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Abstract. Lewis [L1] invented signaling games to show that semantic
meaning conventions can arise simply from regularities in communica-
tive behavior. The behavioral implementation of such conventions are
so-called signaling systems. Previous research addressed the emergence
of signaling systems by combining signaling games with learning dy-
namics, and not uncommonly researchers examined the circumstances
preventing the emergence of signaling systems. It has been shown that
by increasing the number of states, messages and actions for a signaling
game, the emergence of signaling becomes increasingly improbable. This
paper contributes to the question of how the invention of new messages
and extinction of unused messages would change these outcomes. Our
results reveal that this innovation mechanism does in fact support the
emergence of signaling systems. Furthermore, we analyze circumstances
that lead to stable communication structure in large spatial population
structures of interacting players.

1 Introduction

Signaling games are a leading model to analyze the evolution of semantic mean-
ing. Researchers in this field use simulations to explore agents’ behavior in re-
peated signaling games. Within this field of study two different research ap-
proaches are apparent: first, the simulation of a repeated 2-players signaling
game combined with agent-based learning dynamics, in the majority of cases
with reinforcement learning (e.g. [B1], [BZ1], [S1]); second, evolutionary mod-
els of population dynamics, wherein signaling games are usually combined with
population-based replicator dynamics (e.g. [HH1], [HSRZ1]). To fill the gap be-
tween both methods, recent work deals with applying repeated signaling games
combined with agent-based dynamics on multi-agent populations, e.g. on social
network structures (c.f. [Z1], [W1], [M1], [MF1]). With this paper we want to
make a contribution to this line of research.

Barrett [B1] was able to show that the simplest variant of a signaling game,
called Lewis game, combined with a basic version of the learning dynamics rein-
forcement learning, with 2-players which play the game repeatedly, conventions
about meaningful language always emerge. But by extending the domains3 of

3 With domains we refer to the number of states, messages and action of a signaling
game. It will be introduced in the following section.



the signaling game, those conventions become more and more improbable. Fur-
thermore, the number of possible different perfect signaling systems increases
dramatically. This might be the reason why previous research work basically
dealt with very simple variants of signaling games, especially in multi-agent se-
tups, and avoided domain-extended games. If even two players fail to learn a
signaling system for a given game, multiple players would not only have this
problem, but could ultimately end up in a confusion of tongues, where a lot of
different incompatible signaling systems evolve.

With this article we will show that by extending the learning dynamics to
allow for innovation we can observe i) an improvement of the probability that
signaling systems emerge for domain-extended signaling games and extended
population sizes, ii) the emergence of different evolving perfect signaling systems
in a spatial population structure with local interaction and iii) the formation of
regions of the same signaling system that form a spatial continuum.

This article is divided in the following way: in Section 2 we’ll introduce some
basic notions of repeated signaling games, reinforcement learning dynamics and
multi-agent approaches; in Section 3 we’ll take a closer look at the variant of
reinforcement dynamics we used - a further development of Bush-Mosteller rein-
forcement; in Section 4 we show how innovation of new and extinction of unused
messages significantly improves the outcome in terms of the emergence of signal-
ing systems; in Section 5 we simulate agents on a two-dimensional toroid lattice
to show the emergence of a dialect continuum; we’ll finish with a conclusion and
some implications of our approach in Section 6.

2 Signaling Games and Learning

A signaling game SG = 〈{S,R}, T,M,A, Pr, U〉 is a game played between a
sender S and a receiver R. Initially, nature selects a state t ∈ T with prior
probability4 Pr(t) ∈ ∆(T ), which only the sender observes. Therefore the current
state remains a secret to the receiver. S then selects a message m ∈ M , and R
responds with a choice of action a ∈ A. For each round of play, players receive
utilities depending on the actual state t and the response action a. Here we will
be concerned with a common variant of this game, where the number of states
is on par with the number of actions (|T | = |A|). For each state ti ∈ T there
is exactly one action aj ∈ A that leads to successful communication. This is
expressed by the utility function

U(ti, aj) =

{
α, if i = j

−β, otherwise

where α > 0 and β ≥ 0. In standard signaling games α is 1 and β is 0. This
utility function expresses the particular nature of a signaling game, namely that
because successful communication does not depend on the used message, there
is no predefined meaning of messages. A signaling game with n states and n
messages is called an n× n game and n is called the domain of the game.

4 ∆(X) : X → R denotes a probability distribution over random variable X.
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Fig. 1. Two perfect signaling systems of a 2× 2 game, consisting of a pure sender and
receiver strategy.
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Fig. 2. Two partial pooling systems. P1 permits an information flow of 2/3, P2 of 1/3.

2.1 Strategies and Signaling Systems

Although messages are initially meaningless in this game, meaning arises from
regularities in behavior. Behavior is defined in terms of strategies. A behavioral
sender strategy is a function σ : T → ∆(M), and a behavioral receiver strategy is
a function ρ : M → ∆(A). A behavioral strategy can be interpreted as a single
agent’s probabilistic choice or as a population average. For a 2× 2 game exactly
two isomorphic strategy profiles constitute a perfect signaling system. In these,
strategies are pure (i.e. action choices have probabilities 1 or 0) and messages
associate states and actions uniquely, as depicted in Figure 1.

