Alignment Weighting for Short Answer Assessment

Björn Rudzewitz¹ University of Tübingen

Presentation of B.A. Thesis

October 30, 2015

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

¹bjoern.rudzewitz@student.uni-tuebingen:de $\langle \square \rangle$ $\land \exists \rangle \langle \exists \rangle$ $\exists \rangle \land \exists \rangle$

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

Systen

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Reading comprehension in foreign language learning context:

- text
- questions
- target answers
- student (language learner) answers

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

Systen

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 - のへで

Learners need to ...

- ... understand the text and questions
- ... use L2 to formulate answers

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

Systen

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Learners need to ...

- ... understand the text and questions
 - \rightarrow task competence
- ... use L2 to formulate answers

 \rightarrow language competence / performance

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

Systen

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Learners need to ...

- ... understand the text and questions
 - \rightarrow task competence
- ... use L2 to formulate answers
 - \rightarrow language competence / performance

<u>Goal of this work</u>: incorporate aspects of concrete task and general language in automatic SAA approach by alignment weighting

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

Systen

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

Data : CREG

<u>C</u>orpus of <u>R</u>eading <u>E</u>xercises in <u>G</u>erman [Meurers et al., 2010]

- longitudinal learner corpus collected at 2 German programs in USA (OSU, KU)
- structure:
 - texts
 - questions
 - target answers (TA)
 - student answers (SA)
 - meta data
 - ▶ links between elements (SA → TA, SA → Diagnosis,...)
- significant variation / deviation of form and meaning in SAs
- binary (and detailed) gold diagnosis of *semantic* correctness of SAs

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Festing

Discussion

Conclusion

Appendix

Data: CREG

Various subsets used for experiments

data set	# questions	# SAs	# TAs
CREG-1032-KU	117	610	180
CREG-1032-OSU	60	422	147
CREG-3620-KU	89	735	181
CREG-3620-OSU	585	2885	705
CREG-5K-KU	214	1814	382
CREG-5K-OSU	663	3324	875

Table: Data distribution of CREG subsets used in this study.

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

CoMiC-DE system [Meurers et al., 2011]

- <u>Comparing Meaning in Context</u>
- alignment-based short answer assessment system
- UIMA pipeline [Ferrucci and Lally, 2004]
- goal: diagnose form-independent meaning of SAs

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

CoMiC: System Architecture

3-step approach:

1. Annotation

use NLP tools to generate linguistic multi-layer markup

2. Alignment

use annotations to align similar elements between SA and TA

3. Diagnosis

use features measuring quantity and quality of alignments for binary diagnosis

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

CoMiC: System Architecture

3-step approach:

1. Annotation

use NLP tools to generate linguistic multi-layer markup

2. Alignment

use annotations to align similar elements between SA and TA

3. Diagnosis

use features measuring quantity and quality of alignments for binary diagnosis

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

CoMiC Phase 1: Annotation

Task	NLP Tool
Sentence Detection	OpenNLP[Baldridge, 2005]
Tokenization	OpenNLP [Baldridge, 2005]
Lemmatization	TreeTagger [Schmid, 1994]
Spell Checking	Edit distance [Levenshtein, 1966]
	, igerman98 word list
Part of Speech Tagging	TreeTagger [Schmid, 1994]
Noun Phrase Chunking	OpenNLP [Baldridge, 2005]
Lexical Relations	GermaNet [Hamp et al., 1997]
Similarity Score	PMI-IR [Turney, 2001]
Dependency Relations	MaltParser [Nivre et al., 2007]

Table: NLP tools used in the CoMiC-DE system.

