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Abstract. We discuss a generalization of Earley’s algorithm to gram-
mars licensing discontinuous constituents of the kind proposed by the so-
called linearization approaches in Head-Driven Phrase Structure Gram-
mar. We show how to replace the standard indexing on the string posi-
tion by bitmasks that act as constraints over possible coverage bitvectors.
This improves efficiency of edge access and reduces the number of edges
by constraining prediction to those grammar rules which are compatible
with known word order properties. The resulting parsing algorithm does
not have to process the righthand side categories in the order in which
they cover the string, and so a head-driven strategy can be obtained
simply by reordering the righthand side categories of the rules. The re-
sulting strategy generalizes head-driven parsing in that it also permits
the ordering of non-head categories.

1 Introduction

A prominent tradition within the framework of Head-Driven Phrase Structure
Grammar (HPSG, Pollard and Sag 1994) has argued on linguistic grounds for
analyses which license so-called discontinuous constituents (Reape 1993; Kathol
1995; Richter and Sailer 2001; Müller 1999a; Penn 1999; Donohue and Sag 1999;
Bonami et al. 1999).1 More recently, Müller (2002) argues that HPSG grammars
for German which license discontinuous constituents should also be preferred on
computational grounds. The idea underlying Müller’s argument is that in order
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1 The concatenation of strings underlying ordinary phrase structure grammars has also
been rejected by researchers in other linguistic frameworks, including Dependency
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in the two German treebanks (Skut et al. 1997; Hinrichs et al. 2000).



to license the many word order possibilities (as, for instance, are found in the so-
called Mittelfeld), a large number of rules or equivalent specifications are needed,
resulting in a large number of passive edges. Since there is no need to distinguish
these different word orders in terms of the resulting semantics, positing different
rules for each order results only in wasted computational effort.2

While Müller’s argumentation seems sensible on a conceptual level, he also
concedes that the parsing technology that has been developed to license discon-
tinuous constituents (Johnson 1985; Reape 1991; van Noord 1991; Covington
1990, 1992; Müller 1996) is far less efficient than the standard parsing algorithm
for context-free grammars (Earley 1970). Thus the cost of processing such kinds
of grammars in practice seems to outweigh the significant reduction in passive
edges that might theoretically result from the licensure of discontinuous con-
stituents. The reason for this inefficiency is that while the parsing algorithms for
context-free grammars index edges by their corresponding string position in the
terminal yield, there is no such direct correspondence between edges and single
string positions when parsing with discontinuous constituents.

The idea underlying this paper is that it should be possible to develop a gen-
eral parsing algorithm which is as efficient as Earley’s algorithm when enough
word order information is available and degrades gradually in efficiency in rela-
tion to the number and kind of discontinuities permitted by a grammar. This
idea is closely related to the proposal by Suhre (1999). However, while he focuses
on formal language properties and provides valuable worst case complexity re-
sults, this paper focuses on the practical aspects of ensuring that the word order
constraints are used for efficient lookup of edges in the chart during completion
and to limit the number of rules considered for prediction. Our proposal elimi-
nates instances of the generate-and-test paradigm through improved indexing of
edges using two kinds of bitmasks encoding word order constraints and makes
use of efficient bitvector operations. The bitmasks can be viewed as a compiled
form of the word order constraints which allow the parsing algorithm to check
both dominance and word order relations in a tightly integrated way.

The generalization of Earley’s algorithm we propose also makes it possible
to process the daughters in the order in which they provide information that
can guide processing. As such, it extends the notion of a head-driven algorithm
(Kay 1990; van Noord 1991) by additionally ordering the non-head daughters.

2 A format for linearization grammars

In an influential series of papers, Reape (1994, 1996) introduced into HPSG
the idea of an order domain which can potentially span multiple local trees.
Ordering across local trees becomes possible by unioning the order domains of
2 It has been argued that such different word orders correspond to (subtle) semantic

differences (see, for instance, Lenerz 2001). However, until a theory of these differ-
ences has been worked out, the only option is to license the indistinguishable word
order variations as instances of the same semantic form. For most computational
purposes this is also likely to be sufficient in general.



the daughters in a local tree. Daughters not unioned are sometimes referred to
as isolated or compacted (Kathol 1995). Compaction fixes the word order in
the compacted domain and inserts it as a unit into the higher domain. Linear
precedence constraints therefore only apply within each compacted word order
domain.

One can implement Kathol/Reape-style domains as part of the general lin-
guistic data structure, with the general constraint language of HPSG expressing
the word order requirements. A parser can be used to check that every part of
the input string is actually part of the order domain of the root. Kasper et al.
(1998) show how bitvectors can be used to improve the efficiency of such an ap-
proach, but they do not outsource the word order requirements and the domains
they operate on to a dedicated parsing algorithm.

To make use of Reape’s idea of word order domains in a way that allows the
parser to also take word order constraints into account, constraints on immediate
dominance and those on word order need to be separated from other linguistic
constraints. The constraints on immediate dominance can be represented by
standard ID rules, but there is less consensus in the literature on an appropriate
language for word order constraints. Following Suhre (1999), we use a subset of
the linear specification language (LSL) proposed by Götz and Penn (1997) to
serve this purpose.

