). Although rare cues have
relatively high values in small vocabularies (which is reflected in higher weights in the
younger model), they are vulnerable to competition as experience grows, because new
vocabulary items will be more likely to share these rare cues. The consequences of this
can be seen in the older model: because it has sampled and learned more low-frequency
words, the variance in the values of the rarer cues in the older model is greater than in the
younger model (see Risse & Kliegl, 2011 for a discussion of how similar factors influence
the different reading strategies of older and younger adults).

To ensure older adults’ greater sensitivity to low-frequency words was not specific to
this particular data set, a second empirical set of data was analyzed in the same way
(Yap, Balota, Sibley, & Ratcliff, 2011; Fig. 4). All of the effects reported in the first
analysis replicated successfully.

4. Modeling “decline” in a “non-lexical” task

We next examine whether the relationship between information load and response time
observed in lexical processing can also be found in tasks termed “non-lexical” in the psy-
chometric literature. It is important to stress here that unless a research protocol can be
transferred directly to non-verbal animals (and we know of no psychometric measures
that can be), the use of the terms “non-verbal” or “non-lexical” is somewhat misleading:
Any procedure that relies on subjects’ ability to follow verbal instructions and refer back
to them in performing as task must necessarily involve “lexical” processing, and our
analysis and results indicate that this processing is likely to be influenced by linguistic

Table 1
The 50 lowest frequency items in the set used to test the models and the older and young adults; BLASH has
the lowest frequency of these items, and JEER the highest. As can be seen, many of the letter bigrams in this
set of words are comparatively rare in English

1. BLASH 11. CROME 21. TWERP 31. WHELP 41. BLEAT
2. SCHNOOK 12. GIBE 22. THWACK 32. SHUCK 42. CHIVE
3. LETCH 13. LISLE 23. DAUNT 33. MOOCH 43. WHIR
4. ZOUNDS 14. FLAYS 24. RETCH 34. JELL 44. CROON
5. JAPE 15. SPLOTCH 25. GYP 35. GROUCH 45. TAMP
6. SOUSE 16. VELDT 26. YAWL 36. AWN 46. BOSH
7. WHIG 17. SLOE 27. FLUB 37. MANSE 47. RILE
8. FILCH 18. CONK 28. STANCH 38. WRACK 48. BLANCH
9. RHEUM 19. FRAPPE 29. PAUNCH 39. HOOCH 49. LILT
10. PARCH 20. SKULK 30. JOWL 40. FLECK 50. JEER
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experience. This point is obvious in the letter classification task (Posner & Mitchell,
1967), the widely used “non-lexical” psychometric test analyzed here, but it is important
to note that it seems reasonable to assume that it will apply to the processing of all sen-
sory stimuli in tests where subjects’ responses are mediated by instructions that have been
communicated to them linguistically.

4.1. Simulation Study 3: How does vocabulary growth affect letter classification speeds?

In the letter classification task, subjects are presented with two letters presented in
upper or lowercase (A, a, D, d, etc.) and judge whether they represent the same or differ-
ent alphabetic characters (i.e., E e are “same,” and E F “different”). To simulate behavior
in the task, a pair of “old” and “young” NDR models were trained using the methods
reported in Simulation 1, and SRTs were used to estimate the empirical latencies for clas-
sifying a letter target given the orthographic representation of that letter; that is, h was
treated as an abbreviated lexeme (to reflect the use of H as a symbol for entropy, R for a
statistical programming environment, r for correlation, etc.) and the time to make a clas-
sification involving h was estimated from the cue strengths for the ngrams h #h and h#.

4.2. Results and discussion

The observed data used to evaluate the simulation of the letter classification task were
obtained from Hale, Lima, and Myerson (1991). The data were obtained using Posner and

Fig. 4. Average percentile RT differences (old–young) for the naming latencies of 2,820 single-syllable
words (Yap et al., 2011) by young (M age: 22.6) and old adults (73.6), plotted against the words’ log fre-
quency in the Google 1-gram corpus, and a generalized additive model fit to the RT differences. As with the
lexical decision latencies, the rise in the difference slope as frequency descends is driven by the naming laten-
cies of the older adults, which are far more sensitive to differences in the lower frequency range. (The differ-
ence in the shape of this slope when compared to one plotted in Fig. 3A likely reflects the different task
demands associated with lexical decision judgment tests and naming tests; see e.g., Grainger & Jacobs, 1996.)
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Mitchell’s (1967) letter classification protocol and were collected for two age groups:
Young (M age: 19.6) and Old (69.3). The stimuli comprised five letters, presented in either
uppercase or lowercase (A, a, D, d, E, e, R, r, H, h). In each trial, two letters were pre-
sented simultaneously and subjects were asked to judge if the letters were the same letter
of the alphabet. Letter pairs were presented in three conditions: identical (same letter,
same case), semi-identical (same letter, different case), or different (different letter).

Older subjects responses are slower than younger subjects (Fig. 5), a finding that repli-
cates straightforwardly in the models once the coupling between letters and their role as
abbreviated lexemes is accounted for. (To emphasize how this point plays out in reality,
it is worth noting that in the course of their lives, adults will often learn to attach multi-
ple lexemes to a single abbreviated ngram cue; for example, PFC is an abbreviation for
prefrontal cortex in neuroscience, post-focus compression in linguistics, and Private, first
class in military parlance.) The network complexity function employed in calculating the
SRTs (see Appendix), which models response latencies as a function of the activation of
the lexemes for both letters in a letter pair, predicts longer latencies for older as com-
pared to younger subjects because the larger system of lexical outcomes in the older
model makes “accessing” the letter lexemes harder.