It is easy to see that for an n × n game the number of perfect signaling
systems is n!. This means that while for a 2 × 2 game we get the 2 signaling
systems as mentioned above, for a 3 × 3 game we get 6, for a 4 × 4 game 24,
and for a 8× 8 game more than 40,000 perfect signaling systems. Moreover, for
n× n games with n > 2 there is a possibility of partial pooling equilibria, which
transmit information in a fraction of all possible cases. Figure 2 shows different
possibilities of partial pooling systems for a 3× 3 game.

2.2 Models of Reinforcement Learning

The simplest model of reinforcement learning is Roth-Erev reinforcement [RE1]
and can be captured by a simple model based on urns, known as Pólya urns,
which works in the following way: an urn contains balls of different types, each
type corresponding to an action choice. Now, drawing a ball means to perform
the appropriate action. An action choice can be successful or unsuccessful and in
the former case, the number of balls of the appropriate act will be increased by
one, such that the probability for this action choice is increased for subsequent
draws. All in all, this model ensures that the probability of making a particular
decision depends on the number of balls in the urn and therefore on the success
of past action choices. This leads to the effect that the more successful an action
choice is, the more probable it becomes in following draws.



But Roth-Erev reinforcement has the property that after some time the learn-
ing effect5 slows down: while the number of additional balls for a successful action
is a static number α, in the general case α = 1, as mentioned above, the overall
number of balls in the urn is increasing over time. E.g. if the number of ball in
the urn at time τ is n, the number at a later time τ + ε must be m ≥ n. Thus
the learning effect is changing from α/n to α/m and therefore can only decrease
over time.

Bush-Mosteller reinforcement (see [BM1]) is similar to Roth-Erev reinforce-
ment, but without slowing the learning effect down. After a reinforcement step
the overall number of balls in an urn is adjusted to a fixed value c, while preserv-
ing the ratio of the different balls. Thus the number of balls in the urn at time
τ is c and the number at a later time τ + ε is c and consequently the learning
effect stays stable over time at α/c.

A simple yet powerful modification is the adoption of negative reinforcement :
while in the standard procedures unsuccessful actions have no effect on the
urn value, with negative reinforcement an unsuccessful action is punished by
decreasing the number of balls that lead to that action.

2.3 Reinforcement Learning and Signaling Games

To apply reinforcement learning to signaling games, sender and receiver both
have urns for different states and messages and make their decision by drawing
a ball from the appropriate urn. In detail: the sender has an urn ft for each state
t ∈ T , which contains balls for different messages m ∈M . Let m(ft) denote the
number of balls of type m in urn ft and |ft| denote the overall number of balls
in urn ft. If the sender is faced with a state t she draws a ball from urn ft and
sends message m, if the ball is of type m. Accordingly, the receiver owns urn fm
for each message m ∈ M , which contains balls for different actions a ∈ A. The
number of balls of type a in urn fm is denoted as a(fm), the overall number of
balls in urn fm as |fm|. Upon perceiving message m the receiver draws a ball
from urn fm and plays the action a, if the ball is of type a. Thus the sender’s
behavioral strategy σ and receiver’s behavioral strategy ρ can be defined in the
following way:

σ(m|t) =
m(ft)
|ft|

(1) ρ(a|m) =
a(fm)

|fm|
(2)

Recently, Franke and Jäger [FJ1] introduced the concept of lateral inhibition
for reinforcement learning in signaling games in order to lead the system more
speedily towards pure strategies. In the next section we will show that lateral
inhibition also generally increases the probability that repeated signaling games
lead to the emergence of signaling systems (as e.g. depicted in Figure 3).

The concept of lateral inhibition applied on reinforcement learning can ba-
sically describes as follows: drawing a successful action not only increases the

5 The learning effect is the ratio of additional balls for a successful action choice to
the overall number of balls.



number of corresponding balls, but also decreases the number of each other type
of ball. Likewise, an unsuccessful action decreases its probability, while the prob-
ability of competing actions increases. E.g. using Roth-Erev reinforcement with
lateral inhibition value γ ∈ N ≥ 0 the following update process is executed after
each round of play: if communication via t, m and a is successful, the number
of balls in the sender’s urn ft is increased by U(t, a) = α ∈ N > 0 balls of
type m and reduced by γ balls for each type m′ 6= m. Similarly, the number of
balls in the receiver’s urn fm is increased by α balls of type a and reduced by
γ balls for each type a′ 6= a. Furthermore, negative reinforcement also changes
urn contents in the case of unsuccessful communication in the following way: if
communication via t, m and a is unsuccessful, the number of balls in the sender’s
urn ft is decreased by U(t, a) = β ∈ N ≥ 0 balls of type m and increased by
γ balls for each type m′ 6= m; the number of balls in the receiver’s urn fm is
decreased by β balls of type a and increased by γ balls for each type a′ 6= a.