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

CoMiC: System Architecture

3-step approach:

1. Annotation

use NLP tools to generate linguistic multi-layer markup

- 2. Alignment use annotations to align similar elements between SA and TA
- 3. Diagnosis

use features measuring quantity and quality of alignments for binary diagnosis

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

CoMiC Phase 2: Alignment

- align tokens, chunks, dependency triples
- elements given in question are excluded
- alignment candidates: words with overlaps on various linguistic levels
- use TMA [Gale and Shapley, 1962] for annotation matching
- alignment annotation contains alignment label

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

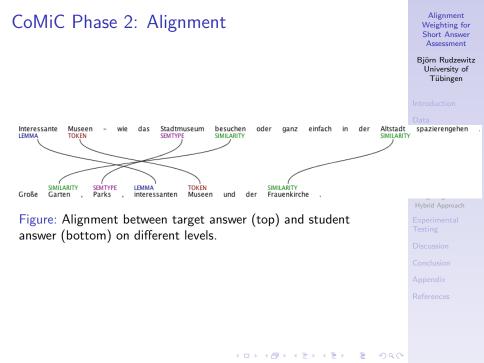
Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing


Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

CoMiC: System Architecture

3-step approach:

1. Annotation

use NLP tools to generate linguistic multi-layer markup

2. Alignment

use annotations to align similar elements between SA and TA

3. Diagnosis

use features measuring quantity and quality of alignments for binary diagnosis

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

CoMiC Phase 3: Diagnosis

- \blacktriangleright extract number and kinds of alignments for each SA \rightarrow 13 ml features
- use TiMBL Daelemans et al. [2004] for LOO k-NN classification
- result: binary diagnosis for each SA

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

CoMiC Phase 3: Diagnosis

Feature	Description
1. Keyword Overlap	% keywords aligned
2. TA Token Overlap	% aligned TA tokens
3. Learner Token Overlap	% aligned SA tokens
4. TA Chunk Overlap	% aligned TA chunks
5. Learner Chunk Overlap	% aligned SA chunks
6. TA Triple Overlap	% aligned TA dependency triples
7. Learner Triple Overlap	% aligned SA dependency triples
8. Token Match	% token-identical token alignments
9. Similarity Match	% similarity-resolved token alignments
10. Type Match	% type-resolved token alignments
11. Lemma Match	% lemma-resolved token alignments
12. Synonym Match	% synonym-resolved token alignments
13. Variety	Number of kinds of token-level alignments (features 8-12)

Table: CoMiC baseline features.

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Alignment Weighting: Motivation

Idea:

- aligned elements have different properties
- alignments between certain elements may be more important
- ightarrow weight existing alignments in new dimension of similarity

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

Systen

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Festing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Alignment Weighting

2 conceptual weighting approaches \rightarrow 3 implementations

- 1. General Linguistic Weighting
- 2. Task-Specific Weighting
- 3. Hybrid Approach

global vs. local weighting schemes

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

Systen

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

General Linguistic Weighting

- weighting of aligned elements by language-wide property in new dimension of similarity
- operationalization of abstract concept of general linguistic property:
 part of speech tag classes
- pos tags represent syntactic, semantic, morphological language-wide properties

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting

Task-Specific Weighting Hybrid Approach

Experimental Festing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

General Linguistic Weighting

- problem: data sparsity
- solution: abstraction/generalization via equivalence classes of outcomes
 - ightarrow pos tag *classes*

How to find equivalence classes:

- top-down approach: using linguistic intuition to form classes of tags
- bottom-up approach: induce classes of tags from sample data

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting

Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Option 1: top-down approach

Group	STTS tags
nominal	NN, NE
verbal	VVFIN, VVIMP, VVINF, VVIZU,
	VVPP, VAFIN, VAIMP, VAINF, VAPP,
	VMFIN, VMINF, VMPP
adjv	ADJA, ADJD, ADV
rest	APPR, APPRART, APPO, APZR,
	ART, CARD, FM, ITJ, KOUI, KOUS,
	KON, KOKOM, PDS, PDAT, PIS,
	PIAT, PIDAT, PPER, PPOSS,
	PPOSAT, PRELS, PRELAT, PRF,
	PWS, PWAT, PWAV, PAV, PTKZU,
	PTKNEG, PTKVZ, PTKANT, PTKA,
	TRUNC

Table: Coarse STTS subsets used for the general linguistic weighting, adapted from [Rudzewitz and Ziai, 2015].

