Information Retrieval

Lecture 5 - The vector space model

Seminar für Sprachwissenschaft
International Studies in Computational Linguistics
Wintersemester 2007

Introduction

◮ Boolean model: all documents matching the query are retrieved
◮ The matching is binary: yes or no
◮ Extreme cases: the list of retrieved documents can be empty, or huge
◮ A ranking of the documents matching a query is needed
◮ A score is computed for each pair (query, document)

Overview

Term weighting

Vector space model

Improving scoring and ranking

Conclusion

Term weighting
Term weighting

- Evaluation of how important a term is with respect to a document
- First idea: the more important a term is, the more often it appears → term frequency

\[tf_{t,d} = \sum_{x \in d} f_t(x) \text{ where } f_t(x) = \begin{cases} 1 & \text{if } x = t \\ 0 & \text{otherwise} \end{cases} \]

- NB1: the order of terms within a doc is ignored
- NB2: are all words equally important? What about stop-lists?

Term weighting (continued)

- Terms occurring very often in the collection are not relevant for distinguishing among the documents
- A relevance measure cannot only take term frequency into account
- Idea: reducing the relevance (weight) of a term using a factor growing with the collection frequency
- Collection frequency versus document frequency?

<table>
<thead>
<tr>
<th>Term</th>
<th>(cf_t)</th>
<th>(df_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>try</td>
<td>10422</td>
<td>8760</td>
</tr>
<tr>
<td>insurance</td>
<td>10440</td>
<td>3997</td>
</tr>
</tbody>
</table>

Inverse Document Frequency

- inverse document frequency of a term \(t \):

\[idf_t = \log \frac{N}{df_t} \text{ with } N = \text{collection size} \]

- NB: rare terms have high \(idf_t \), contrary to frequent terms
- Example (Reuters collection, from Manning et al.):

<table>
<thead>
<tr>
<th>Term</th>
<th>(df_t)</th>
<th>(idf_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>10165</td>
<td>1.65</td>
</tr>
<tr>
<td>auto</td>
<td>6723</td>
<td>2.08</td>
</tr>
<tr>
<td>insurance</td>
<td>19241</td>
<td>1.62</td>
</tr>
<tr>
<td>beat</td>
<td>25235</td>
<td>1.5</td>
</tr>
</tbody>
</table>

tf-idf weighting

- The weight of a term is computed using both \(tf \) and \(idf \):

\[w(t, d) = tf_{t,d} \times idf_t \text{ called } tf-idf_{t,d} \]

- \(w(t, d) \) is:
 1. high when \(t \) occurs many times in a small set of documents
 2. low when \(t \) occurs fewer times in a document, or when it occurs in many documents
 3. very low when \(t \) occurs in almost every document
- Score of a document with respect to a query:

\[\text{score}(q, d) = \sum_{t \in q} w(t, d) \]
Vector space model

Each term t of the dictionary is considered as a dimension.

A document d can be represented by the weight of each dictionary term:

$$V(d) = (w(t_1, d), w(t_2, d), \ldots, w(t_n, d))$$

Question: does this representation allow to compute the similarity between documents?

Similarity between vectors?

$$\sim(d_1, d_2) = V(d_1) \cdot V(d_2)$$

What about the length of a vector?

Longer documents will be represented with longer vectors, but that does not mean they are more important.

Vector normalization and similarity

Euclidian normalization (vector length normalization):

$$\vec{v}(d) = \frac{V(d)}{||V(d)||} \quad \text{where} \quad ||V(d)|| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

Similarity given by the cosine measure between normalized vectors:

$$\text{sim}(d_1, d_2) = \vec{v}(d_1) \cdot \vec{v}(d_2)$$

This similarity measure can be applied on a $M \times N$ term-document matrix, where M is the size of the dictionary and N that of the collection:

$$m[t, d] = \frac{v(d)}{t}$$

Example (Manning et al, 07)

<table>
<thead>
<tr>
<th>Dictionary</th>
<th>$v(d_1)$</th>
<th>$v(d_2)$</th>
<th>$v(d_3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>0.999</td>
<td>0.993</td>
<td>0.847</td>
</tr>
<tr>
<td>jealous</td>
<td>0.087</td>
<td>0.120</td>
<td>0.466</td>
</tr>
<tr>
<td>gossip</td>
<td>0.017</td>
<td>0</td>
<td>0.254</td>
</tr>
</tbody>
</table>

$$\text{sim}(d_1, d_2) = 0.999$$
$$\text{sim}(d_1, d_3) = 0.888$$
Matching queries against documents

- Queries are represented using vectors in the same way as documents.
- In this context:
 \[
 \text{score}(q, d) = \langle \vec{v}(q), \vec{v}(d) \rangle
 \]
- In the previous example, with \(q := \) jealous gossip, we obtain:
 \[
 \langle \vec{v}(q), \vec{v}(d_1) \rangle = 0.074 \\
 \langle \vec{v}(q), \vec{v}(d_2) \rangle = 0.085 \\
 \langle \vec{v}(q), \vec{v}(d_3) \rangle = 0.509
 \]

Retrieving documents

- Basic idea: similarity cosines between the query vector and each document vector, finally selection of the top \(K \) scores.
- Provided we use the \(\text{tf} - \text{idf}_{t,d} \) measure as a weight, which information do we store in the index?
 - The size of the collection divided by the document frequency \(N_{df} \) → stored with the pointer to the postings list
 - The term frequency \(t_{f,d} \) → stored in each posting

From (Manning et al., 07)

```plaintext
1  cosineScore(query)
2  init(scores[N])  // score of each doc
3  init(length[N])  // length of each doc
4  for each t in query do
5      weight <- w(t,q)
6      post <- postings(t)
7      for each (d, tf(d,t)) in post do
8          scores[d] <- scores[d] + (w(t,q) * w(t,d))
9      endfor
10     endfor
11  for each d in keys(length) do
12      scores[d] <- scores[d] / length[d]
13  endfor
14  res[K] <- getBest(scores) (*)
15  return res
```
Improving scoring and ranking

Speeding up document scoring

- The scoring algorithm can be time consuming
- Using heuristics can help saving time
- Exact top-score vs approximative top-score retrieval
 → we can lower the cost of scoring by searching for K documents that are likely to be among the top-scores
- General optimization scheme:
 1. find a set of documents A such that $K < |A| < N$, and whose is likely to contain many documents close to the top-scores
 2. return the K top-scoring document included in A

Index elimination

Idea: skip postings that are not likely to be relevant

(a) While processing the query, only consider terms whose idf(t) exceeds a predefined threshold
 NB: thus we avoid traversing the posting lists of high idf(t) terms, lists which are generally long

(b) only consider documents where all query terms appear

Champion lists

Idea: we know which documents are the most relevant for a given term

- For each term t, we pre-compute the list of the r most relevant (with respect to $w(t, d)$) documents in the collection
- Given a query q, we compute
 \[A = \bigcup_{t \in q} r(t) \]
 NB: r can depends on the document frequency of the term.
Static quality score

Idea: only consider documents which are considered as high-quality documents

- Given a measure of quality $g(d)$, the posting lists are ordered by decreasing value of $g(d)$
- Can be combined with champion lists, i.e. build the list of r most relevant documents wrt $g(d)$
- Quality can be computed from the logs of users’ queries

Impact ordering

Idea: some sublists of the posting lists are of no interest

- To reduce the time complexity:
 - query terms are processed by decreasing idf_t
 - postings are sorted by decreasing term frequency tf_t,d
 - once idf_t gets low, we can consider only few postings
 - once tf_t,d gets smaller than a predefined threshold, the remaining postings in the list are skipped

Cluster pruning

Idea: the document vectors are gathered by proximity

- We pick \sqrt{N} documents randomly ⇒ leaders
- For each non-leader, we compute its nearest leader ⇒ followers
- At query time, we only compute similarities between the query and the leaders
- The set A is the closest document cluster
- NB: the document clustering should reflect the distribution of the vector space

Tiered indexes

- This technique can be seen as a generalization of champion lists
- Instead of considering one champion list, we manage layers of champion lists, ordered in increasing size:

<table>
<thead>
<tr>
<th>Tier</th>
<th>Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>l most relevant documents</td>
</tr>
<tr>
<td>2</td>
<td>next m most relevant documents</td>
</tr>
<tr>
<td>3</td>
<td>next n most relevant documents</td>
</tr>
</tbody>
</table>

Indexed defined according to thresholds
Query-term proximity

- Priority is given to documents containing many query terms in a close window
- Needs to pre-compute n-grams
- And to define a proximity weighting that depends on the wide size n (either by hand or using learning algorithms)

Scoring optimisations – summary

1. Index elimination
2. Champion lists
3. Static quality score
4. Impact ordering
5. Cluster pruning
6. Tiered indexes
7. Query-term proximity

Putting it all together

- Many techniques to retrieve documents (using logical operators, proximity operators, or scoring functions)
- Adapted technique can be selected dynamically, by parsing the query
- First process the query as a phrase query, if fewer than K results, then translate the query into phrase queries on bi-grams, if there are still too few results, finally process each term independently (real free text query)

Conclusion

- What we have seen today?
 - Term weighting using $tf - idf_d$
 - Vector space model (cosine similarity)
 - Optimizations for document ranking
- Next lecture?
 - Other weighting schemes
References

- C. Manning, P. Raghavan and H. Schütze, Introduction to Information Retrieval (sections 6.2 and 6.3, chapter 7)

 http://citeseer.ist.psu.edu/675266.html