

University of Tübingen
Department of General and Computational Linguistics
Wilhelmstr. 19, 72074 Tübingen, Germany

Tutorial: Java-API to GermaNet

Version 2.0 (December 11, 2009)

Verena Henrich

Acknowledgments go to Marie Hinrichs and Holger Wunsch for their valuable input on both
the features and usability of this API.

Tutorial: Java-API to GermaNet Verena Henrich

 2

Table of Contents

1. Introduction..3
1.1. Basics About GermaNet ...3
1.2. Java-API to GermaNet..3
1.3. GermaNet XML Files ...4

1.3.1. Synset Files..4
1.3.2. Relation Files ...5

2. Tutorial ..6
2.1. Before You Start ...7
2.2. Step 1: Importing Libraries...7
2.3. Step 2: Getting User Input ..8
2.4. Step 3: Create a GermaNet Object..8
2.5. Step 4: Finding All Synsets ..9
2.6. Step 5: Generating the Hyperonym Graph ...10
2.7. Step 6: Recursively Printing Hyperonyms and Hyponyms ..11
2.8. Step 7: Trying It Out...13

3. Code Snippets and Samples...14
3.1. Creating a GermaNet Object ..14
3.2. Getting Synsets from a GermaNet Object ..14
3.3. Working with Synsets...15
3.4. Getting LexUnits from a GermaNet Object..17
3.5. Working with LexUnits ..17
3.6. Working with Frames and Examples..19

Tutorial: Java-API to GermaNet Verena Henrich

 3

1. Introduction

This tutorial is about the Java-API to GermaNet. After an introduction of GermaNet and the
API, there is a short overview of the GermaNet XML files (all in subsections of this chapter).
Chapter 2 introduces the Java-API to GermaNet by an example tutorial. In the following
chapter 3 further methods are explained to finally give a complete overview of the API.

1.1. Basics About GermaNet
GermaNet1 is a lexical semantic network that partitions the lexical space in a set of concepts
that are interlinked with semantic relations. A semantic concept is modeled by a synset (short
for synonymy set) in GermaNet. A synset is a set of words (called lexical units) where all the
words are taken to have (almost) the same meaning. Thus a synset is a set-representation of
the semantic relation of synonymy.
There are two types of semantic relations in GermaNet: conceptual relations and lexical
relations. Conceptual relations hold between two semantic concepts or synsets. They include
relations such as hyperonymy, part-whole relations, entailment, or causation. Lexical relations
hold between two individual lexical units. Antonymy, a pair of opposites, is an example of a
lexical relation.

1.2. Java-API to GermaNet
The Java-API to GermaNet represents a programming interface, which means that it provides
several methods how GermaNet data can be accessed. The API is located in package
germanet.

The main class named GermaNet serves as a starting point to the API. When a GermaNet
object is constructed, data is loaded from the GermaNet XML sources. All synsets (class
Synset) and lexical units (class LexUnit) can be obtained through this object, which in turn
can be used to examine attributes or find semantic relations, among other things.

This API specifies high-level look-up access to GermaNet data. As it is intended to be a read-
only resource, no methods to extend or modify data are provided. All classes and methods are
described in the enclosed Java API documentation.
The idea and basic implementation of this API is based on the Java-API to GermaNet by
Marie Hinrichs2. The main differences between Marie’s API and this new version are based
on new features in GermaNet, which lead to an adapted and extended XML file design.
Marie’s API can be used up to version 5.1 of GermaNet (Released 30 April 2008). All later
versions of GermaNet should be used with the new version.

Within the Java-API, there is a GermaNet class that is a collection of German lexical units
(LexUnit) organized into synsets (Synset). A GermaNet object provides methods for

1 See http://www.sfs.uni-tuebingen.de/GermaNet/
2 See http://www.sfs.uni-tuebingen.de/GermaNet/GermaNetJavaAPI.zip

Tutorial: Java-API to GermaNet Verena Henrich

 4

retrieving lists of Synsets or LexUnits, which can be filtered by word category,
orthographic form, or some combination.

A Synset has a WordCategory (adj, nomen, verben) and consists of one or more LexUnits
and a paraphrase (represented as Strings). The list of LexUnits for a Synset is never
empty. A Synset object provides methods for retrieving the word category, the paraphrase,
and all lexical units as well as methods for retrieving lists of conceptually related synsets.
A LexUnit consists of an orthographical form (orthForms, represented as a String) and has
optionally an orthographical variant (orthVar), an old orthographical form (oldOrthForm)
and an old orthographical variant (oldOrthVar). Furthermore, a LexUnit object can have
Examples and Frames, and it has the following attributes: sense (int), source (String),
styleMarking (boolean), artificial (boolean), and namedEntity (boolean). A
LexUnit object provides methods for retrieving any of its properties, as well as methods for
retrieving lists of other LexUnits lexically related to it.