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting

Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

- choose a development set
- output single pos features for every tag for TA and SA
- perform hierarchical agglomerative clustering
- use clusters as equivalence classes for features

▲□ ▶ ▲□ ▶ ▲目 ▶ ▲目 ▶ ● ● ● ●

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

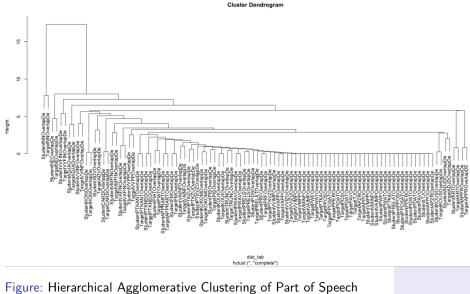
Introduction

Data

Systen

Alignment Weighting

General Linguistic Weighting


Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

Tags over all instances of CREG-1032. (□) (□) (□) (□) (□)

Alignment Weighting for Short Answer Assessment

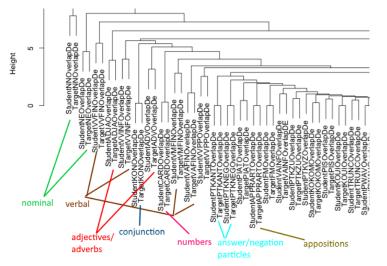


Figure: Part of Hierarchical Agglomerative Clustering of Part of Speech Tags over all instances of CREG-1032.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting

Task-Specific Weighting Hybrid Approach

Experimental Testing

)iscussion

Appendix

- observation: distinct clusters are representatives for 'main word' classes defined in STTS tag set [Schiller et al., 1995]
- hclust algorithm is given no assumptions about main word classes !
- \rightarrow use STTS main word classes as equivalence classes

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting

Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

- problem with features: how to normalize ?
- more concrete: given numeric quantities of aligned elements, how to account for effects of answer length ?
- solution (in this work): explore and report results for all variants

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

Systen

Alignment Weighting

General Linguistic Weighting

Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Feature Variants

$$A_h \in A("Answers"), w_j \in W_{A_h} \subset W("Words"), t_{w_i} \in T_i \subset T("tag from tag group")$$

$$ol(A_h, T_i) = \frac{\sum_{t \in T_i} \sum_{w_j \in W_{A_h}} [w_j \text{ is aligned AND } t_{w_j} = t \text{ AND } w_j \text{ is new}}{\sum_{t \in T_i} \sum_{w_j \in W_{A_h}} [\text{see Table } !]}$$

variant	$t_{w_j} = t$	<i>w_j</i> is new	<i>w_j</i> is aligned
local	✓	\checkmark	
semi-global		\checkmark	\checkmark
global		\checkmark	

Table: Denominator constraints for different feature variants. Logical conjunction AND between row values.

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting

Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Feature Variant Interpretation

- Iocal: Are many of the new tokens with this part of speech tag aligned ?
- semi-global: Are many of the aligned tokens from a certain part of speech group ?
- global: Do many of the new words have a tag from this part of speech group and are at the same time aligned ?