Some further remarks: the lateral inhibition value γ ensures that the proba-
bility of an action can become zero and therefore speeds up the learning process.
Note that the number of balls can never become a negative value, what is ensured
by a lower boundary of 0. Finally, note that in the same way lateral inhibition
can be applied on Bush-Mosteller reinforcement.

2.4 Multi-Agent Accounts

It is interesting not only to examine the classical 2-players sender-receiver game,
but the behavior of agents in a society (e.g. [Z1], [W1], [M1], [MF1]), where more
than 2 agents interact with each other and switch between sender and receiver
role. In this way an agent can learn both a sender and a receiver strategy. If such
a combination forms a signaling system, it is called a signaling language. Thus,
the number of different possible signaling languages is defined by the number of
possible signaling systems and for an n × n game an agent can learn one of n!
different signaling languages. Furthermore, if an agent’s combination of sender
and receiver strategy forms a pooling system, it is called a pooling language. It
is easy to see that the number of possible pooling languages exceeds the number
of possible signaling languages for any kind of n× n game.

3 Simulating Bush-Mosteller

Barrett [B1] simulated repeated signaling games with Roth-Erev reinforcement
in the classical sender-receiver variant and calculated the run failure rate (RFR).
The RFR is the proportion of runs not ending with communication via a perfect
signaling system. Barrett started 105 runs for n× n games with n ∈ {2, 3, 4, 8}.
His results show that 100% (RFR = 0) of 2 × 2 games were successful. But for
n× n games with n > 2, the RFR increases rapidly (Figure 3, left).

To compare different dynamics, we started two series of simulation runs for
Bush-Mosteller reinforcement in the sender-receiver variant with urn content
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Fig. 3. Left: Barrett’s results for different n × n games. Right: Comparison of differ-
ent learning dynamics: Barrett’s results of Roth-Erev reinforcement, results for Bush-
Mosteller reinforcement without and with lateral inhibition.

parameter c = 20 and reinforcement value α = 1. In the second series we addi-
tionally used lateral inhibition with value γ = 1/|T |. We tested the same games
as Barrett and correspondingly 105 runs per game. In comparison to Barrett’s
findings, our simulation outcomes i) also resulted in a RFR of 0 for the 2 × 2
game, but ii) revealed an improvement with Bush-Mosteller reinforcement for
the other games, especially in combination with lateral inhibition (see Figure 3,
right). Nevertheless, the RFR is never 0 for n × n games with n > 2 and gets
worse for increasing n-values, independent of the dynamics.

To analyze the behavior of agents in a multi-agent society, we started ex-
periments with the smallest group of agents in our simulations: three agents
arranged in a complete network. In contrast to our first simulations, all agents
communicate as both sender and receiver and can learn not only a perfect sig-
naling system, but a signaling language. Furthermore, it was not only recorded
if the agents learned a language, but how many agents learned one. With this
approach we started between 500 and 1000 simulation runs using Bush-Mosteller
reinforcement (α = 1, c = 20) for n × n games with n = 2 . . . 8. We stopped a
simulation run when each agent in the network learned a signaling or pooling
language. We measured the percentage of simulation runs ending with no, one,
two or three signaling language learners.

We obtained the following results (Figure 4, left): in 2 × 2 games, all three
agents learned the same signaling language in more than 80% of all simulation
runs. But in 3×3 games in less than a third of all runs agents learned a signaling
language; in more than 40% of all runs exactly two agents learned a signaling
language. And it gets even worse for games with bigger n. E.g. for an 8×8 game
in almost 80% of all runs no agents learned a signaling language and it never
happened that all agents learned a signaling language.

In addition, we were interested in whether and how the results would change
by extending the number of agents. Thus, in another series of experiments we
tested the behavior of a complete network of 5 agents in comparison with the
results of the 3 agent population. Figure 4 (right) shows the average number
of agents who learned a signaling language per run for different n × n games.
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Fig. 4. Left: Percentage of simulation runs ending with a specific number of learners
of signaling languages in a network with three agents for different n × n games with
n = 1 . . . 8. Right: Average percentage of agents learning a signaling language over all
runs for different n×n games with n = 1 . . . 8. Comparison of the results of a complete
network of 3 agents (white circles) and 5 agents (black circles).

As one can see, the percentage of language learners declines rapidly with larger
domains and is by and large the same for 3- and 5-agents populations.

In a nutshell, the results for the classical sender-receiver game reveal that
by extending learning dynamics, the probability of the emergence of perfect
signaling systems can be improved but it is never one for an n × n game with
n > 2. Moreover, the results of the multi-agent network with three agents show
that even for the 2×2 game there are cases where not all agents learn a language.
And for games with larger domains the results are worse. Furthermore, they
don’t get better or worse by changing the number of agents, as shown in a
multi-agent population with 5 agents. A learning dynamics should be capable of
dealing with environments with many states and a lot of interlocutors, because
otherwise it does not yield a sufficient explanation for the emergence of many
of the signaling systems we find in nature. We show in the next section that by
allowing extinction of unused messages and emergence of new messages, perfect
signaling systems will emerge with certainty in games with multiple agents and
more states.

4 Innovation

The idea of reinforcement learning with innovation is basically as follows: mes-
sages can become extinct and new messages can emerge; thus the number of
messages during a repeated play can vary, whereas the number of states is fixed.
Pioneer work on innovation and extinction for reinforcement learning applied on
signaling games stems from Skyrms [S1], further basic experiments with Roth-
Erev reinforcement were made by Alexander et al. [ASZ1]. The main contribution
of this paper is i) to combine it with Bush-Mosteller reinforcement plus negative
reinforcement and ii) to use it for multi-agent accounts.



The process of the emergence of new messages works like this: in addition to
the balls for each message type, each sender urn has an amount of innovative
balls (according to Skyrms we call them black balls). If drawing a black ball
the sender sends a completely new message. Because the receiver does not have
a receiver urn of the new message, he chooses a random action. If action and
state matches, the new message is adopted in the set of known messages of
both interlocutors in the following way: i) both agents get a receiver urn for the
new message, wherein the balls for all actions are distributed equiprobably, ii)
both agents’ sender urns are filled with a predefined amount of balls of the new
message and iii) the sender and receiver urn involved in this round are updated
according to the learning dynamics. If the newly invented message does not lead
to successful communication, the message will be discarded and there will be no
change in the agents’ strategies.

As mentioned before, messages can go extinct, and that is realized in the fol-
lowing way: because of lateral inhibition, infrequently used or unused messages’
value of balls in the sender urns will get lower and lower. At a point when the
number of balls of a message is 0 in all sender urns of a particular agent, the
message isn’t existent in the active use of that agent (i.o.w. she cannot send
the message anymore), and will also be removed from the agent’s passive use
by deleting the appropriate receiver urn. At this point the message isn’t in this
agent’s set of known messages. Some further notes on this model are as follows:

– it is possible that an agent can receive a message that is not in her set of
known messages. In this case she adopts the new message like described for
the case of innovation. Note that in a multi-agent setup this allows for a
spread of new messages

– the black balls are also affected by lateral inhibition. That means that the
number of black balls can decrease and increase during runtime; it can es-
pecially be zero

– a game with innovation has a dynamic number of messages during a repeated
play, but generally ends with |M | = |T |. Thus we call an innovation game
with n states and n ultimate messages an n× n∗ game

4.1 The Force of Innovation

Since an agent invents a new message if she draws a black ball, the proportion of
black balls of an agent’s sender urns represents the probability to invent a new
message. We call this probability the force of innovation, defined as follows:

Definition 1: Given an agent’s set of sender urns f = {ft|t ∈ T} for a set of
states T . An agent’s force of innovation FOI describes her proportion of black
balls over her set of all sender urns:

FOI(f) =

∑
ft∈f

b(ft)
|ft|

|f|
(3)

where b(ft) is the number of black balls in urn ft.
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Fig. 5. Simulation run of a 3 × 3∗ game with innovation in a 3-agents population:
communicative success, force of innovation (averaged over all agents) and the actual
number of used messages in the population - alteration over time.

In the following study we investigated the way the force of innovation changes
over time in a simulation run. Furthermore we wanted to find out if it correlates
with the agents’ communicative success6, since we expected a highly negative
correlation between it and the force of innovation. We started 100 simulation
runs with the following settings:

– network type: complete network with 3 agents
– game type: 3× 3∗ game
– learning dynamics: Bush-Mosteller reinforcement with negative reinforce-

ment, lateral inhibition value (α = 1, β = 1, γ = 1/|T |) and innovation
– initial state: every urn of the sender is filled with black balls and the receiver

does not have any a priori urn.
– break condition: simulation stops if all agents learned a signaling language

Note that the settings of the learning dynamics implicate that the commu-
nicative success value can be between -1 and 17, and because of the initial state
of the sender urns, the force of innovation of all agents is 1 at the beginning.

The simulation results revealed first of all: all agents learn the same signal-
ing language; and that really quickly: they need maximally 500 simulation steps.
Now let’s take a closer look at how a 3×3∗ game played in a 3-agents population
develops during a simulation run by analyzing the communicative success and
the average force of innovation of the population, plus the number of messages,
used in the population.8 Figure 5 shows an exemplary course of the resulting
values’ alteration over time for one of the simulation runs. It shows that in the

6 The communicative success is measured as the average utility value of all agents’
utility value at a given simulation step

7 Note that the range of an utility value is between −β and α.
8 This is the number of all messages that were i) once invented and ii) of which at

least one agent has a non-zero probability to draw at the given simulation step.



FOICS

100 150 200 250 300 350
0

.01

.02

.03

.04

.05

-.3
-.2
-.1
0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

FOI

C
S

0 .01 .02 .03 .04 .05
-.6

-.4

-.2

0

.2

.4

.6

.8

1

Fig. 6. Left: Simulation run of a 3×3∗ game with innovation in a 3-agents population,
starting with simulation step 50. Comparison of communicative success (CS) and force
of innovation (FOI) over time. Right: Data points of 10 simulation runs for FOI values
≤ .05. CS and FOI reveal a very high negative correlation of −.6 for 40,000 data points.

beginning the agents are very innovative and create a lot of messages, which
reduces the number of black balls in the urns, because balls for the new mes-
sages are added and then the urn content is normalized. Note that for the first
communication steps the force of innovation drops rapidly, while the number
of messages rises until it reaches 21 messages. Furthermore, the communicative
success is below zero at the beginning, since agents use a diversity of differ-
ent messages and successful communication is less probable than chance. But
once there evolved an agreement on which messages might be useful in terms of
successful communication, further messages died out, so the number of known
messages decreased. Finally, the communicative success reaches a perfect 1 on
average, while the number of messages equals the number of states (3) and the
force of innovation drops to zero.

By taking a closer look on the data, an interesting interplay between commu-
nicative success and force of innovation becomes evident: successful communica-
tion lowers the force of innovation, whereas unsuccessful communication raises
it. That is not a surprise, since black balls can only change by lateral inhibition:
increase in the case of unsuccessful communication and decrease in the case of
successful communication. The relationship of both values is better seen in Fig-
ure 6 (left) that shows the force of innovation and the communication success of
the same simulation runs as already depicted in Figure 5, but this time i) with-
out the initial phase of the first 50 simulation steps and ii) the value of the force
of innovation is displayed 20 times more fine-grained. The relationship between
both values is clearly recognizable in this figure: one measure’s peak is simul-
taneously the other measure’s valley. Admittedly, the mirroring is not perfect,
but is clearly reveals a plausible social dynamics: the higher the communicative
success, the lover the force of innovation, and vice versa.



Game 2× 2∗ 3× 3∗ 4× 4∗ 5× 5∗ 6× 6∗ 7× 7∗ 8× 8∗

3 agents 1,052 2,120 4,064 9,640 21,712 136,110 > 500,000
5 agents 2,093 5,080 18,053 192,840 > 500,000 > 500,000 > 500,000

Table 1. Runtime Table for n× n∗ games with n = 2 . . . 8; for a complete network of
3 agents and 5 agents.

To get a more quantitative picture of this relationship, we analyzed the data
points’ correlation of all 100 simulation runs (about 40,000 data points). It turned
out that force of innovation and communicative success reveal a very strong
negative correlation: a Pearson-Correlation of −.6. To get an impression how
the data correlate, Figure 5 (right) depicts the data points of ten simulation
runs for FOI-values ≤ .05.9

4.2 Learning Languages by Innovation: A Question of Time

In Section 3 we were able to show that the percentage of agents learning a
signaling language in a multi-agent context decreases by increasing the domain
size of the game. To find out whether innovation can improve these results we
started simulation runs for games with different domains. We used the following
settings:

– network types: complete network with 3 agents and with 5 agents
– learning dynamics: Bush-Mosteller reinforcement with negative reinforce-

ment and lateral inhibition value (α = 1, β = 1, γ = 1/|T |) and innovation
– initial state: every urn of the sender is filled with black balls and the receiver

does not have any a priori urn.
– experiments: 100 simulation runs per n× n∗ game with n = 2 . . . 8
– break condition: simulation stops if the communicative success of every agent

exceeds 99% or the runtime passes the runtime limit of 500,000 communica-
tion steps (= runtime)

These simulation runs gave the following results: i) for the 3-agents account in
combination with n× n∗ games for n = 2 . . . 7 and the 5-agents in combination
with n × n∗ games for n = 2 . . . 5 all agents learned a signaling language in
each simulation run and ii) for the remaining account-game combinations all
simulation runs exceeded the runtime limit (see Table 1). We expect that for the
remaining combination all agents will learn a signaling language as well, but it
takes extremely long.

All in all, we were able to show that the integration of innovation and ex-
tinction of messages leads to a final situation where all agents learned the same
signaling language, if the runtime does not exceed the limit. Nevertheless, we
expect the same result for account-game combinations where simulations steps
of these runs exceeded our limit for a manageable runtime.

9 The reason to illustrate only data points with a FOI value ≤ .05 was to get a better
depiction of the data. Note that more that 99% of all data points have a FOI value
≤ .05 and therefore are depicted here.



4.3 Games with a Limited Message Set

As our previous experiments have shown, increasing the number of agents of the
population and/or states of the game has a disastrous impact on the runtime. Es-
pecially the dependency of the runtime on the number of agents makes the game
inapplicable to experiments with larger populations and network structures. The
problem of the current account is as follows: whenever communication does not
work well, agents’ force of innovation increases and they invent new messages.
And the more agents are interacting with each other, the more new messages
might arise. Thus, the probability of all agents agreeing on a specific set of mes-
sages is virtually zero for a larger population. Of course, the probability is close
to zero but non-zero and therefore you just have to wait long enough for an
population-wide agreement to happen. But the larger the population, the closer
is the probability to zero and the longer is the expected runtime.

A reasonable compromise that allows for innovation while keeping the com-
putational complexity feasible is to limit the maximum number of messages.10

Thus, we introduce a new signaling game: an n × nm game has n states and
actions and maximally m different messages. In such a game, agents that draw
a black ball choose randomly a message from the limited message set, without
the restriction that this message must be completely new to the population.

The new game has an intuitive analogy to actual signaling beings. In princi-
ple, nature might allow an infinite message set, but living beings are only capable
of distinguishing a finite number of messages due to sensory, cognitive or mo-
tor imperfection. In this sense, each message represents a particular category of
non-distinguishable messages.

By adopting this new feature in our game we made experiments to check the
runtime improvement for larger population sizes. In particular, we analyzed a
3 × 3m game with a set of 30 messages (3 × 330 game) in comparison with a
3× 3∗ game by using the following settings:

– network types: complete network with different sizes from 2 up to 9 agents
– learning dynamics: Bush-Mosteller reinforcement with negative reinforce-

ment and lateral inhibition value (α = 1, β = 1, γ = 1/|T |) and innovation
– initial state: every urn of the sender is filled with black balls and the receiver

does not have any a priori urn.
– experiments: 100 simulation runs per network size and for a 3×3∗ game and

3× 330 game as well
– break condition: simulation stops if the communicative success of every

agents exceeds 99% or the runtime passes the runtime limit of 500,000 com-
munication steps (= runtime)

The result is depicted in Figure 7: the comparison of runtime behavior of the
game with an unlimited message set and a limited message set of 30 messages. As
already seen in the experiments of Section 4.2, for a 3× 3∗ game the runtime is

10 Note that since a new invented message extends the history of all messages ever used
by one, the set of possible messages is virtually unlimited.
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Fig. 7. Runtime comparison of games with limited (3 × 330) and unlimited (3 × 3∗)
message sets for different population sizes.

only manageable for a population up to 5 agents and increases with the number
of agents in a strong slope, whereas for a 3 × 330 game the runtime increases
slowly and is for 9 agents still manageable. All in all, the new feature improves
the runtime behavior quite well by keeping the innovational nature of the game.
This makes it also applicable for larger network structures, as we will show in
the next section.

5 Spatial Dynamics

So far we have dealt with fully connected networks of a few agents. However,
when modeling natural scenarios encompassing participants of whole popula-
tions, it is rather unreasonable that i) the number of population members is
that small and ii) all members are connected to each other. To target a more
realistic framework, we arranged experiments on a large population with local
interaction structure: a toroid lattice of 100 × 100 agents; here each agent can
only communicate with her eight direct neighbors (Moore neighborhood).

There are a number of previous studies that addressed signaling games on
spatial structures: one of the first studies analyzed a simple 2×2 signaling game
on a toroid lattice structure, whereby agents use imitation to guide their deci-
sions [Z1]. Some consecutive studies take this analysis up by either changing the
dynamics to reinforcement learning [M1] or by changing the interaction structure
to small-world networks and by extending the game domains to a 3×3 signaling
game [W1]. Another study entails experiments on social network structures as
interaction structure plus incorporating reinforcement learning as update dy-
namics [MF1]. All these studies analyzed a simple variant: a 2×2 or 3×3 game.



The basic result of all these studies was the emergence of regional meaning: the
lattice or network structure was split into local language regions.11

Note that in all these studies the number of possible signaling systems is quite
small. The 2×2 game has only two signaling systems (as depicted in Figure 1) and
the 3×3 game has 6 signaling systems. In the upcoming experiments we applied
3 × 330 games and we also expect regional meaning to emerge. But as opposed
to the before-mentioned studies, here not 2 or 6, but 6840 different signaling
systems are possible! These prerequisites bring a number of questions about: do
stable language regions emerge? And if so, how many different language regions
emerge? And how are these regions arranged? Do they depict a specific pattern
in terms of arrangements with other language regions? Are they stable? This
section addresses these questions.

5.1 Spatial Structure: Dialect Regions

To find answers to the before mentioned questions, we started experiments with
the following settings:

– network type: 10,000 agents placed on a 100× 100 toroid lattice
– game type: 3× 330 game
– learning dynamics: Bush-Mosteller reinforcement with negative reinforce-

ment and lateral inhibition value (α = 1, β = 1, γ = 1/|T |) and innovation
– break condition: simulation stops after 50,000 simulation steps or every agent

has learned a signaling language

Like in the previous experiments, we measured the average communicative
success and the force of innovation of the whole population over time. Further-
more, since we were interested in the number of signaling languages that might
emerge, we also measured the population-wide number of signaling languages
over time. The resulting course of a simulation run for the first 10,000 simula-
tion steps is depicted in Figure 8.

Like for the previous experiments of Section 4.1 (c.f. Figure 5) for a small
population of 3 agents, the force of innovation decreases really fast down to
(almost) zero, while the communicative success first decreases to a negative value
and then increases again. Thus, the initial phase is quite similar. But while for the
experiments of Section 4.1, the 3 agent-population quickly agrees on one signaling
language and the communicative success reaches a perfect value of 1, here the
population of 10,000 agents ’agrees’ on more than 600 signaling languages and
the communicative success reaches an average value of almost .8 after around 500
simulation steps. From this point on the number of signaling languages slowly
decreases, while the value of communicative success slowly increases. Note that
Figure 8 only shows the first 10,000 simulation steps. The whole simulation run
showed that after 50,000 simulation steps the number of signaling languages has

11 A language region is defined as a connected sub-network, of which each member
has learned the same signaling language L, but each other agent connected to this
regions hasn’t learned L.
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Fig. 8. Simulation run of a 3 × 330 game in a population of 10,000 agents placed on
a 100× 100 toroid lattice: average communicative success, force of innovation and the
number of society-wide signaling languages over the first 10,000 simulation steps.

decreased to around 170, while the communicative success reached a value of
more than .9.

Communication cannot be perfectly successful because the population does
not learn one unique, but multiple signaling languages. But how are these differ-
ent signaling languages spatially arranged? If they would be arbitrarily spread
over the whole lattice, we would expect a much lower communicative success
value, basically lower than zero. But since the value is around .8, communication
works quite well even with such a huge number of different signaling languages.
The reason becomes visible if we take a look at the spatial arrangement of the
different signaling languages. It turns out that they form what we call language
regions. A language region is a connected subgraph for which each agent uses
the same signaling language. Figure 9 shows the resulting pattern on a 100x100
toroid lattice, the left figure for the pattern after 2,000 simulation steps (more
than 500 different language regions), the right figure for the pattern after 50,000
simulation steps (around 170 language regions).

Note that Figure 8 shows that the number of signaling languages slowly de-
creases over time. Furthermore, Figure 9 shows that each signaling language
that evolved forms at least one language regions. Consequently, the number of
language regions decreases over time: after 50,000 simulation steps there is only
a third of the number of language regions than after 2,000 simulation steps. We
haven’t analyzed the concrete dynamics that lead to this decline of language
regions, but we expect mechanisms like unification, melting, displacement and
extinction at the borders of neighboring language regions. The exact dynamics
behind this process remains to be analyzed in subsequent studies. In the upcom-



Fig. 9. The allocation of language regions on a 100x100 toroid lattice. A gray cell
represents an agent that learned a signaling language. The borders between language
regions are marked by darkgray lines. While after 2,000 simulation steps the map is
segmented in over 500 language regions (left figure), after 50,000 simulation steps it is
only one third of it, around 170 language regions (right figure).

ing section we present results of the analyses of the spatial relationship between
language regions at one point in time to examine if their placement is randomly
or follows particular patterns.

5.2 Spatial Relationships

In this section we want to analyze how the different language regions actually
relate to each other. We hypothesize that there is an interaction between spatial
distance of two language regions and the similarity of their signaling languages
L = 〈s, r〉.12 For that purpose we define two similarity measures, lexical similarity
and mutual intelligibility, as follows:

Definition 2: Lexical Similarity describes the proportionally common items of
lexical entries.13 Thus between two given signaling languages L1 = 〈s1, r1〉 and
L2 = 〈s2, r2〉 the lexical similarity is defined as follows:

LS(L1, L2) =
|{m ∈M |∃t ∈ T : m = s1(t)} ∩ {m ∈M |∃t ∈ T : m = s2(t)}|

|T |
(4)

12 Note that a signaling language is defined as a strategy pair of a pure sender and
receiver strategy, defined as s : T → M and r : M → A, respectively. Note: while
agents play according to behavioral strategies, once they have learned a signaling
language, their behavioral strategy profile represents a pair of pure strategies.

13 In the case of signaling languages, lexical entries are entailed messages.
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Fig. 10. Left: The language regions 55, 72 are next to each other, while 139 is far off.
Right: strategy profiles of signaling languages L55, L72 and L139.

Definition 3: Mutual Intelligibility describes the expected communicative suc-
cess for two given signaling languages L1 = 〈s1, r1〉 and L2 = 〈s2, r2〉 and is
defined as follows:

MI(L1, L2) =

∑
t(U

x(t, s1, r2) + Ux(t, s2, r1))

2× |T |
(5)

where Ux(t, s, r) is the expected utility14 for a given state t, a pure sender
strategy s and a pure receiver strategy r.

Note that lexical similarity just describes the number of common messages of
two signaling languages. In turn, mutual intelligibility also takes the semantics
of messages into account: if messages describe the same state/action, mutual
intelligibility is higher. But if two signaling languages have common messages for
different states/actions, it gives advantage to lexical similarity, but disadvantages
mutual intelligibility, since it supports miscommunication.15

To give an example of these similarity measures, lets take a look at the lattice
distribution after 50,000 simulation steps as depicted in the left picture of Figure
10. There are three language regions that are marked by its signaling languages

14 Expected utility Ux(t, s, r) is defined as follows:

Ux(t, s, r) =

{
U(t, r(s(t))) if s(t) ∈ {m ∈M |∃a ∈ A : m = r−1(a)}
α
|A| + β×(|A|−1)

|A| else

15 It can be shown that two signaling languages can have a high value of lexical simi-
larity as well as a low value of mutual intelligibility, and vice versa.
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Fig. 11. The grey dots depict the average values of lexical similarity (LS) and mutual
intelligibility (MI) between two language regions in dependence of the distance between
them. The black dots depict a language region’s average number of other language
regions in a particular distance to it.

L55, L72 and L139. The concrete signaling languages are depicted in the right
picture. It turns out that the close language regions 55 and 72 have a quite high
lexical similarity value (.67) and an even higher mutual intelligibility value (.78).
The distant language regions 139 and 55 have a low lexical similarity value (.33)
and also a low mutual intelligibility value (.22). Similarly, language region 139
and 72 have no lexical similarity and a low mutual intelligibility value (.33).

To compare these similarity measures to spatial distances of language regions
in a more systematic way, we introduce the measure regional distance, a value
that describes the distance between two language regions. In detail, it describes
the average distance of all members of one language region to all members of
the other language region. It is defined as follows:

Definition 4: Regional Distance describes the distance between two connected
subgraphs of a connected graph as the average distance over all members n ∈ N1

of subgraph G1 and n ∈ N2 of subgraph G2, defined as follows:

RD(G1, G2) =

∑
ni∈N1

∑
nj∈N2

SP (ni, nj)

|N1| × |N2|
(6)

where SP (ni, nj) is the shortest path length16 between node ni and node nj .

Following this approach we analyzed lexical similarity and mutual intelligi-
bility depending on the distance of each pair of two language regions. The result
is depicted in Figure 11: while the number of language regions increases with its

16 The shortest path length of two nodes describes the length of a path (= number of
edges) between them that has a minimal number of edges.



distance to a specific language region, the similarity values decrease. Further-
more, both similarity measures follow a curve with falling slope to an expected
random value. This result reveals that i) distant language regions seem to have
no influence to each other’s communication system, since their signaling lan-
guages are as similar as randomly chosen ones and ii) spatially close language
regions have high similarity values and must strongly influence each other. Both
similarity values decrease with the distance.

6 Conclusion and Outlook

In the last few decades, a large body of research has been done to model and
analyze the way that stable communication systems emerge among individu-
als, whereas a popular account in this field is to use repeated signaling games
as a model to analyze the circumstances that lead to the emergence to stable
communication strategies, so-called signaling systems [BZ1] [FJ1] [HSRZ1]. One
premise of most of the work is in accordance with Occam’s razor : take the sim-
plest model that can explain the phenomenon. The first research results were
very promising, since they showed that signaling systems evolve with a very
simple learning account: reinforcement learning [HZ1] [S1].

But further studies showed that this result holds basically for simple 2 × 2
games between two players, but not for more complex games [B1] or larger
populations [M1]. Thus we proposed the question: by taking the model of a
repeated signaling game in combination with reinforcement learning as starting
point, what reasonable additional assumptions are necessary for the emergence
of efficient communication (in terms of signaling systems) in complex signaling
games played in large populations?

In a first step we extended the learning dynamics with the concept of in-
novation [ASZ1] [S1]. The basic plot is as follows: agents have the ability to
occasionally invent new messages. Furthermore, unused messages get automati-
cally lost. We found that these additional concepts enable perfect communication
in more complex games and larger populations. But the major drawback of al-
lowing innovation is the exponential computational complexity. It can be shown
that extending population size and/or domains of the game even in a moder-
ate magnitude has a tremendous effect on the probability of agents to find a
consensus on a common signaling language, what strongly affects the runtime.

By limiting the game’s innovation capacity to a limited set of possible mes-
sages, we created a new game that keeps the innovative character of the previous
game, but solved the problem of computational complexity. With this new ac-
count, we varied the network structure, such that agents were arranged on a
two-dimensional toroid lattice. This lead to the emergence of language regions,
arranged in a particular pattern: the closer the language regions, the more similar
their signaling languages.

All in all, we were able to show that, by starting with an account of repeated
signaling games and reinforcement learning, one simple extensions is sufficient
to realize the emergence of signaling systems for complex signaling games and



large populations: innovation of new messages within a limited message set.
Furthermore, our experiments showed that a local communication structure leads
to local language regions arranged in a continuous way.

Further research should go in multiple directions. First of all, it might be
worth to take a closer look at the way language regions change over time, es-
pecially at the border regions. Additionally, what remains to be shown is that
our results in fact hold for higher numbers of domains of the game. Is our result
general, or only true for specific values? It would also be interesting to see what
kind of influence more realistic network-types (c.f. small-world networks) would
have on the outcome. These are but a few extensions, as a multitude of further
experiments addressing factors that might influence the way language regions
emerge and interact readily suggest themselves.
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