A Frame is simply a container for frame data (String).

An Example consists of text (String) and zero or more Frames.

A ConRel is a set of possible conceptual relations between Synsets (represented as an enum
type). A ConRel object provides methods for checking if a particular String is a valid
conceptual relation, and for determining if a relation is transitive or not. The set consists of
the following transitive and non-transitive relations:

• Transitive relations: hyperonymy, hyponymy, meronymy, holonymy
• Non-Transitive relations: entailment, entailed, causation, caused, association.

A LexRel is a set of possible lexical relations between LexUnits (represented as an enum
type). A LexRel object provides a method for checking if a particular String is a valid lexical
relation. Since there is only one transitive lexical relation (synonymy), and no special
processing is required by the API to retrieve synonyms, there is no distinction made between
transitive and non-transitive lexical relations. The set consists of the following relations:

• synonymy,
• antonymy,

• pertonymy.
A WordCategory is a set of possible word categories (represented as an enum type) and
contains the values: adj, nomen, verben.

1.3. GermaNet XML Files
The XML files represent the GermaNet data. There are two types of XML files. One type
represents all synsets with their lexical units and all other properties. The other type
represents all relations, both conceptual and lexical relations.

Synset Files
The XML files contatin all synsets in separated files. These files are named
wordcategory.wordclass.xml, e.g. adj.Allgemein.xml. Each synset starts with a synset
tag and contatins at least one lexical unit (encoded with the tag lexUnit) with its properties
and frames and examples.

Tutorial: Java-API to GermaNet Verena Henrich

 5

<synsets>
 <synset id="s[0-9]" wordCategory="{adj|nomen|verben}">
 <lexUnit id="l[0-9]" sense="[0-9]" source="STRING"
 namedEntity="{yes|no}" artificial="{yes|no}" styleMarking="{yes|no}">
 <orthForm>STRING</orthForm>
 <orthVar>STRING</orthVar>
 <oldOrthForm>STRING</oldOrthForm>
 <oldOrthVar>STRING</oldOrthVar>
 <example><text>STRING</text><exframe>STRING</exframe></example>
 <frame>STRING</frame>
 </lexUnit>
 <paraphrase>STRING</paraphrase>
 </synset>
 ...
</synsets>

Relation Files
The relations are stored within a separate XML file. Both kinds of relations are encoded:
conceptual (tag con_rel) and lexical (tag lex_rel) relations.
<relations>
 <con_rel dir="{one|both|revert}" from="s[0-9]" to="s[0-9]"
 name="{hyperonymy|holonymy|causation|...}"
 inv="{hyponymy|entailed|...}"/>
 <lex_rel dir="{one|both|revert}" from="l[0-9]" to="l[0-9]"
 name="{antonymy|pertonymy|...}"/>
 ...
</relations>

Tutorial: Java-API to GermaNet Verena Henrich

 6

2. Tutorial

In this tutorial, we will develop a Java program that makes use of the most important part of
the GermaNet-API. Once it is finished, your program will even be useful – it generates a
description of a graph that shows a concept and all its hyperonyms and hypernyms up to a
certain distance from the concept, which is specified by the user. The file
HyperonymGraph.java contains the source code for this tutorial, and is included in the
GermaNet distribution.
The final output of the tutorial program will look somewhat like the graph in Figure 1.

Figure 1: Output of this tutorial

Tutorial: Java-API to GermaNet Verena Henrich

 7

2.1. Before You Start
If you haven't done so already, you will need to obtain:

1. The GermaNet data (unpacked to a directory typically named Vxx_UTF).
2. The GermaNet Java library, called GermaNetApi2.0.jar.

3. In order to turn the graph description into an actual image, you will need the GraphViz
Tools3. Now would be a good time to download and install them.

All of the classes described previously are defined in the package germanet within the
GermaNetApi2.0.jar file. You do not need to unpack the jar file.

Classpath
If you are working from the command line, you will need to add GermaNetApi2.0.jar to your
CLASSPATH environment variable4.

If you are working within an IDE (such as NetBeans or Eclipse), add GermaNetApi2.0.jar to
the classpath for any project, which uses GermaNet.