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting

Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Interpolated Features

-

$$ol_{ip}(A_h, T_i) = ol_{local}(A_h, T_i) \times ol_{sglobal}(A_h, T_i) \times ol_{global}(A_h, T_i)$$

$$ol_{lip}(A_h, T_i) = \frac{1}{3} \times (ol_{local}(A_h, T_i) + ol_{sglobal}(A_h, T_i) + ol_{global}(A_h, T_i))$$

combine the different feature variants

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting

Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Task-Specific Weighting

- goal: include the specific (local) task context in SAA
- "task": complex concept, many aspects
- operationalization: implement question-type features
- binary indicator function for each question type
- gold standard from previous study [Meurers et al., 2011] as development set
- 11 types: Alternative, How, What, When, Where, Which, Who, Why, Yes/No, Several, Unknown

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting

Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Hybrid Weighting Approach

- tf.idf lemma-based weighting, adapted from Manning and Schütze [1999]
- generally applicable measure, but task-specific training
- document collection: all reading texts in CREG-5K
- for each aligned token, get *tf.idf* weight in reading text to which the SA refers

$$ol_{tf.idf}(A_h) = \sum_{w_j \in W_{A_h}} weight_{tf.idf}(w_j, d_i)$$

$$weight_{tf.idf}(w_j, d_i) = \begin{cases} 0 & , \text{ if } (w_j \text{ NOT new}) \text{ OR} \\ & (w_j \text{ NOT aligned}) \text{ OR} \\ & (w_j \notin d_i) \\ (1 + \log(tf_{j,i})) \times \log \frac{N}{df_j} & , \text{ otherwise} \end{cases}$$

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting **Hybrid Approach**

Experimental Festing

Discussion

Conclusion

Appendix

Experimental Testing

Significance Testing: McNemar's test ($\alpha = 0.05$)

- *H*₀: The binary classification performance of an alignment-based short answer assessment system does not change if it is augmented with part of speech or *tf.idf* features.
- H₁: The binary classification performance of an alignment-based short answer assessment system significantly improves if it is augmented with part of speech or *tf.idf* features.

Alignment
Weighting for
Short Answer
Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusio

Appendix

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Experimental Testing: Coarse POS

system	3620-KU	3620-OSU	1032-KU	1032-OSU	5K-KU	5K-OSU
base	81.5	82.2	84.6	87.0	80.9	82.5
local	82.0	82.6	85.2	90.0*	82.0	82.8
semi-global	81.2	84.1*	85.4	87.2	81.3	84.0*
global	83.0	83.6*	84.8	85.8	81.6	83.6*
ip	80.5	84.1*	85.1	85.1	81.7	84.4*
lip	82.6	84.1*	84.4	87.0	81.4	84.1*

Table: System performance for the baseline system augmented with part of speech features in terms of accuracy. The symbol * denotes a statistically significant improvement over the baseline ($\alpha = 0.05$).

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusior

Appendix

References

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 - のへで

Experimental Results: Question Types and tf.idf

system variant	3620-KU	3620-OSU	1032-KU	1032-OSU	5K-KU	5K-OSU
baseline	81.5	82.2	84.6	87.0	80.9	82.5
q-types	80.8	83 .1*	85.4	87.2	80.9	82.8

Table: System performance for the baseline system augmented with question type features in terms of accuracy. The symbol * denotes a statistically significant improvement over the baseline ($\alpha = 0.05$).

system variant	3620-KU	3620-OSU	1032-KU	1032-OSU	5K-KU	5K-OSU
baseline	81.5	82.2	84.6	87.0	80.9	82.5
tf.idf	84.2*	84.1*	86.1	88.4	83.1*	84.3*

Table: System performance for the baseline system augmented with *tf.idf* features in terms of accuracy. The symbol * denotes a statistically significant improvement over the baseline ($\alpha = 0.05$).

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion Conclusion Appendix

Experimental Testing: Combination

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

system variant	3620-KU	3620-OSU	1032-KU	1032-OSU	5K-KU	5K-OSU
baseline	81.5	82.2	84.6	87.0	80.9	82.5
q-types + stts local + tf.idf	83.8	84.7*	87.9*	86.5	82.4	84.9 _{em}
q-types + stts semi-global+ tf.idf	83.1	84.6*	85.4	88.2	82.1	84.9
q-types + stts global+ tf.idf	84.2*	84.5*	87.9*	84.6	82.6*	84.6*ment
q-types + stts ip+ tf.idf	83.3	84.7*	88.9*	84.1	82.8*	85:3*ting
q-types + stts lip+ tf.idf	84.5*	85.0*	88.0*	85.8	82.8*	84.9 Tal Lin

Table: System performance for the baseline system augmented with question type and STTS group part of speech features and *tf.idf* weighting in terms of accuracy. The symbol * denotes a statistically significant improvement over the baseline ($\alpha = 0.05$).

Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

Experimental Testing: Main results

- many more tables with accuracies and test statistics ...
- pos features alone result in highest accuracy on one data set (90%)
- tf.idf always yields improvement
- question-types alone not as effective
- best overall result for combination of all 3 weightings
- linguistically interpretable question-type specific pos alignment patterns (Appendix 1)
- question-type specific macro-averages show improvement from Meurers et al. [2011] (Appendix 2)

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

ntroduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion Conclusion Appendix

Discussion: Related work

- Ziai and Meurers [2014]: CoMiC + information structure
- Horbach et al. [2013]: CoMiC-reimplementation + pos-align criteria + use of reading text
- Hahn and Meurers [2012]: CoSeC
- many other SAA systems (see thesis)

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

Systen

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusior Appendix

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Conclusion

- significant improvements with novel techniques
- results highly competitive to state-of-the-art systems
- no human annotation needed
- linguistically interesting insights from ml algorithms
- combination of all feature variants most effective

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Appendix 1: q-type pos align patterns

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

			Introduction
q-type	#inst.	10 most informative Part of Speech tags	JIII
Alternative	7	VVPP, PPOSAT, PPER, PPOS, VMFIN, PRELAT, PIS, PIDAT, PIAT, PD	S Data
How	144	NN, CARD, VVFIN, ADJA, ART, VAFIN, NE, PIAT, PRELS, PTKNEG	Contain
What	276	NN, KON, ADJA, VVPP, VVINF, APPRART, PIS, CARD, PTKNEG, PWA	Wystem
When	6	ADV, KOKOM, KOUS, NN, PIS, PWF, PIDAT, PWAV, PPOSAT, VAFIN	Alignment
Where	9	PIDAT, PPER, PPOSAT, PRELAT, PIS, VVPP, PRF, PIAT, PAVDAT	Weighting
Which	170	NN, ADV, VVPP, PTKNEG, VAFIN, NE, VAINF, CARD, KON, PIS	General Lirguisti
Why	174	NN, VVFIN, ART, APPR, PIAT, VAFIN, KON, NE, ADJA, KOKOM	Vveighting Taals Sasailia
Who	41	NN, VVINF, ADJD, VMFIN, PPER, PRELAT, PRELS, PPOS, PPOSAT, F	TKANT
Yes/No	5	PTKANT, PPOSAT, PRELAT, PPOS, PIS, PPER, PIDAT, PRF, PIAT, PA	WHybrid Approach
Several	200	NN, NE, ADJA, PIAT, VMFIN, KON, PIS, VVPP, KON, PTKNEG	Experimental
			Testing
Table: Most	informa	tive part of speech alignments by question	
type.			
type.			Conclusion
			Appendix
			References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Appendix 2: q-type macro-averages

q-type	# inst.	local	sglobal	global	ip	lip
Alternative	7	0.57	0.57	0.57	0.57	0.57
How	144	0.88	0.89	0.91	0.90	0.90
What	276	0.87	0.88	0.87	0.85	0.88
When	6	1.00	0.83	1.00	0.83	0.83
Where	9	0.67	0.56	0.67	0.67	0.67
Which	170	0.91	0.92	0.93	0.92	0.92
Why	174	0.84	0.84	0.84	0.83	0.84
Who	41	0.88	0.90	0.85	0.88	0.85
Yes/No	5	0.80	0.80	0.80	0.80	0.80
Several	200	0.86	0.83	0.83	0.86	0.85
Micro	1032	86.7	86.8	87.0	86.5	87.3

Table: Macro-averages of the best system variant on CREG-1032 obtained by grouping results by question type. Boldface indicates an improvement upon the results by Meurers et al. [2011]

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 - のへで

Jason Baldridge. The OpenNLP Project. URL: http://opennlp. apache. org/index. html,(accessed 25 August 2015), 2005.