We assume grammar rules of the form A → α ; L expressing that the non-
terminal A immediately dominates the non-terminals in the list α. In contrast
to phrase structure rules, the order of the non-terminals in α is irrelevant for the
interpretation of the rule; it only determines the order of processing as described
in section 3. L is a set of word order constraints, each of which has one of the
following three forms:

– (Weak) precedence: A < B. The rightmost terminal dominated by A
occurs somewhere to the left of the leftmost terminal dominated by B.

– Immediate precedence: A << B. The rightmost terminal dominated by
A occurs immediately to the left of the leftmost terminal dominated by B.

– Isolation: [A]. A dominates an uninterrupted sequence of terminals in the
terminal yield.

In addition to the grammar rules, the grammar includes lexical entries of the
form A → t linking the preterminal A to the terminal t.

The notion of isolation deserves some extra attention here. First, while ev-
ery non-terminal is associated with its possibly-discontinuous coverage of string
positions, there are two special kinds of non-terminals: the complete phrase is
by its nature an isolated and therefore continuous domain, and each terminal is
also an isolated domain.3

3 This direct correspondence between lexical entities and atomic domains means that
our formalism cannot directly encode the idea of Kathol (1995, sec. 7.4) that the lexi-
cal entry of a particle verb in German contributes two independent domain elements,
or the proposal of Richter and Sailer (2001) to insert the string of the topicalized
constituent as part of the string covered by the lexical entry of the finite verb.



Second, it is important to realize that we interpret isolation statements as
expressing two distinct notions: a) where the string contributed by a preterminal
can surface; and b) which elements in what domains the precedence statements
apply to. Aspect (a) expresses the fact that the terminal yield of an isolated non-
terminal contains all and only the terminal yield of the nodes it dominates: there
are no holes or additional strings. Aspect (b) encodes the fact that precedence
statements constraint the order between all isolated domains within an isolated
domain. This means that no precedence constraint can apply to an element that
is inside an isolated domain.

Essentially this grammar formalism reintroduces into HPSG a relational
backbone encoding dominance and precedence information. The idea is closely
related to the ID/LP format of GPSG (Gazdar et al. 1985) in that both express
dominance and precedence independently and separately from other grammat-
ical constraints. However, it extends the ID/LP format, which does not license
discontinuous constituents, by allowing the specification of domains which are
larger than the local tree. We will therefore refer to grammars expressed in this
format as Generalized ID/LP (GIDLP) grammars.4 Our work can therefore be
conceptualized as extending the tradition of direct processing regimes for ID/LP
grammars from Shieber (1984) to Morawietz (1995), and references cited therein.

Finally, before turning to algorithmic issues, it is useful to note that every
context-free grammar can be encoded in this GIDLP format. Take, for example,
the context-free rule S → NPn V NPa. This rule encodes the immediate domi-
nance and precedence relations expressed by the GIDLP rule S → V NPn NPa
; {NPn << V, V << NPa, [V], [NPa], [NPn]}.

3 Earley’s algorithm and edge coverage

To highlight those places where parsing with GIDLP grammars differs from
context-free parsing, we start with a general characterization of Earley’s algo-
rithm for parsing context-free grammars.

Earley’s algorithm is driven by two operations, prediction and completion.
There are two kinds of edges these operations apply to: passive edges, which
map found categories to the string they cover, and active edges, which represent
partially-found categories. To predict a rule is to insert an active edge into the
chart representing the hypothesis that this rule can be applied at a given position.
To complete two edges, an active edge with a passive one, is to recognize that
the passive edge provides a category (the active element) that the active edge
is looking for and to add a new edge to the chart representing the combined
coverage of the two edges.

The algorithm is realized with an active chart, a container that itself imple-
ments some of the parsing logic. That is, when the chart receives an active edge,
it completes that edge with each compatible passive edge already in the chart
4 Suhre (1999) refers to this grammar class as LSL grammars, which we do not follow

here since it incorporates only a subset of the LSL of Götz and Penn (1997), and we
want to emphasize the close relationship to ID/LP grammars.



and then predicts the application of all rules whose lefthand side is the active
element of that edge. When a passive edge is added to the chart, it is used to
complete every compatible active edge. When an attempt is made to add an
edge that would duplicate one already in the chart, no action occurs.

We start the algorithm by seeding the active chart with the lexical edges:
where x is a word in the input and A is a preterminal for x, we add a passive
edge to the chart representing an A found at x’s location. We then predict
the root symbol of the grammar. Once the active chart has finished responding
to this prediction and its consequences, every edge in the chart spanning the
entire input string whose lefthand side is the root symbol indicates a successful
recognition.

Let us mention in passing that the way it is presented here, the algorithm
differs in one respect from Earley’s original proposal: We start out by seeding the
chart with all input words, whereas Earley interleaves scanning with prediction
and completion. As a result, we have to do completion whenever an edge is
entered, regardless of whether the entered edge is active or passive.5 This is
done to strengthen the bottom-up component, which is important considering
the overall goal of parsing linearization-based HPSG grammars, where much
of the information guiding parsing originates in the lexicon. Together with the
ability (discussed in section 4.2) to determine the order in which the righthand
side categories of a rule are predicted, this allows the grammar writer to, for
example, specify a head-corner processing strategy.

In the abstract form presented above, the algorithm can be applied to both
context-free and GIDLP grammars. To turn it into a concrete algorithm, we
need to address both how the coverage of an edge is encoded as well as how this
affects finding compatible edges for completion.

For the ordinary context-free grammar case, the answers were provided by
Earley (1970). Edges have the form i[A → α •j β], which indicates a parse state
in which the string from i to j is covered by α and we will have found an A
if β is found immediately following j. In a passive edge, β is empty. An active
edge, on the other hand, has a nonempty β, the initial element of which is the
active element, with j the active position. Newly-predicted edges are of the form
i[A → • i β], where i is the active position of the edge triggering prediction. A
passive edge k[C → γ •l ] is compatible with an active edge i[A → α•j Bβ] when
j = k and C = B; the new edge covers the string from i to l.

For GIDLP grammars, our discussion of edge coverage and edge compatibility
must start by describing the data structure used to encode the coverage of an
edge in light of the possibility of discontinuous constituents.

3.1 Efficient edge coverage encoding

The single interval (formed by i and j) that was used to encode the coverage of
the edges in the context-free case is not sufficient to model edge coverage in a
5 We also do completion before prediction, which in the revised setup reduces the

number of attempts to add redundant edges to the chart.



grammar that licenses discontinuous constituents, as each edge may potentially
be covered by a discontinuous subset of the string. Johnson (1985) showed that
this issue can be addressed by generalizing from single intervals to lists of in-
tervals : for example, [[1, 3], [5]] represents an edge that covers the first, second,
third, and fifth words of the input. This representation permits constant-time
checking for isolation: if the cardinality of the interval list is one, the edge is
isolated. On the other hand, most of the other operations needed to retrieve and
use edges in parsing, such as checking for overlap and computing the union of
two interval lists, are linear in the length of the input string.

As Johnson (1985) pointed out, these interval lists are descriptionally equiv-
alent to bitvectors : arrays of bits where element n corresponds to the inclusion of
word n of the input. Since Reape (1991, 55ff.), many researchers have used bitvec-
tors encoded as lists of zeroes and ones to represent potentially-discontinuous
edge coverage; yet this representation also requires linear operations for most if
not all bitvector manipulations.

As known from other applications, bitvectors can be encoded as integers by
representing them as binary numbers, with the least-significant bit of the number
corresponding to the leftmost word in the input string.6 Based on this represen-
tation we have determined ways to compute all necessary bitvector operations
shown in the table below in constant time.7

Function Description Defined as

overlap(x, y) Position occupied in both x and y? and(x, y) 6= 0
combine(x, y) Union of x and y. or(x, y)
singleton(p) BV in which only p is occupied. 2p

lbound(x) Least-significant occupied bit in x. rbound(xor(x, x − 1))
rbound(x) Most-significant occupied bit in x. blog 2(x)c
prefix(p) BV covering all positions ≤ p. 2p+1 − 1
suffix(p) BV covering all positions ≥ p. not(2x − 1)
precede(x, y) Does x completely precede y? x < y
iprecede(x, y) Does x immediately precede y? rbound(x) = lbound(y) + 1
isolated(x) Does x form a continuous unit? x = and(prefix(rbound(x)),

suffix(lbound(x)))

The use of bitvectors to encode edge coverage leads naturally to the use of
bitvectors as coverage constraints (bitmasks) which we turn to in section 4.2.

6 For example, Davis (2002) mentions the use of integer representations of bit-vectors
in the context of machine translation, and some of our inspiration for the bitvec-
tor computations below stems from bitboard-based computer chess discussions on
rec.games.chess. In the linearization parsing literature, Ramsay (1999) seems to be
the only one to explore this possibility, giving definitions of overlap and combine
and a more complex way for computing isolated.

7 In the table, BV abbreviates bitvector, x and y are bitvectors, p is a position index,
and and, or, xor, and not are the ordinary bitwise operators. We refer to a position
set to 1 as occupied instead of the more common term active, which we avoid here in
order to prevent confusion with the use of active in active category and active edge.



4 A parser for GIDLP grammars

Now that the general concepts have been introduced, we can discuss our parsing
algorithm as an instance of the general characterization of the Earley algorithm
provided in section 3. For space and presentation reasons we will not go through
the entire algorithm as implemented in Prolog, but instead focus on the data
structures and predicates particularly relevant from the perspective of efficient
processing.

4.1 The Chart

The edges in the chart of our GIDLP parser are of the form edge(Nr, Covers,
NMask, PMask, LHS, Rest, WOCs). Here, Nr is the edge index, Covers is the
coverage vector, LHS the lefthand category of the rule, Rest the list corresponding
to the as-yet-unfound righthand categories of the rule, and WOCs the list of word
order constraints. The remaining components are the negative masking vector
NMask and the positive masking vector PMask. We turn to their meaning and use
in the next section.

During parsing we often need to consider all edges in the chart that satisfy a
given condition. For example, when a passive edge triggers completion, we need
to find all non-overlapping active edges seeking the just-completed category. In
completion triggered by an active edge, we need to find all non-overlapping pas-
sive edges that can provide the active element’s category. To avoid generate-and-
test in these lookups, we define parallel indices into the chart. Relying on Prolog’s
first-argument indexing, we define vecchart(Mask, Nr), rhschart(ActElem,
Nr), and lhschart(LHS, Nr) as indices into the edge/7 predicates representing
the chart.

The use of such indexing is standard technology, and we turn now to a more
interesting and novel aspect of our approach: the use of bitmasks to compile
word order constraints for use in edge and rule access.

4.2 Prediction

The strategy for prediction used by Suhre (1999) is to predict every rule at
every position. While this strategy ensures that no possibility is overlooked, it
fails to integrate and use the information provided by the word order constraints
attached to the rules. Some of the edges generated by prediction therefore fall
prey to the word order constraints later, in a generate-and-test fashion.

This need not be the case. Once a daughter of an active edge has been found,
the other daughters should only be predicted to occur in string positions which
are compatible with the word order constraints of the active edge. For example,
consider the edge A → B • C ; { B < C }. Assuming B has been found to cover
the third position of a five-word string, then C cannot cover positions one, two,
or three.

To implement this intuition, every edge in the chart contains an additional
bitvector (alongside the coverage vector): a negative masking vector. This mask



constrains the set of possible coverage vectors which could complete the edge.
The ones in a masking vector represent the positions that are masked out: the
positions that cannot be filled when completing this edge. The zeroes in the
negative mask represent positions that may potentially be part of the edge’s
coverage. For the example above, the coverage vector for the edge is 00100,8

since only the third word (the B) has been found so far. Its masking vector is
00111. This encodes the fact that the final coverage vector of the edge must be
either 01000, 10000, or 11000 (that is, C must occupy position four, position five,
or both positions). The negative mask therefore encodes information on where
the active category cannot be found.

We also have a positive masking vector to encode information about the po-
sitions the active category must occupy. This knowledge arises from two sources.
First, immediate precedence constraints provide a fruitful source of positive in-
formation. For example, if in an edge D → E • F ; {E << F}, we know that E
occupies position one, we can conclude that F at least must occupy position two;
the second position in the positive mask should therefore be occupied. Second, if
we know from the prediction history of an edge and the word order constraints
on that edge that the active category must occur at the left edge of the space
covered by the edge, we can set the bit in the positive mask corresponding to
the least-significant unoccupied bit.

Having introduced the use of the coverage and masking vectors, let us look
at how prediction is implemented:

% predict(+RHS, +Coverage, +WOCs)

predict([],_,_).

predict([A:Id|_], Coverage, WOCs) :-

( rule(A, Alpha, AWOCs),

calculate_masks(WOCs, Id, Coverage, NMask, PMask),

check_space(NMask, Alpha),

enter_edge(A, 0, NMask, PMask, Alpha, AWOCs),

fail ; true ).

Here, RHS is a list of the as-yet-unfound categories, Coverage is the bitvector
representing the edge’s coverage, and WOCs is the list of word order constraints.
The first clause represents the fact that prediction is a vacuous operation on
passive edges. For active edges, on the other hand, we consider each rule in the
grammar that could generate the active element.9

Note that we only have a single active element per edge; we do not introduce
multiple dots on the righthand side as done by Suhre (1999), who essentially
follows the direct ID/LP parsing tradition. Recall that the dot in Earley’s original
parser serves two purposes: First, it is the index to the next word of the input
string that has to be found. Second, it marks the next active item to be predicted.
8 Recall that the least-significant bit of the vector corresponds to the left-most word

of the string. Thus the bitvector is iconically a mirror image of the string.
9 Each category A in a rule has a unique identifier Id and the word order constraints

are expressed in terms of these identifiers.



In our generalization of this algorithm, the first purpose is served by the coverage
vector; thus the dot only has the second purpose of marking the active element.
Conceptually, using a single dot is sufficient since we know that for an edge
to be completed, every element on the righthand side has to be found at some
point. We predict the righthand side categories in the order in which they are
specified in the rule, so that the grammar writer can use the order to specify those
daughters to be searched first which are most likely to cause an early failure.
For example, a rule introducing a conjunction of sentences can be specified as S
→ Conj S1 S2 ; {S1 << Conj, Conj << S2, [S1], [S2]}. This causes the parser to
look for the easy-to-identify conjunction before it tries to find the possibly quite
complex conjunct sentences.

The call to calculate_masks/4 in the second clause of the prediction pred-
icate above calculates the two masks for each rule we consider. This calculation
takes into account the RHS elements of the rule that have already been found
as well as the word order constraints that refer to them. Each of the clauses
of calculate_masks incorporates the effect of a particular type of word order
constraint on the negative or the positive mask. For example, when predicting a
component that must follow a component C already located, we generate a nega-
tive mask of prefix(rbound(C)). Every newly predicted edge thus comes with
two mask vectors which provide immediate access to many of the constraints on
its use in completion. Based on this encoding, one can efficiently test whether,
for instance, the coverage of the active edge overlaps with the negative mask of
the passive edge one wants to complete with.

On the basis of the negative mask, the predicate check_space/2 ensures that
an edge is only entered into the chart if the resulting mask has enough space
for the rule being considered. For instance, a rule A → B C ; L cannot apply
within a mask that has only one unoccupied position,10 so such an edge would
be blocked from entering the chart at this point. Edges that pass this check are
then entered into the chart with an empty coverage vector; as usual, the chart
will respond to this by applying completion and prediction to this edge.

4.3 Completion

Completion always involves an active and a passive edge. Upon entering a passive
edge, we search the chart for all edges seeking the category provided by the
passive edge. The completion predicate for this case looks as follows:11

% complete(+Rest, +Cat, +Vec, +WOCs, +M)

complete([], Cat, Vec, [], M) :-

( noverlap(Vec, Mask),

vecchart(Mask, N),

rhschart(Cat, N),

edge(N, ActCat, ActVec, [Cat:Id|Cats], ActWOCs),

10 When processing grammars with epsilon rules, this optimization cannot be used.
11 When an active edge triggers completion, the process is virtually identical and will

not be explicitly described here.



mergelp(ActWOCs, Id, Vec, NewWOCs, N, M),

NewVec is Vec \/ ActVec,

check_pmask(Cats, PMask, NewVec, PMaskOut),

enter_edge(ActCat, NewVec, NewVec, PMaskOut, Cats, NewWOCs),

fail; true ).

In section 4.1 we saw that the edges are indexed by their negative mask and
active element, so we can efficiently retrieve only those edges (with index N)
which both a) have a non-overlapping negative mask and b) are seeking the kind
of active element (Cat) which the triggering passive edge has to offer.

For each edge we retrieve, we then call mergelp/6 to merge the word order
constraints of the active edge (ActWOCs) with the coverage of the passive edge
(Vec). As mentioned in the previous section, this rules out completion when the
negative mask of the active edge overlaps with the coverage vector of the passive
edge that triggered completion. The second task which is part of the merging of
word order constraints requires more computation than the overlap check (which
is simple since the mask has been precomputed): we need to compute the new
set of word order constraints for the edge resulting from completion. All word
order constraints in a freshly predicted edge refer to (the unique indices of) the
categories on the righthand side of the rule. As the parse proceeds, we can replace
some of these categories with their location. For example, a constraint like A <
B can be combined with the information that A has been found at position p.
We can eliminate an edge as soon as one of its attached constraints becomes
impossible to fulfill. Each update step will take one of the following forms:

– When we find one of the categories mentioned in a (potentially immediate)
precedence constraint, we update the constraint and test whether there is
enough space for the other category. For example, if, given the constraint
A << B, we find a B as the first word of the string, A cannot occur within
the string.

– When we find the second category of a (potentially immediate) precedence
constraint or the only category of an isolation constraint, we check that the
constraint actually holds; if it does, then that constraint will not appear as
part of the word order constraint set of the resulting edge.

Once we have successfully merged the word order constraints, the rest of the
new edge is easy to compute: the category of the edge is the category ActCat of
the active edge, the missing righthand side is the tail Cats of the active edge’s
righthand side, and the coverage vector NewVec is the bitwise or of the two
edges’ coverage vectors.

We then process the active edge’s positive mask. If the tail Cats is empty
(indicating the creation of a passive edge), then it must be the case that im-
plies(Pmask, NewVec), or else completion fails. The positive mask of the new
edge is either empty (if the new edge is passive) or identical to the active edge’s
positive mask.

Finally, the resulting edge is added to the chart and triggers another round
of completion and prediction.



5 An Example

We illustrate the parsing algorithm with the following Sanskrit toy grammar:

1 s → verb:1 nom:2 acc:3 ; {2 < 1, 3 < 1}
2 s → verb:1 nom:2 ; {2 < 1}
3 s → conj:2 s:1 s:3 ; {1 << 2, 2 << 3, [1], [3]}
4 acc → adj:1 acc:2 ; {}
5 na;l+.s,a → nom ‘Nala’ (a proper name)
6 na;ga:=+m,a → acc ‘city’
7 A;ga;.cC+.t,a → verb ‘went’
8 ..cEa;va → conj ‘and then’
9 A;va;d;t,a → verb ‘spoke’

10 .�+:�a;.ca:=+m,a → adj ‘shining’

The grammar can be summarized as follows: A sentence may consist of a verb
and either one or two arguments preceding it. A sentence may also consist of a
conjunction immediately between two (conjunct) sentences, each of which forms
an isolated domain. Finally, accusatives may be modified by an adjective which
may occur anywhere in a sentence, before or after the accusative it modifies.

We give the parse for the sentence (1), which contains the discontinuous
constituent .�+:�a;.ca:=+m,a na;ga:=+m,a ‘shining city’.12

(1) .�+:�a;.ca:=+m,a
shining

na;l+.s,a
Nala

na;ga:=+m,a
city

A;ga;.cC+.t,a
went

..cEa;va
and then

na;l+.s,a
Nala

A;va;d;t,a
spoke

‘Nala went to the shining city and then Nala spoke’

# Description E Cover NMask PMask Edge

1 scan .�+:�a;.ca:=+m,a 1 0000001 0000001 0000000 adj, [], []

2 scan na;l+.s,a 2 0000010 0000010 0000000 nom, [], []

3 scan na;ga:=+m,a 3 0000100 0000100 0000000 acc, [], []

4 scan A;ga;.cC+.t,a 4 0001000 0001000 0000000 verb, [], []

5 scan ..cEa;va 5 0010000 0010000 0000000 conj, [], []

6 scan na;l+.s,a 6 0100000 0100000 0000000 nom, [], []

7 scan A;va;d;t,a 7 1000000 1000000 0000000 verb, [], []

8 pred s in 0 8 0000000 0000000 1111111 s, [verb:1, nom:2, acc:3],
[c2 < c1, c3 < c1]

9 comp 8 + 4 9 0001000 0001000 1111111 s, [nom:2, acc:3],
[c2 < p8, c3 < p8]

10 comp 9 + 2 10 0001010 0001010 1111111 s, [acc:3], [c3 < p8]

11 comp 10 + 3 fails: pmask 1111111 6→ 0001110.

12 pred acc in 10 11 0000000 1111010 0000000 acc, [adj:1, acc:2], []

13 comp 11 + 1 12 0000001 1111011 0000000 acc, [acc:2], []

14 comp 12 + 3 13 0000101 0000101 0000000 acc, [], []

15 comp 10 + 13 fails: pmask 1111111 6→ 0001111.

12 The example has been tokenized from .�+:�a;.ca:=M na;l+.ea na;ga:=+ma;ga;.cC+.(ãÉEa;va na;l+.ea Y;va;d;t,a.



16 pred acc in 12 fails: no room for 2 elements in 1111011.

17 comp 9 + 6 fails: 0100000 6< 0001000

18 comp 8 + 7 14 1000000 1000000 1111111 s, [nom:2, acc:3],
[c2 < p64, c3 < p64]

19 comp 14 + 2 15 1000010 1000010 1111111 s, [acc:3], [c3 < p64]

20 comp 15 + 13 fails: pmask 1111111 6→ 1000111.

21 comp 15 + 3 fails: pmask 1111111 6→ 1000110.

22 pred acc in 15 16 0000000 1000010 0000000 acc, [adj:1, acc:2], []

23 comp 16 + 1 17 0000001 1000011 0000000 acc, [acc:2], []

24 comp 17 + 3 = edge 13

25 pred acc in 17 18 0000000 1000011 0000000 acc, [adj:1, acc:2], []

26 comp 14 + 6 19 1100000 1100000 1111111 s, [acc:3], [c3 < p64]

27 comp 19 + 13 fails: pmask 1111111 6→ 1100101.

28 comp 19 + 3 fails: pmask 1111111 6→ 1100100.

29 pred acc in 19 20 0000000 1100000 0000000 acc, [adj:1, acc:2], []

30 comp 20 + 1 21 0000001 1100001 0000000 acc, [acc:2], []

31 comp 21 + 3 = edge 13

32 pred acc in 21 22 0000000 1100001 0000000 acc, [adj:1, acc:2], []

33 comp 22 + 1 = edge 21

34 pred s in 0 23 0000000 0000000 1111111 s, [verb:1, nom:2], [c2 < c1]

35 comp 23 + 4 24 0001000 0001000 1111111 s, [nom:2], [c2 < p8]

36 comp 24 + 2 fails: pmask 1111111 6→ 0001010.

37 comp 24 + 6 fails: 0100000 6< 0001000

38 comp 23 + 7 25 1000000 1000000 1111111 s, [nom:2], [c2 < p64]

39 comp 25 + 2 fails: pmask 1111111 6→ 1000010.

40 comp 25 + 6 fails: pmask 1111111 6→ 1100000.

41 pred s in 0 26 0000000 0000000 1111111 s, [conj:2, s:1, s:3],
[c1 << c2, c2 << c3, [1], [3]]

42 comp 26 + 5 27 0010000 0010000 1111111 s, [s:1, s:3],
[c1 << p16, p16 << c3, [1], [3]]

43 pred s in 27 28 0000000 1110000 0001000 s, [verb:1, nom:2, acc:3],
[c2 < c1, c3 < c1]

44 comp 28 + 4 29 0001000 1111000 0001000 s, [nom:2, acc:3],
[c2 < p8, c3 < p8]

45 comp 29 + 2 30 0001010 1111010 0001000 s, [acc:3], [c3 < p8]

46 comp 30 + 13 31 0001111 0001111 0000000 s, [], []

47 comp 27 + 31 32 0011111 0011111 1111111 s, [s:3], [p16 << c3, [3]]

48 pred s in 32 fails: no room for 3 elements in 0011111

49 pred s in 32 33 0000000 0011111 0100000 s, [verb:1, nom:2], [c2 < c1]

50 comp 33 + 7 34 1000000 1011111 0100000 s, [nom:2], [c2 < p64]

51 comp 34 + 6 35 1100000 1100000 0000000 s, [], []

52 comp 32 + 35 36 1111111 1111111 0000000 s, [], []

53 comp 27 + 35 fails: 1100000 6<< 0010000

54 pred s in 32 fails: no room for 3 elements in 0011111

55 comp 30 + 3 37 0001110 0001110 0000000 s, [], []

56 comp 27 + 37 38 0011110 0011110 1111111 s, [s:3], [p16 << c3, [3]]

57 comp 38 + 35 fails: pmask 1111111 6→ 1111110.



58 pred s in 38 fails: no room for 3 elements in 0011111

59 pred s in 38 = edge 33

60 pred s in 38 fails: no room for 3 elements in 0011111

61 pred acc in 30 = edge 11

62 pred s in 27 39 0000000 1110000 0001000 s, [verb:1, nom:2], [c2 < c1]

63 comp 39 + 4 40 0001000 1111000 0001000 s, [nom:2], [c2 < p8]

64 comp 40 + 2 41 0001010 0001010 0000000 s, [], []

65 comp 27 + 41 fails: 0001010 is not contiguous

66 pred s in 27 42 0000000 1110000 0001000 s, [conj:2, s:1, s:3],
[c1 << c2, c2 << c3, [1], [3]]

67 success: 36

As stated above in section 3, we begin the parse by seeding the chart with the
lexical entries, each covering a singleton vector (lines 1–7). Then we predict the
application of the first rule that can generate the root symbol of the grammar
(line 8), which adds the first active edge to the chart. This addition then triggers
completion. Since this edge’s active category is verb, we look for passive edges
whose lefthand side is verb. Here, edge 4 is the first edge in the chart for which
this is the case, so edge 9 is generated by completing 8 with 4. Edge 9 is added
to the chart, with an updated righthand side: verb:1 has been removed from
the list of daughters and the constraint c2 < c1 has been updated to c2 < p8
(representing that category 1 has been found at position 0001000).

Note that with this active chart parser, Prolog’s call stack implicitly repre-
sents the parsing agenda. Once edge 9 is added to the chart, our agenda consists
of completing with edge 9, predicting from edge 9, finding other passive edges
to complete edge 8 with, predicting from edge 8, and finding other rules that
generate the root symbol.

This sample parse illustrates many of the optimizations we have discussed in
this paper: Line 11 depicts an attempt to recognize a sentence covering only part
of the input (before application of the recursive rule 3 has been predicted); the
positive mask is not satisfied and the attempted completion is rejected. Similarly,
in line 65, an attempt to treat the second and fourth words as a conjunct fails
from a lack of continuity. By line 47, one of the conjuncts has been found. Since
only two positions are left uncovered, the remaining conjunct must fit in two
positions. Hence the attempts to predict rules 1 and 3 from line 32 also fail
(lines 48, 54). Note that in each of these cases, the effect of the optimization in
question is only partially represented by the number of edges directly prevented
from entering the chart. Had the potential edge described on line 11 been added
to the chart, for instance, the parser would have tried to complete with the
resulting edge and predict from it as well. The results of those steps would have
led to more instances of prediction and completion, and so on. Each time we
prevent one edge from entering the chart, we prune an entire branch of the
parser’s search tree.



6 Efficiency Considerations

Suhre (1999) shows that the membership problem for GIDLP grammars is NP-
complete, both when considering the grammar plus the string as input (general
membership problem) as well as when only the string is considered as input
(fixed membership problem). It is known since Huynh (1983) that the general
membership problem for unordered context-free grammars (ID/LP grammars
without LP statements) is also NP-complete, so this result is not surprising. But
what causes the NP-completeness of the fixed membership problem for GIDLP
grammars? Suhre (1999, 61ff) demonstrates that it stems from the potential
for recursive growth of discontinuities; when the parser can assume an upper
bound on the number of discontinuities in any given constituent, the parsing
problem becomes polynomial. Formally, this can be achieved by requiring that
the number of discontinuities introduced by a recursive non-terminal is bounded
by some constant.

Interestingly, a related practical proposal based on a linguistic argumenta-
tion is discussed by Müller (1999b). He proposes a continuity constraint for
linearization-based HPSG which requires saturated phrasal elements (that is,
maximal projections) to be continuous.13 Müller shows that adding his continu-
ity constraint results in a significant reduction in the number of passive edges
and thereby significant improvements in parsing performance. This continuity
constraint is weaker than Suhre’s condition in that recursion on the X level (ad-
junction) is not restricted. It is, however, interesting to note in this context that
a grammar incorporating the X-schema will require all non-head constituents to
be maximal projections. In sum, Müller’s result strongly suggests that further
research on linguistically-motivated continuity constraints can result in efficient
parsing of those GIDLP grammars which include such constraints.

This raises the question of how the parsing algorithm that we have pro-
posed in this paper performs when used to parse grammars incorporating linear
precedence and isolation constraints (since the worst-case performance results
are based on the absence of such constraints). As we mentioned earlier, the
GIDLP grammars form a superset of the context-free grammars. Thus it would
be desirable for a GIDLP parser to be just as efficient as a context-free parser
when presented with a context-free grammar encoded in the GIDLP format.14

To investigate this, we have tested the performance with the three types of
context-free grammars discussed in Earley (1970) – those that require linear,
quadratic, and cubic time for strings to be recognized. We found that when
given these context-free grammars encoded as GIDLP grammars, the increase in

13 If extraposition is handled via discontinuous constituents, a more complex constraint
is required.

14 Another interesting point of reference is the ID/LP parsing literature. Volk (1996)
showed that in terms of efficiency and expressivity, it is advantageous to be able to
combine ID/LP and ordinary context-free rules in one grammar. We agree with his
argumentation and while we have focused on the issue of discontinuity in this paper,
our algorithm can be seen to seamlessly integrate context-free and (G)ID/LP rules.



the number of edges produced by our parser when the string length is increased
is comparable to Earley’s original algorithm.

7 Outlook

In order to focus on the fundamental aspects of efficient parsing with discon-
tinuous constituents, a number of orthogonal aspects were kept as simple as
possible in this paper. To advance towards the general goal of efficient parsing
with linearization-based HPSG grammars, the next step is to introduce global
linear precedence and isolation constraints and to replace atomic categories with
complex categories, encoded by typed feature structures.

Global linear precedence and isolation statements. The basic GIDLP grammar
format we described in section 2 extends the ID/LP paradigm in that it does not
require each local tree to cover a continuous string. The precedence constraints
are attached to individual rules, though, and thus they only express order con-
straints on the daughters of the rule they are attached to. When a discontinuity
arises, the grammar writer thus cannot constrain the order of elements which
have “escaped” out of their local tree in relation to other elements introduced
in another local tree. The next step towards making GIDLP a useful grammar
formalism thus consists of adding word order constraints which express imme-
diate or weak linear precedence over any pair of elements within the same order
domain. For example, the statement NP < VP states that the NP has to precede
the VP in every domain containing both. The challenge in adding such global
precedence constraints consists in obtaining and storing for each domain the
minimal representation of the domain elements needed to determine whether a
global precedence constraint has been violated.

Adding global isolation statements, on the other hand, is less important;
since every node that should be isolated has to be introduced in some rule, the
isolation constraint can be stated on that rule. We nevertheless will introduce
global isolation statements as a shorthand to avoid having to express the fact
on every rule in which a particular kind of element can occur that it is always
isolated.

From atomic to complex categories. The move to typed feature structures brings
with it a number of complications. Apart from the well-known issues generally
involved in adding complex categories to a chart-parser (for example, subsump-
tion checking or the use of a restrictor), the most interesting challenge in our
context is the observation by Seiffert (1991) that word order constraints cannot
always be verified when a local domain is constructed. While Seiffert addresses
the issue by checking word order constraints in a second pass once the entire
tree has been constructed, Morawietz (1995) shows that by keeping the rele-
vant information around, this problem can be avoided. In a similar vein, we
intend to keep the relevant information around implicitly by making use of the
co-routining capabilities of SICStus Prolog.



Another important effect of the move to complex categories is that the ability
of the grammar writer to specify the prediction order for the righthand side of
each GIDLP rule makes it possible to ensure that they are processed in the order
in which they convey information. This, for example, is relevant for subject-
to-object-raising constructions (for instance, I expect him to leave), where the
verbal complement (to leave) determines what can occur as the object (him) of
the verbal head (see).15

Other frameworks. In this paper we have motivated processing with the GIDLP
formalism based on the HPSG linearization tradition. But as discussed in the
introduction and footnote 1, analyses involving discontinuous constituents have
been argued for in a variety of frameworks and also occur in the two treebanks
that have been produced for German. Given that the formalism we deal with
in this paper is an extension of context-free grammars, it, for instance, makes a
natural candidate for extending LFG to license c-structures with discontinuities.

8 Summary

This paper has described a number of optimizations for parsing with a formal-
ism licensing discontinuous constituents. Using bitvectors encoded as integers
to model subsets of the terminal yield, we showed how the required bitvector
operations can be computed in constant time. To efficiently access edges and
rules in a way that makes use of word order information, we use two kinds of
bitmasks to constrain possible coverage vectors, specifying the positions that are
possible, impossible, and required to be covered by an edge. The algorithm can
thereby take word order constraints into account in a more interleaved fashion,
restricting the search space of the parser.

In the GIDLP grammar format we define, the order of the righthand side
of a grammar rule does not encode the word order of the daughters. Instead,
it expresses the order in which these elements will be processed; the grammar
writer can order them according to the degree in which they constrain the search
space of a parse. This can be used to encode a head-driven strategy by making
the heads the first righthand side elements in their rules; it also becomes possible
for the grammar writer to rank the non-head daughters in a rule.

As described in the outlook, we plan to extend the GIDLP grammar format
and our parser to include global word order constraints and complex categories.
This brings with it the opportunity for more practical evaluation metrics. It is
generally accepted, for instance, that the dominating factor in feature structure-
based algorithms is the number of unifications that must be performed; such a
metric is easily calculated once one has a grammar which can be used for testing.
We intend to recode the linearization-based Babel grammar (Müller 1996), one
of the most comprehensive grammars of German, as a GIDLP grammar and use
it as a test case for the extended parser. This should allow us to substantiate
(or refute) the claim that processing comprehensive linearization grammars of
15 Thanks to Wesley Davidson for this example.



natural languages is efficient once all available word order constraints are actually
used to guide processing in a well-engineered way.
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