Important Note on Memory
Loading GermaNet requires more memory than the JVM allocates by default. Any application
that loads GermaNet will most likely need to be run with JVM options that increase the
memory allocated, like this:
java -Xms128m -Xmx128m MyApplication

These options can be added to your IDE's VM options so that they will be used automatically
when your application is run from within the IDE.
Depending on the memory needs of the application itself, the 128's may need to be changed to
a higher number. Be careful not to allocate too much memory for the JVM, though, as this
may cause other running programs (like your windowing environment) to crash.

2.2. Step 1: Importing Libraries
Before we can create a GermaNet object, which loads the XML data and provides methods for
looking up synsets and lexical units, we need to import the germanet library and several other
necessary libraries.

The box below shows the first lines of the program. If you plan to type the program yourself
along with the tutorial, create a file called HyperonymGraph.java.

3 The GraphViz Tools are freely available from www.graphviz.org
4 See http://faq.javaranch.com/java/HowToSetTheClasspath for help with setting your classpath on various
operating systems.

Tutorial: Java-API to GermaNet Verena Henrich

 8

import germanet.*;
import java.io.*;
import java.util.*;
public class HyperonymGraph {
 public static void main(String[] args) {
 // to be filled in...
 }
}

2.3. Step 2: Getting User Input
The program needs some information to do its job that the user must supply:
• The word (i.e. orthographic form that represents a lexical unit) whose hyperonyms and

hyponyms should be displayed (to be accurate, it is not a lexical unit whose relations are
to be displayed, but rather the synset that the lexical unit is a member of). In fact, a lexical
unit could be a member of more than one synset if it is ambiguous, in which case the
program will print the hyperonyms and hyponyms for all of the synsets.

• The maximum distance up to which hyperonyms and hyponyms are to be displayed.
• The name of the file to write the output to.
import germanet.*;
import java.io.*;
import java.util.*;

public class HyperonymGraph {
 public static void main(String[] args) {
 Scanner keyboard = new Scanner(System.in);
 String destName;
 File gnetDir;
 String word;
 int depth;
 Writer dest;
 System.out.println("HyperonymGraph creates a GraphViz graph " +
 "description of hyperonyms and hyponyms of a GermaNet" +
 "concept up to a given depth.");
 System.out.println("Enter <word> <depth> <outputFile> " +
 "[eg: Automobil 2 auto.dot]: ");
 word = keyboard.next();
 depth = keyboard.nextInt();
 destName = keyboard.nextLine().trim();
 // to be continued...
 }
}

2.4. Step 3: Create a GermaNet Object
To construct a GermaNet object, provide the location of the GermaNet data. This can be done
with a String representing the path to the directory containing the data, or with a File
object. Generally speaking, file locations should never be hardcoded, but for the sake of
simplicity, this code assumes that the GermaNet data files are in a directory called
/germanet/V52_UTF. Please change the line:

Tutorial: Java-API to GermaNet Verena Henrich

 9

 gnetDir = new File("/germanet/V52_UTF");

to reflect the actual location of the GermaNet data files on your computer.
import germanet.*;
import java.io.*;
import java.util.*;

public class HyperonymGraph {
 public static void main(String[] args) {
 try {
 Scanner keyboard = new Scanner(System.in);
 String destName;
 String word;
 int depth;
 Writer dest;
 System.out.println("HyperonymGraph creates a GraphViz graph " +
 "description of hyperonyms and hyponyms of a GermaNet" +
 "concept up to a given depth.");
 System.out.println("Enter <word> <depth> <outputFile> " +

 "[eg: Automobil 2 auto.dot]: ");
 word = keyboard.next();
 depth = keyboard.nextInt();
 destName = keyboard.nextLine().trim();
 gnetDir = new File("/germanet/V51_UTF");
 GermaNet gnet = new GermaNet(gnetDir);
 // to be continued...
 } catch (Exception ex) {
 ex.printStackTrace();
 System.exit(0);
 }
 }
}

Notice that we need to enclose the call to the constructor in a try/catch block. This is because
the GermaNet object cannot be created if the data files are not found or are corrupted. If
something goes wrong, an exception is thrown. We just print the stack trace and exit if this
happens.

2.5. Step 4: Finding All Synsets
We can now find all the synsets in GermaNet that the word orthForm is a member of. Recall
that words may be ambiguous, which means that a word (or lexical unit) may occur in more
than one synset.
 List<Synset> synsets;
 synsets = gnet.getSynsets(word);
 if (synsets.size() == 0) {
 System.out.println(word + " not found in GermaNet");
 System.exit(0);
 }
 // to be continued...