Walter Daelemans, Jakub Zavrel, Kurt van der Sloot, and Antal Van den Bosch. TiMBL: Tilburg Memory-Based Learner. *Tilburg University*, 2004.

David Ferrucci and Adam Lally. UIMA: An Architectural Approach to Unstructured Information Processing in the Corporate Research Environment. *Natural Language Engineering*, 10(3-4):327–348, 2004.

David Gale and Lloyd S Shapley. College Admissions and the Stability of Marriage. *American Mathematical Monthly*, pages 9–15, 1962.

Michael Hahn and Detmar Meurers. Evaluating the Meaning of Answers to Reading Comprehension Questions A Semantics-Based Approach. In *Proceedings of the Seventh Workshop on Building Educational Applications Using NLP*, pages 326–336. Association for Computational Linguistics, 2012. Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

Birgit Hamp, Helmut Feldweg, et al. GermaNet - a Lexical-Semantic Net for German. In *Proceedings of ACL* workshop Automatic Information Extraction and Building of Lexical Semantic Resources for NLP Applications, pages 9–15. Citeseer, 1997.

Andrea Horbach, Alexis Palmer, and Manfred Pinkal. Using the text to evaluate short answers for reading comprehension exercises. In *Second Joint Conference on Lexical and Computational Semantics (* SEM)*, volume 1, pages 286–295, 2013.

Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. In *Soviet physics doklady*, volume 10, pages 707–710, 1966.

Christopher D Manning and Hinrich Schütze. Foundations of Statistical Natural Language Processing. MIT press, 1999.

Detmar Meurers, Niels Ott, Ramon Ziai, et al. Compiling a Task-Based Corpus for the Analysis of Learner Language in Context. *Proceedings of Linguistic Evidence. Tübingen*, pages 214–217, 2010.

Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

ntroduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Festing

Discussion

Conclusion

Appendix

Detmar Meurers, Ramon Ziai, Niels Ott, and Janina Kopp. Evaluating Answers to Reading Comprehension Questions in Context: Results for German and the Role of Information Structure. In *Proceedings of the TextInfer* 2011 Workshop on Textual Entailment, pages 1–9. Association for Computational Linguistics, 2011.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov, and Erwin Marsi. Maltparser: A language-independent system for data-driven dependency parsing. *Natural Language Engineering*, 13(02):95–135, 2007.

Björn Rudzewitz and Ramon Ziai. CoMiC: Adapting a Short Answer Assessment System for Answer Selection. In Proceedings of the 9th International Workshop on Semantic Evaluation, SemEval, volume 15, 2015.

Anne Schiller, Simone Teufel, and Christine Thielen. Guidelines für das Tagging deutscher Textcorpora mit STTS. Manuscript, Universities of Stuttgart and Tübingen, 66, 1995. Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

System

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

Helmut Schmid. Probabilistic Part-of-Speech Tagging Using Decision Trees. In Proceedings of the International Conference on New Methods in Language Processing, volume 12, pages 44–49. Citeseer, 1994.

Peter Turney. Mining the Web for Synonyms: PMI-IR Versus LSA on TOEFL. 2001.

Ramon Ziai and Detmar Meurers. Focus Annotation in Reading Comprehension Data. *LAW VIII*, page 159, 2014. Alignment Weighting for Short Answer Assessment

Björn Rudzewitz University of Tübingen

Introduction

Data

Systen

Alignment Weighting

General Linguistic Weighting Task-Specific Weighting Hybrid Approach

Experimental Testing

Discussion

Conclusion

Appendix

References

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで