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1 Introduction

The main goal of this research is to find ways of improving the quality of model
building for computational semantics by designing and implementing a new
model builder that is able to produce non-minimal models.

This is not limited to developing an algorithm that tends to produce linguisti-
cally more adequate models for typical formulae. It also means to open up the
model building process, making it more transparent and offering hooks at which
linguistic knowledge can be applied.

OletinMB, the model builder motivated and described in this paper, is a first
step in this direction. By means of freely definable rankings of element identity
assumptions, OletinMB allows to adapt search space exploration and the order
of constructed models according to linguistic criteria.

I begin in Chapter 2 with a brief history of the field, explaining how the area that
model building techniques were first applied to still determines the behaviour of
model builders. Special attention is given to the convention of minimal model
building, which was the obvious choice for the original areas of application, but
has detrimental effects in natural language semantics.

In Chapter 3, I review the two main approaches to model building and some of
their branches, comparing their applicability to computational semantics and
explaining the history of the ideas behind OletinMB. Chapter 4 then introduces
tableau methods in some detail, laying important theoretical groundwork for
the understanding of my model building procedure.

The calculus behind OletinMB is then presented formally in Chapter 5, where I
also explain the most important optimizations that turned out to be necessary
for an efficient implementation. Chapter 6 presents the Prioritized Identity As-
sumption (PRIDAS) mechanism, which is OletinMB’s main device for receiving
external guidance during search space exploration. I also discuss the effects of
two very simple PRIDAS functions, and develop ideas for linguistically moti-
vated ranking functions.

In Chapter 7, I evaluate the quality of the models produced by OletinMB on
formulae produced by the Nutcracker system for Recognizing Textual Entail-
ment (RTE). I give concrete examples for the benefits of non-minimal model
building and discuss the perspectives this opens for further research.

I presuppose a certain familiarity of the reader with first order logic as well as ba-
sic knowledge of automated reasoning techniques and computational semantics.
Apart from that, experiences with RTE systems are helpful for understanding
the implications of my findings.
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2 Model Building for Computational Semantics

2.1 Automated Reasoning in Computational Semantics

Research efforts in natural language semantics have traditionally been directed
to the question of how the meanings of utterances can be modelled by formal
means. The tradition of formal logic, which has a long history in linguistics,
has emerged as the most popular framework of expressing natural language se-
mantics in a potentially language-neutral manner. Following the revolutionary
ideas of Richard Montague, much research has been done on how natural lan-
guage utterances can be translated into a logical language that formalizes and
correctly predicts semantic differences between utterances.

With the advent of computing technology fast enough to perform symbolic com-
putations on logical formulae, it has in principle become possible to automate
the process of converting written language into logical statements.

Building on these advances, the next step has been to develop methods which ac-
tually make use of the logical representations to accomplish a range of advanced
tasks. It has become possible to analyse the meaning of natural language input
well enough to allow reasoning over it, e.g. in order to detect inconsistencies in
natural-language descriptions.

For this purpose, usually existing tools from the branch of computer science
known as automated reasoning are applied. This includes powerful theorem
provers, which are mainly developed to assist mathematicians in finding and
checking complex proofs for their theorems. Computational semantics arose
with the first attempts to apply such tools to sets of formulae derived from
natural language sentences.

2.2 Models as Meanings of Sentences and Discourses

Theorem provers turned out to be extremely useful for mathematics, but of
limited applicability in linguistics. This is due to the fact that theorem provers
mainly possess the ability to find proofs, which is essential for mathematics,
but of limited use for linguistics. It is certainly fascinating to let a computer
recognize that a natural language text is inconsistent by letting it try to prove
its logical representation and end up with a contradiction.

However, finding contradictions and tautologies is arguably not the main as-
pect of what we commonly concieve as understanding a text. The meaning of a
sentence has traditionally been described as the set of worlds in which a sentence
is true. Using a theorem prover, we can only prove that a sentence is true in all
worlds (= can be proved) or that it cannot be true because it contradicts itself
(= its negation can be proved). But such sentences are barely meaningful from
the point of view of communication, as they in general add no new information
to the discourse.

The linguistically interesting formulae lie between these two extremes, their
truth values depend on the world in which they are evaluated. In logical terms,
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we are not interested in validity, but in satisfiability, or in other words, in the
existence of models for these formula. A model of a formula can be conceived as
a world in which that formula is true. Intuitively, the properties of the worlds in
which a formula is true contain a lot more semantic information than whether
the formula is always valid.

When we hear a story, a good approximation of what happens in our minds
while processing the meaning is that we build a world within our minds. The
sentences the story is composed of contain descriptions of such a world, and we
adapt our internal model of this world as the story progresses. If we want to
simulate this process by computational means, we have to find ways to generate
models from the formulae we have derived as representations for the meanings
of utterances.

Luckily, the automated reasoning community has in recent years produced a
new class of specialised programs called model builders. With the help of such
tools, it is possible to directly compute models for sets of formulae, providing
for the computational equivalent of creating hypothetical worlds in our minds.

2.3 Usage of Model Builders in Mathematics

To understand why model building as a field has developed in the way it has, it
is necessary to know what kind of mathematical problems model builders were
constructed to solve. The main reason for the rise of model building as a reason-
ing task is that mathematicians often define classes of interesting mathematical
objects by means of sets of axioms. A model of the axioms taken together is
an example of the structures they admit. Building on a few elementary notions
like sets and relations, only a few logical axioms are needed to define classes of
mathematical objects such as trees, or groups, or lattices.

While systematically exploring the space of possible structures, mathematicians
are often confronted with the question which kind of objects are described by
a given set of axioms. Often, a well-known set of axioms is slightly adapted
to see what consequences small changes in the axioms have on the structures
described. For larger sets of axioms, this kind of research is very demand-
ing, at some point even exceeding what a trained mathematician can achieve
by hand in reasonable time. To facilitate this kind of research, model builders
have been designed to explicitly produce structures admitted by a set of axioms.

Another important application for model builders in mathematics is the au-
tomated search for counterexamples. The most elegant way of disproving a
conjecture or a mathematical assumption is to exhibit a structure for which
the assumption does not hold. Without a good intuition on what the problem
cases could be, searching for such counter examples can be very time consuming.
For various reasons, mathematicians are also often interested in the largest or
smallest counterexamples to a theory.

Johannes Dellert Non-Minimal Model Building for Computational Semantics
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2.4 The Traditional Emphasis on Minimal Models

With this applicational background in mind, it is not very surprising that most
model builders are tuned towards finding minimal models for formulae of
first-order logic. A model of a formula is minimal iff it is not possible to find
another model of the formula with a lower number of elements in its universe.
Mathematicians tend to look for the smallest models of their axioms because
such models are usually still small enough to be fully understood.

Another reason why the construction of minimal models is the standard be-
haviour of current model builders is that most satisfiable formulae have a large
number of, if not infinitely many arbitrarily complex models, and it is difficult
to decide which of the many models can be considered canonical and should be
produced by a model builder.

Minimal models are also often the prototypical and most interesting cases for
further analysis, because the decisive properties of the object class described
by a set of axioms are often visible in them without distractions caused by
additional structure that would not be necessary to fulfill the axioms.

2.5 Model Builders in Computational Semantics

Among the first to propagate the use of model builders for computational se-
mantics were Blackburn & Bos (2005) in their seminal work on computational
semantics. Their idea was to tackle the problem of first order indecidability by
letting a theorem prover and a model builder run in parallel on their logical
representations. The theorem prover would try to prove that new sentences
followed from the previous discourse, discarding them as not informative if this
was the case. In parallel, the model builder would try to find a model of the
previous discourse enlarged by the sentence’s negation, showing that the new
sentence is informative because it does not follow from the previous discourse.

Given the complexity of state-of-the-art theorem provers and model builders, B
& B were happy to use off-the-shelf tools produced by the automated reason-
ing community for their prototype system CURT. The performance of existing
solutions was good enough for them not to waste energy on thinking about, let
alone implementing automated reasoning tools geared towards their particular
class of reasoning tasks.

This approach has been carried over to the first attempts of applying techniques
of deep semantics to tasks such as RTE (Recognizing Textual Entailment). The
model building technology used by Bos & Markert (2005b) in their Nutcracker
RTE system is basically still the same as the one used by Blackburn & Bos in
their very first experimental systems.

With OletinMB, I strive to develop a model builder specialized in producing
more accurate models for natural language utterances. I try to achieve this
by giving up some of the established practices for model builders tailored to-
wards mathematical problems. The most important of these changes is that I
systematically produce non-minimal models.
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3 Review of Model Building Techniques

In this chapter, I will give a brief overview of the current state of the art in finite
model building for first-order logic, with a special focus on the applica-
bility of the different approaches and their implementations to computational
semantics.

Model building for significantly stronger logics is generally considered intractable,
and there has not been much research in that area, whereas infinite models have
not yet been found to be of much relevance for natural language semantics. For
further discussion of higher-order model building with a linguistic application,
the reader is referred to the discussion in Konrad (2004) and the literature cited
there. The current state of the art in general-purpose model building is pre-
sented in Caferra et al. (2004), where finite descriptions for and the construction
of infite models are described as well.

3.1 Goals and Scope of Model Building

As an introductory remark, it is worth mentioning that model building for first-
order logic is an extremely difficult task to perform efficiently. There cannot be
general solutions because satisfiability of predicate logic over finite structures is
undecidable.