The method getSynsets(orthForm), which is defined in the class GermaNet, returns a List
containing all of the Synsets that the word occurs in. If the size of this list is zero, then no
synsets were found with a lexical unit containing the orthographic form orthForm, and we
exit the program.

Tutorial: Java-API to GermaNet Verena Henrich

 10

Each element of the List synsets is a Synset object. A Synset object has methods to
retrieve all the lexical units that are members of the synset, and to find out about what other
synsets are related to it with respect to a specific kind of conceptual relation. We will use
some of the methods that are implemented in the Synset class in the next step.

2.6. Step 5: Generating the Hyperonym Graph
We are now ready to generate the output, which is first stored in a String called dotCode,
then written to the output file. As mentioned before, our program does not directly create
images, but rather textual descriptions of graphs in the GraphViz graph definition language.
These can later be turned into images using the GraphViz tools.
 String dotCode = "";
 dotCode += "graph G {\n";
 dotCode += "overlap=false\n";
 dotCode += "splines=true\n";
 dotCode += "orientation=landscape\n";
 dotCode += "size=\"13,15\"\n";
 HashSet<Synset> visited = new HashSet<Synset>();
 for (Synset syn : synsets) {
 dotCode += printHyperonyms(syn, depth, visited);
 }
 dotCode += "}";
 dest = new BufferedWriter(new OutputStreamWriter(
 new FileOutputStream(new File(destName)), "UTF-8"));
 dest.write(dotCode);
 dest.close();

The first line of the dotCode String opens a GraphViz graph-statement. The following four
lines then define the basic layout of the graph. Please refer to the GraphViz manual if you
want to find out what exactly these statements do.
The algorithm that traverses the network to find the hyperonyms and hyponyms is not very
complicated. It works as follows:
• Start with a Synset that the lexical unit the user requested is a member of (called Synset

syn). This becomes the center node of the graph.

• Look up all hyperonyms of syn and add them to the graph as neighbor nodes of syn.

• Look up all hyponyms of syn and add them to the graph also.

• For each hyperonym and hyponym found, recursively find and add their hyperonyms and
hyponyms to the graph, up to the maximum distance to the center node, as specified by
the user.

To sum up, the algorithm finds all hyperonyms and hyponyms of a given Synset syn, adds
them to the graph, and then in turn does exactly the same it did with syn with all of its
hyperonyms and hyponyms.

There is one catch, however, that we must pay attention to: Assume the algorithm looks at
some Synset s. It finds all hyperonyms of s and adds them to the graph. Then it recursively
repeats all its steps for each hyperonym h it found: That is, it first finds all hyperonyms of s,
then it finds all hyponyms of h. At this point, we must be careful, since the Synset s the
algorithm looked at in the previous recursive step is, of course, a hyponym of h! We must
make sure that the algorithm does not consider Synsets it already looked at over and over
again. In our program, we use the HashSet visited for this: For each Synset the algorithm

Tutorial: Java-API to GermaNet Verena Henrich

 11

finds, we add the Synset to the visited set. Any Synset that is in the visited set is not
considered any further by the algorithm in subsequent recursive steps.

The program proceeds by calling the static printHyperonyms() method for each Synset in
the synsets list. In the next step, we will turn to printHyperonyms(), which is the
implementation of the recursive algorithm sketched above.
We then finish up by adding a closing brace to the GraphViz description, write the code to the
output file, and close the file.

2.7. Step 6: Recursively Printing Hyperonyms and Hyponyms
The printHyperonyms() method, which recursively adds all hyperonyms and hyponyms of a
synset to the hyperonym graph, expects three arguments:

• The synset whose hyperonyms and hyponyms are to be added next (the argument synset)

• The remaining distance from the center node of the graph to the last hyperonym or
hyponym to be added (argument depth)

• The set of synsets already visited (argument visited)
 static String printHyperonyms(Synset synset, int depth,
 HashSet<Synset> visited) {

Now declare the variables we will need later:
 String rval = "";
 List<LexUnit> lexUnits;
 String orthForm = "";
 List<Synset> hyperonyms = new ArrayList<Synset>();
 List<Synset> relations;
 String hypOrthForm;
 visited.add(synset);
 // to be continued...
 }

The synset is added to the visited set (to make sure the algorithm does not run in an infinite
loop; see step 4).

We have already seen that the GermaNet-API contains a special class, Synset, that represents
the properties of a synset. There is also a class LexUnit that represents the properties of a
lexical unit. Both classes provide methods to obtain information about other objects in
GermaNet the synset or lexical unit is related to. A lexical unit may contain multiple
orthographic forms (i.e. orthForm (main orthographic form), orthVar (a variant of the main
form), oldOrthForm, (main orthographic form in the old German orthography), and
oldOrthVar (a variant of the old form)), which represent different spellings of the same
word. If there are several spellings of a word, for example Schloß and Schloss in the old and
new German spelling, Schloss represents orthForm and Schloß represents oldOrthForm.

We will use the main orthographical form of the LexUnit that is first returned by
synset.getLexUnits() as a representative for the concept the Synset represents. So we
must first retrieve all lexical units that are a member of the synset:
 lexUnits = synset.getLexUnits();

As you can see, this works very much the same as retrieving all synsets in GermaNet.
getLexUnits(), which is a method of the Synset class, returns a List of LexUnit objects.

Tutorial: Java-API to GermaNet Verena Henrich

 12

We now fetch the first orthographic form of the first LexUnit and add it to the graph
description, along with some formatting information:
 orthForm = lexUnits.get(0).getOrthForm();
 rval += "\"" + orthForm + "\" [fontname=Helvetica,fontsize=10]\n";

Again, you can see that the way orthographic forms are retrieved is extremely similar to the
way synsets and lexical units are accessed. Of course, since orthographic forms are plain
strings, the List returned is of type String.

It is now time to collect all hyperonyms and hyponyms and add them to the graph. Since we
will make no difference in the graphical output between hyperonyms and hyponyms we will
store them (a little sloppily) in one list called hyperonyms.
 relations = synset.getRelatedSynsets(ConRel.hyperonymy);
 hyperonyms.addAll(relations);
 relations = synset.getRelatedSynsets(ConRel.hyponymy);
 hyperonyms.addAll(relations);

ConRel is an enum class defined in GermaNet. Enums are special constructs in Java for
storing constants. The ConRel class provides a way of telling the
getRelatedSynsets(conRel) method which relation is being requested so that an invalid
relation cannot be requested.
ConRel.hyperonymy and ConRel.hyponymy are conceptual relations that apply between
synsets. The complete list of conceptual realations are: hyperonymy, hyponymy, meronymy,
holonymy, entailment, entailed, causation, caused, and association.
Similarly, the LexUnit class contains a getRelatedLexUnits(lexRel) method which
accepts a LexRel object as a parameter.
01 for (Synset syn : hyperonyms) {
02 if (!visited.contains(syn)) {
03 hypOrthForm = syn.getLexUnits().get(0).getOrthForm();
04 rval += "\"" + orthForm + "\" -- \"" + hypOrthForm + "\";\n";
05
06 if (depth > 1) {
07 rval += printHyperonyms(syn, depth - 1, visited);
08 } else {
09 rval +="\"" + hypOrthForm + "\"
[fontname=Helvetica,fontsize=8]\n";
10 }
11 }
12 }
13 // return the graph string generated
14 return rval;

For each hyperonym and hyponym we found, we first check if we have visited it before (line
2). If so, we skip it. Otherwise, we fetch the first orthographic form of the first lexical unit
(line 3) and use it in line 4 to add an edge to the graph description between the node that
represents the current synset and the node that represents the hyperonym or hyponym (edges
in GraphViz syntax are expressed by two node labels that are separated by --).

If the maximum distance to the center node has not yet been reached (line 6), we add the
hyperonyms and hyponyms of the current hyperonym or hyponym by recursively calling
printHyperonyms() with a decremented depth. Otherwise, we add some formatting
information for the hyperonym or hyponym node.

Tutorial: Java-API to GermaNet Verena Henrich

 13

2.8. Step 7: Trying It Out
This is it! We are now ready to test our program. Compile the source code using java jdk 6.0
or above:
javac HyperonymGraph.java

Then run the program:

java -Xms128m -Xmx128m HyperonymGraph

Let's create a graph that shows the concept Automobil in the center and the hyperonyms and
hyponyms up to a distance of two. When asked to enter the data, type Automobil 2
auto.dot:

HyperonymGraph creates a GraphViz graph description of hyperonyms and hyponyms of a
GermaNet concept up to a given depth.
Enter <word> <depth> <outputFile> [eg: Automobil 2 auto.dot]:
Automobil 2 auto.dot

This creates the graph description file auto.dot in the current working directory. The first few
lines should look like this:
graph G {
overlap=false
splines=true
orientation=landscape
size="13,15"
"Automobil" [fontname=Helvetica,fontsize=10]
"Automobil" -- "Muldenkipper";
"Muldenkipper" [fontname=Helvetica,fontsize=10]
"Muldenkipper" -- "Bauwerkzeug";
"Bauwerkzeug" [fontname=Helvetica,fontsize=8]
"Automobil" -- "Bagger";
...