Psychometrically, letter classification is often described as an “information-processing”
measure, and older adults’ longer response times are taken as evidence of declining infor-
mation processing capacity. Yet information theory—which defines the workings of the
information-processing systems that symbolize our age, and which begat the term “infor-
mation-processing “in the first place—is, at heart, just a set of methods for formalizing
the uncertainty in distributions (be they bits of code or vocabulary items; Shannon,
1948). Information is a property of systems, and processing demands are measured in
relation to them (MacKay, 2003). In letter classification, the relevant system comprises
the task, the subject, and, crucially, what that subject knows. Because psychometric tests
neglect this knowledge, they are incapable of measuring information processing in this
task (Ramscar & Baayen, 2013). (These points thus echo arguments made in favor of the
“rational analysis” of cognitive processes, which consider the properties of the task
environment to be essential to understanding human task performance; Anderson, 1990;
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Fig. 5. Letter classification SRTs (left panel, left bar: young model; right bar: old model) and empirical
latencies (right panel, left bar: younger subjects; right bar: older subjects).
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Anderson & Schooler, 1991; Schooler & Hertwig, 2005; the discriminative learning per-
spective offered here can be seen as a natural extension of this earlier view in that it
emphasizes that functional task environments will themselves vary as a result of learning
over the lifetime; see also Ericsson & Kintsch, 1995.)

5. Lexical knowledge and paired-associate learning

All things being equal, one might expect that as an individual’s experience grows, his
or her knowledge will increase, and that this will in turn raise processing costs in his or
her cognitive system (c.f. Shannon, 1948). Consistent with this, our results indicate that
slower lexical information processing can simply reflect learning, and that is not necessar-
ily evidence of “decline.” Further evidence for this idea comes from the results of com-
parisons of monolinguals and bilinguals, where an interaction between experience,
vocabulary size, and response speed is also observed: The response latencies of young
bilinguals in picture-naming tasks resemble older monolinguals more closely than young
monolinguals or old bilinguals (Gollan, Montoya, Cera, & Sandoval, 2008). What is nota-
ble, however, is that although younger bilinguals exhibit slower response times and
increased tip-of-the-tongue rates as compared to younger monolinguals, these differences
are not usually thought of as deficits. Rather, the opposite conclusion tends to be reached:
Bilingualism is viewed as a cognitive blessing, and bilinguals’ lexical processing perfor-
mance is seen to reflect the natural demands associated with bilinguals’ larger vocabular-
ies (Gollan & Acenas, 2004).

However, in the light of our findings so far, the resemblance between the tip-of-the-
tongue rates of bilinguals and the elderly raises an intriguing question: Can learning
account for age-related memory differences, such as those observed in Paired-Associate
Learning1 (PAL; a psychometric measure of people’s ability to learn and recall new
information)? In PAL tests, such as the commonly used PAL subtest of Wechsler’s Mem-
ory Scale (WMS; des Rosiers & Ivison, 1986), subjects learn pairings between word cues
(e.g., baby; jury) and word responses (cries; eagle) and have to supply the appropriate
response to each cue at test. Although performance on individual items varies (Fig. 6), on
the task overall older adults are slower and less accurate than younger adults, and it has
been suggested that this is due to “encoding” (MacKay & Burke, 1990) and “retrieval”
deficits in older adults’ memory processes (Burke & Light, 1981).

What is not clear, however, is why anyone would expect that PAL performance ought
to be age and experience invariant in the first place? First, because performance across
the pairs of words used in the test varies, and it seems reasonable to assume that whether
a pair seems “easy” or “hard” is itself a function of experience, and second because long-
established principles of associative learning predict that well-known words should be
harder to learn as Cues (w1) than less familiar words (Rescorla, 1968), that less familiar
words should be easier to learn as responses (w2) than well-known words (Kamin, 1969),
and that w1–w2 pairs ought to be hard to learn if w1 and w2 occur independently at high
rates (Rescorla & Wagner, 1972).
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The WMS classifies the word pairs shown in Fig. 7 as either “easy” or “hard” for test-
ing and scoring purposes: jury-eagle is a “hard” PAL pair, and baby-cries an “easy” pair.
While this makes intuitive sense—and for older adults, at least, this differentiation even
turns out to be accurate—it is worth considering what, exactly, might serve to make a
given pairing “hard” or “easy” in a learning task. Suppose someone does not know any
English: it seems reasonable to assume that in these circumstances, jury-eagle and baby-
cries would be equally easy (or hard) for them to learn. If the person did know some
English, then the semantic association between baby and cries might help the person
learn baby-cries more easily than jury-eagle (Tulving & Pearlstone, 1966). However, as
Fig. 7 clearly shows, the greatest point of difference between old and young subjects’
performance in PAL learning is on the hard items: Qualitatively, as adult age increases, it
would appear that it is the hard items that become harder. While this pattern of perfor-
mance cannot be straightforwardly explained through appeals to “decline,” or by na€ıve
theories of “association,” it is easily explained by the principles of learning described
above (and which are embodied in the learning model used in the earlier simulations).

A key finding from the study of learning over the past hundred years is that learning is
not only sensitive to events that are associated (the Pavlovian dog learns the bell means
that food is going to arrive) but also, less intuitively, that learning is sensitive to events
that dissociate one another: Given one set of cues (it’s a mild day in the hills, and there
is not a cloud in the sky), our cognitive systems actively learn to expect that some events
will not occur (on hearing a distant rumbling, the idea of thunder is not entertained;
Rescorla, 1968, 1988; Danks, 2003; Ramscar, Dye, & McCauley, 2013b). That is, the
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basic principles that guide our best understanding of learning predict that the more often
jury and eagle have been encountered absent one another in language, the harder it will
be to learn any subsequent association between them.

5.1. Simulation Study 4: Learnability and paired-associate learning over the life span

To examine whether PAL performance simply reflects factors that predictably influence
learning, we analyzed data from a sample of older and younger adults on the WMS-PAL
subtest (des Rosiers & Ivison, 1986; both groups comprised identical numbers of sub-
jects and equal numbers of males and females). In a regression analysis, w1 predictability
(log w1 frequency; t = %4.06, p < 0.001), the relationship between w2 and w1 predictabil-
ity (log [w2 frequency]/log [w1 frequency]; t = %2.94, p < 0.01) and w1–w2 co-occur-
rence rates (log Google frequency; t = 6.77, p < 0.0001) accounted for over 75% of the
variance in the proportional difference in the item scores (mean old/mean young) of 20–
29 and 60–69 year olds (F[3] = 16.4, r = .87, p < 0.0001).

