Language Change and Social Networks

Presented by: Corinna Huettel
Overview

1. Introduction
2. Language change as a diffusion process
3. The model
4. The effect of different types of networks
5. Effect of two types of learners
6. Effect of different population size
7. Conclusion
8. Personal statement
1. Introduction

• Social networks determining factor in languages

• Sociolinguistic studies of social networks focus on:
 ➢ Small communities
 ➢ Relation between individuals
 ➢ Example: three inner-city communities in Belfast
1. Introduction

- Multiple relationships within individuals
 - Relatives
 - Neighbors
 - Friends
 - Colleagues

- Different degrees of integration

- Linguistic behaviors related to integrity into network
 - The more integrated a person is, the more (s)he adapts to speech norms
1. Introduction

- Very few empirical data have actually been able to show the effect of social networks over a long time.

- It’s hardly possible to get the structure of large communities.
 - Can be done by computer simulations.

- Parameters can be manipulated due to computer simulations (population size, connectivity...).
1. Introduction

• BUT: Computer models cannot consider the actual population structure or *regular* or *random* networks.

![Social network diagram](image)

Figure 1: The social network in Nettle’s model of language change (1999). The numbers represent agents at different age stages. Nodes 1 and 2 represent infants and children, 3, 4 and 5 represent adults.
1. Introduction

- Recent studies show that large-scale networks (internet, friendship...) are not regular or random

- Two features discovered:
 - *Scale-free*
 - *Small-world*

Examination of the effect of social networks on the dynamics and outcome of language change
2. Language change as a diffusion process

- Language change = diffusion process of some new linguistic elements in language communities

- Language learner samples a (large) part of the language community in his peer group or older generations, NOT younger generations
 - New innovations unlikely learned by next generation: "Threshold Problem"
2. Language change as a diffusion process

• Overcoming the threshold:
 - Functional selection: a *functional bias* towards the innovation
 - Social selection: speakers with higher social impact favor the learning

• Model to study the threshold problem (by Nettle):
 - Simulation of attitude changes in social groups
 - Population structured in age and social status
 - Learner chooses one linguistic variant by evaluating their impact in the community
2. Language change as a diffusion process

- Model to study the threshold problem (by nettle):
 - Shorter social distance/higher social status \Rightarrow stronger impact on learner
 - Innovation with small functional advantage has a high chance to spread
 - **Conclusion:** functional biases maybe affect the direction of language change, but may not provide the conditions for change
 - **Challenge to explain „changes from below“:** many changes start in upper working class or lower middle class
3. The model

- Population represented as network with N nodes (agents)

- Two linguistic states
 - Unchanged form of innovation: U
 - Changed form of innovation: C

- Age structure from 1 (infants) to 5 (adults)

- 1+2 learners; 3–5 teachers
3. The model

- Old agents get replaced

- Illustration, how a learner might learn from neighbors:

\[
F(U) = fuqu \\
F(C) = fcqc
\]

- U and C in the input => learning form with higher fitness
3. The model

- Fitness measured by:
 - Function of incorporating the functional value \((\text{fu}/\text{fc})\)
 - Frequency in the learner’s neighborhood \((\text{qu}/\text{qc})\)

- State of the learner:

 \[
 S(L) = \begin{cases}
 U & \text{if } F(U) > F(C), \\
 C & \text{if } F(U) \leq F(C).
 \end{cases}
 \]

- Example:
 - Network of 10 agents
 - Learner connected with 4 agents, 3 use \(U\), 1 uses \(C\)
 - Functional values: \(U=1; \ C=4 \Rightarrow F(U)=3; F(C)=4\)
 - Learner will learn \(C\)-form
3. The model

• Example:
 - Assumption: \(fu = 1 \)
 - Using parameter functional bias \(\beta \), measuring functional advantage of \(C/U: \beta = fc/fu \)

• Diffusion process compared in 4 different kinds of network structures:
 - Random
 - Regular
 - Small–world
 - Scale–free
4. The effect of different types of networks

- The diffusion is successful in all types of networks, but the curves look different

Figure 2: Diffusion dynamics in four types of networks in 20 runs (x axis: the number of generations, y axis: the percentage of changed form used in the population) (population size N=500, average degree <k>=20, functional bias β=20, and number of innovators I=1). (a) regular network; (b) small-world network; (c) random network; (d) scale-free network.
4. The effect of different types of networks

- The diffusion rate in small-world networks now changed, because the number of short-cut relations are smaller.

Figure 3: Diffusion dynamics in four types of networks in 20 runs under another set of condition: N=500, \(\langle k \rangle = 20, \beta = 10, l = 10 \). (a) regular network; (b) small-world network; (c) random network; (d) scale-free network.
4. The effect of different types of networks

- Runs with unsuccessful diffusion

Figure 4: Diffusion dynamics in four types of networks in 20 runs with a small functional bias ($\beta=2$) but a large number of innovators ($I=100$). (a) regular network; (b) small-world network; (c) random network; (d) scale-free network.
4. The effect of different types of networks

- Between 3 to 7 regular and small-world networks have a higher probability of diffusion rate than the others.
- Small-world and regular networks: high success probability, but slow diffusion rate.
- Random and scale-free networks: high diffusion rate, but no slow success probability.

Figure 5: (a) Probabilities of successful diffusion under different functional biases; (b) Average diffusion time over 100 runs ($N=400$, $<k>=20$, $l=10$).
5. Effect of two types of learners

- Learner learn from all connected neighbors at age stage 1+2

- Two types:
 - **Categorical**: adopts form with higher impact
 - **Probabilistic**: adopts both forms and uses them proportional to their impact

- Probabilistic learners make language change so frequent
5. Effect of two types of learners

- If the learners are all probabilistic diffusion is possible
- In small-world networks the rate is higher but it takes longer

Figure 6: The diffusion dynamics in a population with all probabilistic learners in two networks. \(N=500, \langle k \rangle=20, \beta=2, I=1\). (a) small-world network; (b) scale-free network.
5. Effect of two types of learners

- The more probabilistic learners there are, the faster diffusion there is.

Figure 7: Probability of successful diffusion in populations with different proportions of probabilistic learners, under different functional biases. (N=500, <k>=20, l=1). Upper panel: small-world network; lower panel: scale-free network.
6. Effect of different population size

Figure 8: The relation between population size and the rate of change in four types of networks (N=500, \(<k> = 20, l = 1, 50\% \) probabilistic learners). (a) regular network; (b) small-world network; (c) random network; (d) scale-free network.

Figure 9: The average path length with respect to different network sizes in the four types of networks.
7. Conclusion

- Regular and small-world networks: high success probability, but slow diffusion rate

- Random and scale-free networks: fast diffusion rate, but lower success probability

- This model shows that there is a very high probability of linguistic change as long as there is at least a small number of probabilistic learners
8. Personal statement

- I think the model is very abstract, because the study is based on a computer simulation not on real world community structures.

- I now know some models that may explain language innovations better.

- It is interesting that it depends on the type of learner if an innovation spreads.