We can now use one of the GraphViz tools to create a visual representation of the graph from
the graph description file in a PNG file called auto.png:

neato -Tpng auto.dot -o auto.png

The GraphViz tools provide many more output formats and ways of influencing the layout of
the graph, which are described in the GraphViz manuals5.

This finishes the tutorial. Please see the GermaNet javadoc documentation, viewable in your
web browser, for a complete list of methods, including descriptions, available for each class
within the germanet package.

5 See www.graphviz.org

Tutorial: Java-API to GermaNet Verena Henrich

 14

3. Code Snippets and Samples

This section contains code snippets and samples that demonstrate how to use the GermaNet
library objects and their methods.

3.1. Creating a GermaNet Object
Before you can construct a GermaNet object, you need to make sure that the
GermaNetApi2.0.jar file is on your classpath, then import the library:
import germanet.api.*;

When a GermaNet object is created, it needs to know where to find the XML-formatted
GermaNet data files. The location of the directory containing the data files is sent as a
parameter to the GermaNet constructor either as a String object:

GermaNet gnet = new GermaNet("/germanet/V52_UTF/");

 or a File object:
File gnetDir = new File("/germanet/V52_UTF");
GermaNet gnet = new GermaNet(gnetDir);

To ignore case when getting Synsets and LexUnits, set the ignoreCase flag in the
constructor:
GermaNet gnet = new GermaNet("/germanet/V52_UTF/", true);

 or:
File gnetDir = new File("/germanet/V52_UTF");
GermaNet gnet = new GermaNet(gnetDir, true);

Unless otherwise stated in the javadoc documentation, all methods in all objects will return an
empty List rather than null to indicate that no objects exist for a given request.

3.2. Getting Synsets from a GermaNet Object
A Synset has a WordCategory (i.e. adj, nomen, verben), a paraphrase (represented as a
String), and a List of LexUnits. The List of LexUnits for a Synset is never empty.

A Synset object provides methods for retrieving any of its properties as well as methods for
retrieving Lists of other Synsets conceptually related to it. Once you have constructed a
GermaNet object (called gnet in the examples below), you can retrieve Lists of Synsets,
using orthographical form or word category filtering, if desired.
Get a List of all Synsets:

List<Synset> allSynsets = gnet.getSynsets();

Get a List of all Synsets containing a lexical unit with orthForm Bank (Note: if gnet was
constructed with the ignoreCase flag set, then the following method call will return the same
list with parameters such as bank, BANK or BaNK):

Tutorial: Java-API to GermaNet Verena Henrich

 15

List<Synset> synList = gnet.getSynsets("Bank");

Get a List of all Synsets with word category adjective (WordCategory.adj, other options
are WordCategory.nomen and WordCategory.verben):

List<Synset> adjSynsets = gnet.getSynsets(WordCategory.adj);

3.3. Working with Synsets
Once you have obtained a List of Synsets, you can start processing them. A Synset object
has methods for retrieving its word category, lexical units (or just the orthographic forms of
the lexical units), and paraphrases, as well as methods for retrieving synsets that are related to
it.

To get a synset's word category and do further processing in case of an adjective:
WordCategory wc = aSynset.getWordCategory();
if (wc == WordCategory.adj) {
 // do something
}

Retrieving the paraphrase is done in a similar way:

String paraphrase = aSynset.getParaphrase();

To get a synset's orthographic forms (retrieves a List of all orthographic forms in all the
LexUnits that belong to this Synset):

List<String> orthForms = aSynset.getAllOrthForms();

To get a list of all lexical units of a synset and iterate through them:
List<LexUnit> lexList = aSynset.getLexUnits();
for (LexUnit lu : lexList) {
 // process lexical unit
}

Suppose you want to find all of the meronyms of a synset:

List<Synset> meronyms = aSynset.getRelatedSynsets(ConRel.meronymy);

Sometimes you may have a conceptual relationship represented as a String. The following
code can be used to validate the String and retrieve the relations:
String aRel = ”hyperonymy”;
List<Synset> relList;
if (ConRel.isRel(aRel)) {// make sure aRel is a valid conceptual relation
 relList = aSynset.getRelatedSynsets(ConRel.valueOf(aRel));
}

The following are all valid calls to getRelatedSynsets():
aSynset.getRelatedSynsets(ConRel.hyperonymy);
aSynset.getRelatedSynsets(ConRel.hyponymy);
aSynset.getRelatedSynsets(ConRel.holonymy);
aSynset.getRelatedSynsets(ConRel.association;
aSynset.getRelatedSynsets(ConRel.causation);
aSynset.getRelatedSynsets(ConRel.caused);
aSynset.getRelatedSynsets(ConRel.entailed);
aSynset.getRelatedSynsets(ConRel.entailment);

Tutorial: Java-API to GermaNet Verena Henrich

 16

aSynset.getRelatedSynsets(ConRel.valueOf(“hyperonymy”));
aSynset.getRelatedSynsets(ConRel.valueOf(“hyponymy”)); // and so on...

Suppose you are not interested in any particular relation, but want a List of all Synsets that
are related to aSynset in any way:

List<Synset> allRelations = aSynset.getRelatedSynsets();

For transitive relations (hyperonymy, hyponymy, meronymy, holonymy), there is a method
that retrieves a List of Lists of Synsets, where the List at position 0 contains the
originating Synset, the List at position 1 contains the relations at depth 1, the List at
position 2 contains the relations at depth 2, and so on up to the maximum depth. Using this
data structure, some information cannot be included – namely, for any synset at depth n, you
cannot determine which synset at depth n-1 it is a relation of. Nonetheless, you may find the
method useful.
The following code prints the orthographic forms of each synset at every depth of the
hyponyms of Decke:
List<List<Synset>> transHyponyms;
synList = gnet.getSynsets("Decke");
String spaces;
for (Synset s : synList) {
 spaces = "";
 transHyponyms = s.getTransRelatatedSynsets(ConRel.hyponymy);
 for (List<Synset> listAtDepth : transHyponyms) {
 for (Synset synAtDepth : listAtDepth) {
 System.out.println(spaces + synAtDepth.getAllOrthForms());
 }
 spaces += " ";
 }
}

Two Synsets are found containing the orthForm Decke. For each of them, we retrieve the
hyponyms using the getTransRelatedSynsets() method, store the result in the List of
Lists of Synsets called transHyponyms, and then print transHyponyms. The output looks
like this:
[Decke]
 [Bettdecke]
 [Wolldecke]
 [Kuscheldecke]
 [Altardecke]
 [Satteldecke]
 [Plane]
 [Löschdecke]
 [Plastikplane]
[Decke, Zimmerdecke]
 [Kuppel]
 [Beleuchtungsdecke]
 [Hängedecke]
 [Stuckdecke]
 [Zirkuskuppel]

Tutorial: Java-API to GermaNet Verena Henrich

 17

3.4. Getting LexUnits from a GermaNet Object
A LexUnit may consist of multiple orthographic forms (represented as a String), which
represent different spellings of the same word:

• The main orthographic form orthForm is always set.

• A variant of the main form orthVar (optional).

• The main orthographic form in the old German orthography oldOrthForm (optional).

• A variant of the old form oldOrthVar.

If there are several spellings of a word, for example Schloß and Schloss in the old and new
German spelling, Schloss represents orthForm and Schloß represents oldOrthForm.

Lexical units can have Frames and Examples. Further attributes of a LexUnit are the
following: styleMarking (boolean), sense (int), orthVar (boolean), artificial
(boolean), namedEntity (boolean), and source (String). A LexUnit object provides
methods for retrieving any of its properties, as well as methods for retrieving Lists of other
LexUnits lexically related to it. Once you have constructed a GermaNet object (called gnet
in the examples below), you can retrieve Lists of LexUnits, using orthographic form or
word category filtering, if desired.
Get a List of all LexUnits:

List<LexUnit> allLexUnits = gnet.getLexUnits();

Get a List of all LexUnits with orthForm Bank (Note: if gnet was constructed with the
ignoreCase flag set, then the following method call will return the same list with parameters
such as bank, BANK or BaNK):

List<LexUnit> lexList = gnet.getLexUnits("Bank");

Get a List of all LexUnits with word category nomen (WordCategory.nomen, other options
are WordCategory.adj and WordCategory.verben):

List<LexUnit> nomLexUnits = gnet.getLexUnits(WordCategory.nomen);

3.5. Working with LexUnits
Once you have obtained a List of LexUnits, you can start processing them. A LexUnit
object has methods for retrieving its WordCategory, Synset, orthographic forms (orthForm,
orthVar, oldOrthForm, and oldOrthVar), and further attributes including word sense
number (sense), source, namedEntity, artificial, and styleMarking, as well as
methods for retrieving LexUnits that are lexically related to it.

To get the word category of a lexical unit and do further processing in case of a verb:
WordCategory wc = aLexUnit.getWordCategory();
if (wc == WordCategory.verben) {
 // do something
}

To get the orthographic forms of a lexical unit:

List<String> orthForms = aLexUnit.getOrthForms();

You may prefer to retrieve the main orthographic form:

Tutorial: Java-API to GermaNet Verena Henrich

 18

String orthForm = aLexUnit.getOrthForm();

You may prefer to just retrieve the variant of the main orthographic form:

String orthVar = aLexUnit.getOrthVar();

To get the main orthographic form in the old German orthography:
String oldOrthForm = aLexUnit.getOldOrthForm();

Retrieving the variant of the old orthographic form:

String oldOrthVar = aLexUnit.getOldOrthVar();

Suppose you want to generate a List of LexUnits with word category nomen, but you are
not interested in named entities or artificial nouns. You could generate such a List with the
following code (note that we use a real Iterator object here instead of just a simple for-loop
because it is the only safe way to remove elements from a List while iterating):
List<LexUnit> lexList = gnet.getLexUnits(WordCategory.nomen);
LexUnit aLexUnit;
Iterator<LexUnit> iter = lexList.iterator();
while (iter.hasNext()) {
 aLexUnit = iter.next();
 if (aLexUnit.isNamedEntity() || aLexUnit.isArtificial()) {
 iter.remove();
 }
}
// ... process lexList ...

Suppose you want to find all of the antonyms of a LexUnit:

List<LexUnit> antonyms = aLexUnit.getRelatedLexUnits(LexRel.antonymy);

Sometimes you may have a lexical relationship represented as a String. The following code
can be used to validate the String and retrieve the relations:
String aRel = ”antonymy”;
List<LexUnit> relList;
if (LexRel.isRel(aRel)) {// make sure aRel is a valid lexical relation
 relList = aLexUnit.getRelatedLexUnits(LexRel.valueOf(aRel));
}

The following are all valid calls to getRelatedLexUnits():
aLexUnit.getRelatedLexUnits(LexRel.synonymy);
aLexUnit.getRelatedLexUnits(LexRel.antonymy);
aLexUnit.getRelatedLexUnits(LexRel.pertonymy);
aLexUnit.getRelatedLexUnits(LexRel.valueOf(“synonymy”));
aLexUnit.getRelatedLexUnits(LexRel.valueOf(“antonymy”)); // and so on ...

Suppose you are not interested in any particular relation, but want a List of all LexUnits that
are related to aLexUnit in any way:

List<LexUnit> allRelations = aLexUnit.getRelatedLexUnits();

Finding the Examples and Frames is done as follows:
List<Example> exList = aSynset.getExamples();
List<Frame> frameList = aSynset.getFrames();

Tutorial: Java-API to GermaNet Verena Henrich

 19

3.6. Working with Frames and Examples
A Frame is simply a container for frame data, which can be retrieved with the getData()
method. Frames occur in two contexts within GermaNet:

1. A List of Frames may be present within a Synset object. You could print the
orthForms of verb Synsets containing a Frame that begins with NN like this:

synList = gnet.getSynsets(WordClass.verben);
List<Frame> frameList;
boolean printIt;
for (Synset syn : synList) {
 printIt = false;
 frameList = syn.getFrames();
 for (Frame f : frameList) {
 if (f.getData().startsWith("NN")) {
 printIt = true;
 }
 }
 if (printIt) {
 System.out.println(syn.getAllOrthForms());
 }
}

2. A List of Frames may be present within an Example (which in turn is part of a Synset).
We could print the Examples with Frames containing the substring AN of verb Synsets
with the following code:

synList = gnet.getSynsets(WordClass.verben);
List<Example> exList;
List<Frame> frameList;
for (Synset syn : synList) {
 exList = syn.getExamples();
 for (Example ex : exList) {
 frameList = ex.getFrames();
 for (Frame f : frameList) {
 if (f.getData().contains("AN")) {
 System.out.println(f.getData() + " : " +ex.getText());
 }
 }
 }
}