We noted above that, all things being equal, the relative learnabilty of w1–w2 pairs might
be estimated from the co-occurrence and background rates of w1–w2. All things are not,
however, equal: Discrimination learning is a systematic process, and this means that learna-
bilty itself can depend on experience, which, of course, older adults have more of. As we
also noted earlier, because w2 words will become more independently predictable the more
often they are sampled absent w1, and w1 words less informative the more they are sampled
absent w2, experience is likely to make learning some w1–w2 pairs harder. As experience

Fig. 7. Mixed-effects slope estimates for the learnability predictors and by-item PAL performance of 60–69
and 20–29 year old adults (desRosiers & Ivison, 1988). All predictor effects and interactions in the model are
significant, and all slopes (except *) are significantly different from 0 (t values ≥ 2).
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grows, PAL performance should increasingly reflect the distributional properties of w1–w2

items. Where co-occurrence rates are low, a lifetime of learning that jury is uninformative
about eagle will make learning jury-eagle harder, whereas high co-occurrence rates will
reduce these effects, making baby-cries easier to learn than jury-eagle.

A mixed-effects analysis of w1–w2 item scores by age confirmed the accuracy of this
prediction (Fig. 7). For each predictor, the magnitude of the slope for the older age group
is greater than that for the younger age group, indicating that older subjects bring more
lexical experience to the task. Consistent with our earlier findings, older adults’ PAL per-
formance reflects their greater knowledge of and sensitivity to the distributional properties
of w1–w2 words, whereas younger adults’ less varied performance reflects their more lim-
ited knowledge of them. As we noted above, the statistical properties of human experi-
ence make comparisons of means invidious: In this case, high average PAL scores ought
to be interpreted as measures of ignorance, rather than “intelligence.”

6. Names, age, and memory

For many older adults, the problems posed by the task of remembering people’s names
represent the most disturbing aspect of aging (Cohen & Faulkner, 1986; Lovelace &
Twohig, 1990). Given what we have reported so far, this raises a question: To what
extent does memory for names really decline, and to what extent are the specific prob-
lems that people have with name memory simply a factor of the role that names play in
human experience? There are good reasons to believe that names present a unique infor-
mation-processing problem, and that this problem will be magnified by individual expo-
sure to the distribution of names over time.

First, there is the nature of names as a lexical class: While most nouns are generic—
spoon, dog, idea—proper nouns (and especially personal names) are sui generis: Ideally,
a name uniquely discriminates an individual from her peers. While this could easily be
achieved by giving each individual a unique label, this move would massively increase
linguistic complexity. By now, there would be over a billion English name words, impos-
ing huge demands on lexical processing. Accordingly, languages appear to solve the
information problem posed by names by employing name grammars, which form identifi-
ers from smaller sets of hierarchically structured naming tokens (Ramscar, Dye, Gustaf-
son, & Klein, 2013c). Names drawn from a smaller pool of names precede tokens drawn
from larger pools of names, and this structure serves to reduce the size of the search
problem that speakers and listeners face at any given point in time as names unfold.

As we mentioned earlier, information theory (Shannon, 1948) is a set of formal tech-
niques for quantifying the uncertainty in distributions of discrete events. As such, it pro-
vides an objective method for quantifying the search problem posed by systems such as
names (Ramscar et al., 2013d), enabling us to measure whether and how name systems
may have changed across the lifetime of individual learners, and to estimate the implica-
tions of these changes. Moreover, information theoretic methods are discriminative (Shan-
non, 1956), and thus they provide a means for quantifying the structure of external,
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environmental systems, and the dynamics of change in these systems, that naturally com-
plements the insights into internal systems of representation that are provided by discrimi-
nation learning models.

Shannon (1948) showed that for coding and measurement purposes, the amount of
information provided by events in a discrete system as they unfold in time depends on
the way they are distributed: The most efficient distribution is the skewed one seen every-
where in language (Fig. 1), and the least efficient is a “flat” distribution in which all
events are equally likely to occur (Shannon, 1948). Intuitively, the reasons behind this
can be grasped in relation to names by considering that if 30% of all males are called
John and only 0.01% are called Cornelius, then learning that someone is called Cornelius
will be more informative than learning he is called John. However, although Corneliuses
will be better discriminated by their names, meaning that hearing John leaves a listener
more uncertain who, exactly, is being referred to than hearing Cornelius, Johns will in all
likelihood be easier to remember (guessing John will be correct 30% of the time), mean-
ing that knowing that someone is called Cornelius will leave a speaker with more uncer-
tainty as to whether she will be able to recall the person’s name the next time she needs
it than knowing that someone is called John.

This example also helps illustrate some of the benefits of, and constraints, on naming
systems: The memory advantage enjoyed by a John relies on there being lots of other
Johns in the system, as does the memorability of Cornelius, which Cornelius also benefits
from there being lots of Johns. Cornelius will be easier to recall if the system has fewer
names in total, and would be harder to recall if the Johns had a variety of names instead;
and, of course, Cornelius’s discriminability relies on there not being many Corneliuses.
This system offers other advantages; for example, everyone will benefit from the fact that
the more frequent John is shorter and easier to say than Cornelius. Simply because the
distribution is skewed toward Johns, it follows that processing names will, on average, be
easier and less time consuming than if the frequencies of John and Cornelius were
reversed (Shannon, 1948; see also Zipf, 1949).

This still, of course, leaves us with the problem of individuating Johns, which takes us
back to name grammars: Sequentially, if we know someone is called John, the search
space of subsequent items can be reduced from that of all the surnames we know to just
that of the set of surnames that follow John. Name grammars thus systematically help
balance the competing demands of lexically discriminating between individuals and keep-
ing the speech and memory demands imposed by language processing (Ramscar et al.,
2013d). Indeed, the trade-off between the various factors we have described, which act to
modulate uncertainty in speakers and listeners as linguistic messages unfold over time,
appears to play a large part in shaping the way that linguistic distributions develop and
evolve (Ramscar et al., 2010; Ramscar & Baayen, 2013; Jaeger, 2010).

Although name grammars provide speakers and listeners with an external framework
that helps considerably in dealing with the information problem posed by names, they
cannot eliminate it: In the 2000 U.S. census over 1.15 million different surnames are
shared by five or more people; and, consistent with our remarks above about the shape
of the distribution of word types, a further 5 million by less than five people (Word,
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Coleman, Nunziata, & Kominski, 2008). Even allowing for artifacts of the automated pro-
cedures used to read census data, it is clear English has a very large lexicon of surnames.
Moreover, although social evolution appears to have produced name grammars that help
minimize the information processing challenges posed by names, the widespread legisla-
tion of traditional naming practices that accompanied the development of modern bureau-
cratic states has led to an historically unprecedented growth in size of the pool of first
names in English (and many other languages) in the past century, and this has resulted in
a concomitant increase in the entropy associated with names (Ramscar et al., 2013d;
Scott, 1998). Entropy, measured in bits, is an information theoretic term used to describe
the uncertainty associated with a distribution of events or items, and it provides an
abstract, objective measure of the search problem associated with selecting a particular
item from a knowledge base containing many items.

However, perhaps because entropy values are a function of the way items or events
are distributed—a great many or a very few discrete items could have an entropy of 4
bits depending on their distribution—ideas about thinking about information in terms of
entropy and bits are often difficult to grasp. A common solution to this problem for the
purposes of making comparisons in computational linguistics is to convert the entropies
of complex distributions of different distributions of items into a measure called perplex-
ity (Bahl, Baker, Jelinek, & Mercer, 1977), which expresses abstract bit values in terms
of a distribution of independent, equally likely outcomes, calculated as 2H (so that a dis-
tribution with an entropy H = 3 bits has a perplexity of 8). This allows the uncertainty
associated with three bits of information (H = 3, which is difficult to grasp), to be
expressed in more intuitive terms as the perplexity one would feel if asked to guess
“what happens next?” when 8 equally likely outcomes are possible.

Accordingly, while it is of course the case that a great many female names are, and
always have been, used in American English, from an information theoretic perspective,
the cognitive challenge imposed by recalling a female name in the 1880s can be quanti-
fied as being equivalent to that of anticipating a given outcome when a little over 100
equally likely alternative outcomes are possible. As Fig. 8 shows, the perplexity of Eng-
lish first names increased almost exponentially in the years after 1880, such that when
recalling a contemporary female name is quantified in terms of perplexity, the comparable
challenge can be seen to be equivalent to anticipating a given outcome when over 2,000
equally likely alternative outcomes are possible. This increase is considerable, and given
that historically, the entropy of English first names was far lower and far more consistent
over time (in the 300 years prior to 1750, 50% of men and 50% of women in England
were consistently given one of just three highly frequent male or female names; Smith-
Bannister, 1997; Lieberson & Lynn, 2003), it appears that it is also unprecedented.

6.1. Simulation Study 5A: The effect of changing name distributions across time

The very clear change in the entropy of English names that we have described has not
been taken account of in any study of name memory that we are aware of, yet it suggests
that name processing would have been far easier for 20-year olds in 1960 than it is for
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20-year olds today, and that the processing load imposed by names has increased dramati-
cally during the lives of today’s older adults (Fig. 8). To simulate the effects of these
changes on name processing, three NDR models were trained on names sampled at their
historical frequencies in 1910, 1960, and 2010 respectively, which were interpolated into
an otherwise identical set of naturalistic linguistic training data: 1,500,000 tokens from
the Google Unigrams Corpus to simulate the experience of reading to age 20 (because
many proper nouns populate the tail of linguistic distributions, sampling from the Tri-
grams Corpus was likely to result in our considerably underestimating the occurrence rate
of less common first names).

The first name frequencies from the historical Social Security application data were
converted to appropriate Google unigram frequencies by comparing the ratio of the medi-
ans in the Social Security data to those in the Google unigrams. The first names in the
Google unigram data were then removed (or else, for tokens such as June, which can be
either a first name or a month, the Google unigram counts were adjusted to reflect these
usage ratios), and replaced by names from the Social Security applications, which were
randomly sampled to reflect the distributions appropriate to each period.

After training, SRTs were calculated for each model (see Appendix for more details),
both for the set of first names learned by that model, and for the set of names common
to the 1910, 1960 and 2010 Social Security application data sets. The first measure
allowed for the overall processing imposed by loads names in these periods to be com-
pared, while the second, comparing the SRTs for the names common across the 100-year
period represented by the 1910, 1960, and 2010 Social Security applications allowed the
effect of changes in the distribution of names on the processing of specific names to be
measured. If an SRT is a function of an individual name, then the names common across
the 100-year period (1910, 1960, and 2010) should show the same average SRT in each

Fig. 8. The perplexity of male and female names with a count ≥ 5 in U.S. Social Security applications at
5-year intervals from 1880 to 2010.
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period, even if the overall average SRT were to increase due to an increase in the number
of less common names. In contrast, if SRTs are influenced by the greater number of
names, then we would expect SRTs for the subset of common names to increase as well.

6.2. Results and discussion

The results of these simulations suggest that the simple task of recognizing an Ameri-
can-English first name grew harder in the 20th century: Fig. 9A shows the cost imposed
by the total set of names learned by a 20-year old model at each point in time, and
Fig. 9B shows the effect this had on the same set of first names (the set of names com-
mon to all three periods). The increase in the information processing load imposed by
names is especially visible in the latter part of the century: The change in the SRTs from
1960 to 2010 is three times larger than from 1910 to 1960.

Not only was the rise on the number of first names learned dramatic (the 1960 model
learned 60% more names than the 1910 model, and the 2010 model 83% more), but the
number of non-name words (i.e., words that are not in use also as names) that were
learned also declined, by 2.5% in 1960, and 5% in 2010. Given that the models were
trained on exactly the same number of first name tokens, this reflects the degree to which
the boundary between English first names and non-names has become blurred over time
(i.e., Apple and Harmony and now employed as first names, as well as common nouns),
which is likely to further increase the processing problems posed by personal names.

6.3. Simulation Study 5B: The effect of changing name distributions over a lifetime

To simulate the effect that these changes might be expected to have on the life of an indi-
vidual, we then constructed another 20-year old model, which was trained on 1,500,000
word token sampled from the Google unigrams corpus into which first names sampled from
the summed distribution of Social Security applications from 1950 to 1960 (the age at
which today’s septuagenarians were 20) were interpolated at the rate at which first names
occurred in the Google sample using the same procedure as in Simulation Study 5B. We
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Fig. 9. Left panel (A): average SRTs for the set of first names learned by three 20-year old models trained
on 1.5 million unigrams when sampling from the first name distribution in 1910 (left bars), 1960 (center
bars), and 2010 (right bars). Right panel (B): SRTs in each model for the set of first names common to the
1910, 1960, and 2010 U.S. Social Security applications: that is, predictions for the same set of first names.
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then compared the model of a 20-year old in 1960 to a second model, which was trained on
9,000,000 tokens sampled from the Google unigrams corpus, into which first names sam-
pled from the distribution from 1950 to 2010 were interpolated. The second thus simulated
the effects of 50 extra years’ “experience” on the 20-year-old model.

6.4. Results and discussion

The projected impact of name vocabulary growth on lexical processing is shown in
Fig. 10A, which plots the impact it can be expected to have on name recognition for
someone aged 70 in 2010 as compared to her 20-year-old self 50 years earlier. Fig. 10B
shows the projected effect of these processing costs on the same set of names in the same
individual (the set of names common to both name vocabularies). In both cases, the
model predicts that on average, simply recognizing a name will take today’s septuagenar-
ian around half a second longer than when she was 20.

Further insight into the causes of the problems today’s older adults experience with
name memory comes from an examination of what the models learned in the simulations.
Underlining both the degree to which names and other proper nouns comprise a large
proportion of the word types in the lexicons of English speakers, and the degree to which
this part of the lexicon expands disproportionately with experience, it revealed that
whereas the younger model learned 34,480 word types, of which 4,540 were first names,
the older model learned 61,839 word types, of which 19,976 were first names. Thus,
while the simulation doubled its total vocabulary by age 70, it resulted in a four-fold
increase in its first name vocabulary.

The results of these simulations suggest that, given the very real distress name recall
causes older adults, the unchecked rise in the information load of personal names we
describe should be a cause of social concern; and also, given the objective scale of these
changes, that confounding name recall problems with cognitive decline is akin to asking
older adults to accept personal responsibility for a social problem.
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Fig. 10. Left panel (A): average SRTs for the names learned by a 20-year old model (trained on 1.5 million
unigrams, including names from the 1950–1960 distributions; left bars), and a 70-year old model (trained on
9 million unigrams, including names from the 1950–2010 distributions; right bars). Right panel (B): SRTs for
the names common to 1960 and 2010 U.S. Social Security applications. The area below the dashed line rep-
resents a 320 ms response constant (button pressing) added to the SRTs.
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7. Can learning explain why some “cognitive abilities” do not decline with age?

Although performance “declines” with age on most psychometric tests, this pattern is
not universal. For example, it is generally accepted that “lexical access”—the ability to
recall words—declines with age, yet performance on a common lexical access test, the
Controlled Oral Word Association Test (COWAT; Spreen & Strauss, 1998) “FAS” sub-
test, seems to improve with education and experience (Goral, Spiro, Albert, Obler, &
Connor, 2007).

In the FAS test, subjects are given 60 s to generate as many words beginning with “F”
(then “A,” and “S”) as they can. Proper nouns and multiple words using the same word-
stem (e.g., friend, friends, friendly) are not acceptable. Although studies indicate that older
adults can outperform younger adults in this task, often by a large margin (e.g., Czaja,
Sharit, Ownby, Roth, & Nair, 2001), on another part of the COWAT test, where subjects
are asked to name as many animals as they can in 60 s, studies have shown that perfor-
mance declines steadily with age (Goral et al., 2007; but see Hargreaves et al., 2011).

Although these contradictory findings have aroused little comment or curiosity in the
cognitive aging literature, the idea that the processes that guide the retrieval of animal
names might decline while those that guide the retrieval of names beginning with FA or
S appear to improve is hard to reconcile with a general decline in retrieval processing.
However, as with proper names, it may be possible to account for these patterns by
attending to the specific information loads imposed by the tasks: Whereas the animal
naming part of the COWAT test simply involves retrieving examples from that distribu-
tion of a set of items that are primed by a cue—and one would expect that, to varying
degrees, the entropy of the distributions of various classes of nouns and names will
increase with experience, thereby increasing the information processing demands associ-
ated with tasks involving them—the FAS part of the test is more complex. Subjects are
presented with a cue that primes a set of responses but must only report words that are
not proper nouns and do not share a “stem” (e.g., friendship, friendly) with a previously
reported word.

Although the entropy of words beginning with F is likely to increase with experience
(making F word recall harder), because the set of proper nouns is large, and likely to
contain more rare members than other parts of speech, the entropy of proper nouns will
probably increase greatest over time than that of other words. Given that, all things
being equal, we would expect lower entropy words to be easier to retrieve, increased
experience is likely to make the retrieval of valid words in this task easier.

7.1. Simulation Study 6: How and why learning makes a test easier or harder

To examine how these factors might affect FAS performance over time, we annotated
each word in a 2.25 billion word corpus of English (UKWaC; Baroni, Bernardini, Ferra-
resi, & Zanchetta, 2009) with a part-of-speech tag using TreeTagger (Schmid, 1994). To
avoid counting strings that represent errors (Liberman, 2013), word types with a
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frequency of < 5 in the corpus were discarded. We then took two samples from this cor-
pus in order to get an estimate of the language sample that a “typical” 20-year old and a
“typical” 70-year old might be expected to have experienced (based on findings from
Hart & Risley, 1995, we assume that our mythical, “typical” English speaker experiences
around 10 million words of speech a year).

For each sample, we then calculated the binomial probability that a valid response will
be selected at random from the set of all of the types in each lexicon:

P ValidWordð Þ ¼ 1% P Pr operNounð Þ ð2Þ

As Table 2 shows, the binomial probability that an F, A, or S cue will cause a valid
response to be selected from the lexicon increases with experience. This is because
although proper nouns are the largest set of words in the lexicon, most words we encoun-
ter over our lives are not proper nouns, and experience actually increases the probability
that adults will retrieve correct responses. Also, as expected, as experience grows, the
entropy of proper nouns also increases more than for other word types.

Increased experience will thus increase the influence of both of these factors in
favor of selecting valid FAS words. To assess the degree to which these distributional
factors actually influence retrievability in the FAS task, we examined their ability to
account for empirically observed patterns of performance on the different letters in
the task (Hargreaves, Pexman, Zdrazilova, & Sargious, 2012; Tombaugh, Kozak, &
Rees, 1999).

To reflect the fact that the majority of valid words produced in the FAS task are com-
mon nouns, and that the selection of a valid word will be influenced both by the overall
statistical distribution of words and the difficulty of selecting a word of a particular type,
the relative production likelihood for words beginning with F, A, and S was calculated as
a function of the probability that a valid word would be selected, weighted by the differ-
ence in the entropy between proper nouns and common nouns as follows:

Table 2
The average change in the likelihood of selecting a valid response for the letters F, A, and S in the COWAT
task after a 200 million word sample and 700 million word sample, and the entropies for the distributions of
the different parts of speech in each sample. The increases in bold might be expected to improve perfor-
mance, while italicized increases might be expected to impair performance

Probability of
Valid Response

Proper Noun
Entropy

Common Noun
Entropy

Adjective
Entropy

Verb
Entropy

Other Word
Entropy

200 million
words

0.43 9.01 8.38 6.43 6.34 2.94

700 million
words

0.44 9.37 8.49 6.52 6.36 2.94

Percent
change

2.32 3.99 1.31 1.4 0.32 0
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P ValidWordð Þ & H ProperNounð Þð % H CommonNounð ÞÞ ð3Þ

For both the 200 million word model and the 700 million word model, these relative
production likelihoods correspond well to empirically observed patterns of performance
(F, S > A). Furthermore, the fit between the performance of a group of Scrabble experts
(M age = 57.2 years; Scrabble imposes a set of task demands that are highly similar to
the FAS test in that players must choose valid words given letter cues, but proper nouns
are classed as invalid words) and our estimate of the relative difficulty of F, A, and S
(based on the 700 million word model) was encouraging (Fig. 11). It is worth adding that
in the Hargreaves et al. (2011) study, the Scrabble experts produced 76% more words
than undergraduates (M age = 19.4), but only 40% more than the age-matched controls,
and that on average, both the undergraduates and the age-matched controls found generat-
ing A words most difficult, with S slightly easier than F, as predicted by the model.

7.2. Discussion

As we noted earlier, the patterns of performance observed on the different parts of the
COWAT test are incompatible with the idea that “retrieval processes” decline with age in
any straightforward way. They are, however, compatible with the growth of information
in the lexicon in the animal naming part of the test, and the interaction between compet-
ing lexical factors in the FAS part of the test.

It appears that information processing in the animal naming test may simply get harder
if the information load in people’s cognitive systems grows, when more animal names
(i.e., cat, dog … shar pei; bonobo; meerkat, etc.) are learned over time (Goral et al.,
2007; but see Hargreaves et al., 2011), whereas in the FAS task, the growing information

Fig. 11. Proportion of word responses for the letters F, A, and S produced by 23 competitive Scrabble
players (M age = 57.2) plotted against the estimates of the difficulty of retrieving valid responses after a 700
million word training sample.
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load associated with vocabulary acquisition will be offset by the decline in the extent to
which the invalid items associated with the retrieval cues serve to interfere with the recall
of valid items, such that the task becomes easier over time.

8. A “meta” meta-analysis of FAS performance

Although the results of many studies show that older adults often outperform younger
adults in the FAS task (see e.g., Hargreaves et al., 2012), a meta-analysis of 134 studies
employing the COWAT FAS task (Barry, Bates, & Labouvie, 2008; also the CFL task in
which letters C, F, and L are used) found that performance does decline with age. To rec-
oncile this with our understanding of FAS task demands, we re-examined the meta-data
(presented in full in Barry et al., 2008), discovering a relationship between sample sizes
in studies and performance (Fig. 12) that had not been previously analyzed.

A median split of the metadata showed that in studies with smaller samples
(M = 21.8), performance (M = 42 vs. M = 38.4) was better than in studies with larger
samples (M = 303.4; t(132) = 3.65, p < 0.001). A linear mixed effects regression analysis
underlined the significance of this relationship. When added to the original predictors
(Table 3), Sample Size, along with Education and Age accounts for over 50% of the vari-
ance in the metadata (stepwise backwards model comparison indicated that none of the
other predictors was significant).

To visualize and examine for non-linearities in these interactions, the metadata were
modeled in a generalized mixed additive model (GAMM; Fig. 13). As can be seen, in
small, “artisanal” samples (10–20 subjects), performance changes very little over time: It
increases up to age 30, and then plateaus. Furthermore, while Education is strongly pre-
dictive of performance in the metadata, it is negative correlated with age (r = %.34). It is

Fig. 12. Mean performance on the FAS/CFL tests in 134 studies (Barry et al., 2008) plotted by sample size.
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thus worth noting that in a post hoc comparison of studies with small samples (N ≤ 40),
the performance of subjects aged 35 and under and 65 and over was indistinguishable
(Fig. 14; t(48) = 0.35, p > .7).

Table 3
LMER analysis (Mean Score ~ [Sample Size + Education] * Age) of mean performance by study on the
Barry et al. metadata. Sample Size was added to the original predictors (Year of study, % Male, Form [FAS
vs. CFL], Age, Exclusion Criteria, and Years on Education), and then insignificant predictors were removed
by stepwise backwards model comparison (13 observations were omitted due to missing values in the meta-
data)

Estimate SE t value p

(Intercept) 3.443 0.443 7.778 0.000
N 0.334 0.116 2.872 0.005
Education %1.955 0.381 %5.136 0.000
Age %1.304 0.266 %4.896 0.000
N:Age %0.212 0.067 %3.153 0.001
Education:Age 1.368 0.224 6.109 0.000

Notes. Multiple R2 = 0.54, Adjusted R2 = 0.52; F (5,115) = 26.7, p < 0.0001.

Fig. 13. GAMM tensor smooth of the Barry et al. (2006) metadata. The model (Mean.Score ~ te(SampleSize,
Age) + te(Age, Education)) takes account of the same factors as the lmer model above. Performance is plotted
by log Age (y-axis) and log Sample size (x-axis) as a heat contour, with better performance in red (points repre-
sent the mean performance in each study sample). The superimposed lines are for ages 21, 30, 65, and 80, and
samples of 10, 20, and 200. As can be seen, performance only declines with age as sample sizes grow.
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8.1. Discussion

The results of this reanalysis of the Barry et al. (2008) metadata are consistent with
the pattern of performance predicted by the information structure of the task and the
environment, as well as the results of many experimental studies in the literature in
which sample size has been controlled for; for example, the FAS performance
(M = 48.8) of 23 age-matched controls (M age = 57.4) for the Scrabble experts in Harg-
reaves et al. (2001) was vastly superior to that (M = 38.6) of 23 college-aged controls
(M age = 19.4).

This last result also suggests an answer to a critical question posed by this analysis:
How can sample size influence performance on a test as simple as naming words begin-
ning with F? The answer may be straightforward: Psychology is a social science. Psycho-
logical tests cannot be assumed to have the objective status of, say, litmus tests.2

Whereas many chemical tests are (or can be considered to be) impervious to social con-
text, it is unlikely that any psychological test is. As studies grow larger, for example, they
may be more likely to be run by less experienced or less confident experimenters, which
may influence performance. Furthermore, even the behavior of skilled experimenters may
change as sample sizes grow: Exclusion criteria might be applied differently to subject
497 in a sample of 800 as compared to subject 17 of 20 (if so, some part of the “decline”
seen as test samples grow may simply be an artifact of undiagnosed dementia).

Importantly, because FAS performance is age invariant, we were able to identify sam-
ple size as a potential confound. Given that there is no reason to believe the 134 studies
analyzed here are not representative of the literature, it is likely that other measures have
been similarly affected, adding further distortion to our understanding of aging.

Fig. 14. Average FAS/CFL scores in smaller samples (N ≤ 40) in the Barry et al. (2008) metadata for sub-
jects aged 35 and under (21 studies, 69% of total: range 19.35 – 34.09, SD = 5.3; M Sample Size = 23) and
65 and over (29 studies, 42% of total: range 65–85.3, SD = 5.4; M Sample Size = 22.1). Error bars are
SEM.
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9. Learning and cognitive maturation

The results reported here indicate that older and younger adults’ performance in psy-
chometric testing are the product of the same cognitive mechanisms processing different
quantities of information: Older adults’ performance reflects increased knowledge, not
cognitive decline. In discussing this finding, a question continually arises: “Learning
appears to predict linear patterns of change, but cognitive decline really kicks in at
around 60 or 70: how do you explain this?”

In answering this, we first note that as people age, it has been found that they encode
less contextual information in memory (Naveh-Benjamin & Old, 2008). Although this is
usually taken to indicate that the processes that “bind” contextual information in memory
decline with age, learning theory predicts that experience will increasingly make people
insensitive to a great deal of background context, simply because ignoring uninformative
cues is an integral part of learning (Kruschke, 1996, 2001, 2005; Ramscar et al., 2013a;
Rescorla, 1968).

Learning is also sensitive to the environment, and its predictions change with it: If a
common environmental change like retirement was to systematically reduce the variety
of contexts people encounter in their lives, learning theory predicts that the amount of
contextual information they learn will drop further, as the background rates of cues in
remaining contexts rise (Kruschke, 1996; Ramscar et al., 2013a). It follows from this that
if people were to increasingly spend time in environments where any cues have high
background rates already (family homes), any effects arising from their cumulative expe-
rience of learning to ignore task irrelevant contextual (background) cues will be exacer-
bated. In other words, because discriminative learning by its very nature reduces
sensitivity to everyday context (Kruschke, 1996; Ramscar et al., 2013a; Rescorla & Wag-
ner, 1972), retirement is likely to make memories harder to individuate and more confus-
able, absent any “cognitive declines,” simply because retirement is likely to decrease
contextual variety at exactly the time when the organization of older adults’ memories
needs it most.

Well-established principles of learning thus explain both the changes that are often per-
ceptible in older adults’ cognitive performance around retirement age and the fact that
these changes are not detected in testing. In contrast, claims about “cognitive decline” are
descriptive, and our findings strongly suggest that these descriptions are erroneous and
serve only to perpetuate myths (see also Baltes & Schaie, 1974).

Unfortunately, this does not mean that the diseases that can undermine cognition in
old age are similarly mythical, which raises a second question often put to us: What
about all the neurobiological evidence for cognitive decline? Our answer is that except
in the case of neurological diseases where there is evidence of pathology, there is no
neurobiological evidence for any declines in the processing capacities of healthy older
adults. Although many claims to the contrary have been made (see Morrison & Baxter,
2012, for a review), it is important to note that absent a model of what is being pro-
cessed, and how, neurobiological studies can reveal only that the structure and/or biology
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of neural processing changes; interpreting this as evidence of decline (or increased
efficiency) requires a model of the relationship between neural activity and cognitive
function.

Even if our own explanations of cognitive processing still leave questions unanswered,
the contrast with theories that interpret neurobiological changes as decline is stark: At
present, most functional accounts of cognitive processing in relation to the brain amount
to little more than metaphors (e.g., Park & Reuter-Lorenz, 2009), and even where “com-
putational” models are offered, they overwhelmingly take high-level programming lan-
guages as their inspiration, ignoring the information-theoretic constraints that govern the
compiled programs that are actually run on physical information processing systems
(Ramscar & Baayen, 2013).

Accordingly, while we acknowledge that the models we have presented here are
abstract and may not offer much by way of insight into the specific ways by which the
brain gives rise to the mind, we believe the discriminative approach employed here has a
much to offer: first, because it allows us to formally generate falsifiable predictions at a
functional/behavioral level (which are often surprisingly accurate; Ramscar et al., 2010,
2011, 2012, 2013a, 2013b, 2013c, 2013d) and second, because it requires “folk” ideas
about cognition to be recast in terms that are more compatible with the workings of phys-
ical information processing systems (Ramscar & Baayen, 2013).

Finally, although we have focused on one well-understood learning mechanism in this
article, we should note that human learning is not the product of just this one process:
It is abundantly clear, for example, that learning is influenced by social as well as envi-
ronmental factors, and that self-perception can exert a strong influence on what is actu-
ally learned from the environment (Dweck, 1999). Because of this, the ideas about
“cognitive decline” we have critiqued here are likely to be exerting a strong, negative
influence on the lives of many millions of older adults. We hope this can change. For-
mal models of learning and information processing offer practical as well as scientific
insights, and a better, more widespread understanding of these ideas can help people
manage their memories more effectively in the future. At the outset, we noted that pop-
ulation aging is seen as a problem because of the fear that older adults will be a burden
on society; what is more likely is that the myth of cognitive decline is leading to an
absurd waste of human potential and human capital. It thus seems likely that an
informed understanding of the cognitive costs and benefits of aging will benefit all soci-
ety, not just its older members.
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Notes

1. We thank Rich Shiffrin for this suggestion.
2. While the findings we report are related to concerns raised in the psychology litera-

ture about the danger of interpreting significant statistical findings based on small
samples, they differ in that there is no “right” number of responses in the FAS task
(subjects are simply asked to write down as many words as they can), nor are there
any experimental manipulations (subjects’ ages are a given). Thus, many of the
questions about the appropriate number of subjects to sample in order to draw valid
conclusions in experiments, etc., that have been raised recently (e.g., Ferguson &
Heene, 2012; Francis, 2012) are not directly relevant in this instance. To the extent
that these findings are indicative of a broader trend, it may be that in studies of
human behavior, while small samples come with a greater risk of false positive
findings, larger samples may in turn run the risk of returning false negative find-
ings; and that in the case of comparisons between small and large samples, the
chances of either a false negative result or, as it seems here, a false positive result
can both increase, depending on the specifics of the mismatched samples.

3. In Simulation Study 2, the accuracy of the models was improved when weights w1

and w2 in (8) were estimated separately for the old and young groups, suggesting
that the two groups find a slightly different balance between cue-outcome learning
(V/ai) and network size management (f(V)). The first weight was estimated at 0.024
for the older subjects, and at 0.029 for the younger subjects. This is consistent with
our suggestion that network management costs are greater for older adults than for
younger adults.
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Appendix

Simulated lexical decision times (SRTs) for each of the words in the Balota et al. test
set were estimated as follows: First, the activation A of a lexeme given its orthographic
form was calculated by summing the weights from the input cues to the lexeme. For the
word car, for instance, this involved summing the cue strengths of the letters c, a, and r
and the bigrams #c, ca, ar, and r# to the lexeme car.

To model the effect of experience on lexical processing in the two empirical subject
populations, we make three further assumptions. First, we assume that the total input acti-
vation to the set of cues is the same across populations of different ages, such that in
reading, a cue-set will receive the same input activation from the perceptual system irre-
spective of age. Given that older subjects have larger vocabularies than younger subjects,
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this will have consequences for the amount of activation that an outcome receives. Simi-
larly, our second assumption is that, analogous to Kirchhoff’s current law (the principle
of conservation of electric charge), a principle of conservation of activation holds, such
that the amount of activation arriving at cue j (Ij) is equal to the amount of activation
spreading from that cue to its associated lexemes (Attwell & Laughlin, 2001; Lennie,
2003 provide evidence that these assumptions are consistent with the observed character
of neurological processing).

Accordingly, if we let M denote the set of meaning outcomes, and Oji denote the acti-
vation spreading from cue j to meaning i, then

Ij ¼
X

i2M
Oji ð4Þ

If V denotes the cardinality of M, we have under uniformity that

Oji ¼ Ij =V ¼ 1=V ð5Þ

for any cue j given unit activation for cue j. As a consequence, the activation a of a
lexeme updates to

ai ¼
X

j2C

1

V
wji ð6Þ

¼ 1

V

X

j2A
wji;

where C is the set of active cues present and w is a weight parameter that determines the
final activation of the target lexeme relative to the size of the rest of the system.

Finally, in line with other models of cognitive processing, we assume that the brain is
a physical information-processing device, and that increased vocabulary size will alter the
effective channel capacity of the networks over which vocabulary-related activation
spreads. This is because Shannon entropy, which sums across the transformed probabili-
ties of outputs, is a function of both V and the shape of its distribution, and the source
coding theorem (Shannon, 1948) proves that (1) H(V) defines the lower bound of the code
rate (the average number of bits per symbol) in a noiseless system (i.e., the Shannon
entropy of the source represents the minimum code length required to discriminate all of
the symbols in the source, below which information will be lost) and (2) that a coding
scheme is most efficient if, on average, messages are equal to H(V) bits in length, which
in turn means that the size of the most efficient scheme necessarily increases as V
increases (see Hentchel & Barlow, 1991 for a discussion of the application of this to neu-
ral coding schemes).

Accordingly, we consider that two factors will contribute to the change in the channel
capacity of a network as vocabulary size grows: First, any increase in the number of out-
puts from an ensemble of neurons will result in an increase in the lower bound of the
code rate of the source; Second, the increase in the lower bound of the code rate will
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produce a concomitant decrease in the amount of redundancy that is encoded in a signal
of any given length: that is, in a signal comprising b bits, if the average number of bits
needed to encode a message m increases, then the average number of redundant bits r
will decrease:

r ¼ b% mð Þ ð7Þ

Increasing the vocabulary encoded in a network must therefore increase both the length
of the code processed by the network and channel noise across it (Shannon, 1948). How-
ever, weights in the individual subnets of the NDR model (which estimate the relative
discriminability of items, rather than their probabilities) are not sensitive to information
gain in the overall system. Accordingly, a non-decreasing function f(V) was entered into
the specification of the model to allow for the effects of increased processing and signal-
ing complexity across a growing system of subnets to be factored into our reaction time
estimates.

Reaction times for each age group were thus estimated as:

RTi ¼ w1 V=aiþw2 f ðVÞ þ c ð8Þ

where f(V) serves as a network complexity function that reflects the information load on
NDR as a function of the number of subnets in the system, and c is a response execution
constant.3
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