In fact, finite model building for first-order logic is not even recursively enumer-
able, as follows directly from Trakhtenbrot’s theorem and the lack of duality for
undecidability (see e.g. Hedman (2004), p. 412ff for details). This means that
model building is an even harder problem than the notoriously difficult theorem
proving, which is also undecidable, but at least recursively enumerable.

Notwithstanding these severe theoretical limitations, automated reasoning meth-
ods are very useful as a tool for many areas of research. While on the theoretical
side, the situation would seem to be quite hopeless, it still turned out to be pos-
sible to implement model builders which are able to build models for many
problems occurring in practice. However, there always have to be gaps in cov-
erage, and a method that may perform badly on a certain class of formulae is
often the best choice for another class.

The methods developed in the field differ mainly in their degree of optimization
to certain classes of problems, whereas conceptually there are only two differ-
ent major approaches which have had some success, both of which will now be
discussed in turn.

3.2 Enumerative Methods

The more successful of the two main approches to model building is the enu-
merative approach, which is based on systematically generating all possible
first-order structures of a given domain size and essentially trying them out via
an efficient model checking algorithm until a model is found. As brute-force as
this type of approach may sound, using a number of intelligent optimizations
this actually makes it possible to generate small models very efficiently. The
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most important optimizations include ways of quickly finding contradictions
which exclude whole classes of models which then do not have to be generated
any more, and ways to avoid generating and checking many isomorphic cases.

This basic idea of directly exploiting the finiteness of the set of possible struc-
tures over a given domain and a given alphabet was first implemented by Slaney
(1992) in his FINDER (FINite Domain EnumeratoR). Slaney’s main contri-
bution was the discovery of feasible enumeration methods for domains of useful
sizes, in his cases being around 10 to 15. FINDER achieves this via a back-
tracking search, avoiding to bracktrack twice for the same reason. The major
disadvantage is that FINDER is not refutationally complete, and it does not
find Herbrand models, instead explicitly specifying the values of functions on
arbitrary domains.

The first widely successful finite model builder for first-order logic was MACE
(Models And CounterExamples) by McCune (1994), which relies on flattening
the first-order formula to a propositional formula equivalent for a given domain
size, effectively reducing model building to a SAT problem which is then solved
using an efficient Davis-Putnam method. MACE-style model builders were the
first to be successfully applied to hitherto unsolved mathematical problems from
lattice theory, and continue to be very popular.

The last major innovation in enumerative model building was the introduction
of constraint programming techniques by Zhang & Zhang (1995). Their SEM
(System for Enumerating finite Models) relies on an efficient implementation
of constraint propagation and a heuristic tailored to avoiding consideration of
many isomorphic models. SEM performs a lot better than MACE on larger for-
mulae with many equations, while MACE is more of a general-purpose method.

The development of enumerative approaches has continued since then, but im-
provements have become more gradual. For the most recent large innovation
and the current state of the art for MACE-style model building, I refer the
reader to Claessen & Sörensson (2003).

Apart from the maturity and performance of the implementations, another rea-
son for the popularity of enumerative approaches is that they tend to have some
properties favoured by the mathematician. If an incremental search through do-
main sizes does not yield any models of a certain domain size, the mathematician
can be sure there are no such models, which can already be a very important in-
sight. The problem that there are always some formulae on which a given model
builder will not terminate can be alleviated by using an enumerative method
and only looking for models of a certain cardinality, which over finite alphabets
is a decidable problem.

Although especially MACE has been successfully applied to reasoning tasks in
computational semantics, enumerative model builders are not really a natural
choice for linguistic applications. The effiency-enhancing features of enumer-
ative methods generally tend to work well for logical languages with function
symbols and lots of equations, as is typical for problems in algebra. Formulae
occurring in computational semantics tend to exhibit neither function symbols
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nor equations to a high degree, diminishing the effect of most optimizations.
Fortunately, domain sizes in linguistic models have tended to be rather small-
ish and well within the scope of enumerative approaches even without much
optimization.

3.3 Deductive Methods

The second influential approach to finite model building is usually called the
deductive approach. Unlike enumerative methods, who essentially build up
their models in the form of multiplication tables, deductive methods use atomic
representations of partial models during the process.

Most deductive methods build on tableau calculi, the most prominent of which is
Positive Unit Hyper-Resolution (PUHR). The approach is based on analytical
tableaux and tries to solve the efficiency problem caused by the blind instanti-
ation of γ-formulae (see the next chapter for explanations of the terminology).
It does this by converting the formulae into a clausal form and compiling them
into range-restricted rules of the form C = a1∧ ...∧am ⇒ b1∨ ...∨ bn, where
a1, ..., am and b1, ...bn are atoms.

The resulting tableau construction rules are a lot less complex than the ones I
will present, and the efficiency gain can be considerable. However, the conver-
sion into clausal form can be very costly, and it requires skolemization, which
hampers some of the otherwise nice properties of the method. For detailed in-
formation on the PURC calculus, the best source is Bry & Yahya (2000).

PUHR is in essence a formalization of the behavior of one of the oldest model
builders, SATCHMO (SATisfiability CHecking by MOdel generation) by
Manthey & Bry (1988). SATCHMO was conceptualized as an enhancement to
the Prolog programming language that allows it to handle negative clauses and
clauses containing more than one literal. It is thus essentially a variant of Prolog
which can handle clauses of the form C : H1, ...,Hm ← B1, ..., Bn.

Conversion into range-restricted rules then means that during generation of
a proof for a goal, all generated facts will be ground, which results in a col-
lectable atomic representation of a model of the goal. SATCHMO has con-
stantly been improved over time with novel search-space reducing techniques, I
give I-SATCHMO by He (2001) as an example of recent contributions.

A variant of PUHR that preserves completeness for finite satisfiability is the
EP (Extended Positive) tableau calculus by Bry & Torge (1998). The input
to EP has to be provided in the form of Positive Restrictive Quantifica-
tion (PRQ) rules, which are of the general form ∀x(C → ∃yF ), where C is a
conjunction of atoms and F a disjunction of atoms and PRQ rules. It is then
possible to apply a tableau method without skolemization, while at the same
time preserving much of the efficiency gains of operating on range-restricted
rules. The approach I am using in OletinMB could be described as a variant of
EP which operates on general first-order formulae, not requiring prior conver-
sion to PRQ rules, but with some loss of efficiency.

Johannes Dellert Non-Minimal Model Building for Computational Semantics
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In theory, deductive methods should exhibit far better behaviour than enumer-
ative methods especially on large domain sizes because they avoid the combi-
natorical explosion caused by producing all possible models. However, tableaux
can only be represented by rather expensive data structures, and the structure
of the search space is generally less well-understood, which makes it a lot easier
to optimize enumerative methods.

Although deductive methods have rarely been used in computational seman-
tics so far, I see a lot of potential for such methods to be successfully applied to
linguistic model building. A case in point is the constraint-based method devel-
oped by Konrad (2004) for a higher-order logic that contains most of the formal
mechanisms used in formal semantics, including certain kinds of set and function
variables. As Konrad points out, enumerative methods are completely unfea-
sible here because the domains get inflated with constants denoting flattened
higher-order entities and soon become intractably huge. Using sophisticated
constraint solving techniques, Konrad’s system manages to compute such mod-
els in reasonable time, with some interesting linguistic applications.

Apart from the fact that deductive methods are interesting because they can
demonstrably tackle (fragments of) higher-order logics, they also have the ad-
vantage of being much more open to modifications. Tableau methods in par-
ticular tend to preserve a lot more of the original formula structure than the
conversions necessary for enumerative methods, which provides entry points for
all kinds of tweaks, including steering the tableau building process by exter-
nal heuristics. This is the direction I am exploring with OletinMB, and we
shall therefore first have a closer look at the mechanics of tableau-based model
building before exploring my ideas in that area.

4 The Tableau Method

The tableau method is originally a technique of theorem proving, used to refute
the negation of a theory we want to prove. As was noticed early in the history
of automatic reasoning, the tableau method lends itself well to simultaneous
search for proofs and models. This is mainly because the tableau data structure
keeps together the information representing a partial model, and unlike e.g. in
resolution methods, the structure of these partial models is preserved during
the reduction process.

I will quickly remind the reader of the basic ideas and issues of the tableau
method for theorem proving, then explaining along the lines of Caferra et al.
(2004) and following the ideas of Boolos (1984) why this method only requires
minor changes to provide us with a naive, but fully functional model builder.

4.1 The Propositional Case

The tableau method as applied to theorem proving tries to reject a first order
formula by deriving a contradiction from it. The basic idea driving the process
and determining the shape of the tableau data structure is that of a recursive
distinction of cases.

Johannes Dellert Non-Minimal Model Building for Computational Semantics
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Every case distinction we must exhaust leads to an additional branching in a
tree structure with the formula to be refuted at the root and its subformulae at
the nodes. As the structure is expanded, the formula is eventually broken down
into literals, i.e. atomic propositions and their negations. Formulae that have
been expanded once become inactive, which allows the method to terminate
once all formulae have been extended.

A single branch of the tableau from the root to a leaf always contains for-
mulae that have to be true at the same time. We can thus detect contradictions
within branches by looking for pairs of clashing literals that occur together in
a branch, a process commonly referred to as closing a branch. If we manage
to close all branches, we have refuted the formula for all cases, thus proving the
invalidity of the root formula and the validity of its negation.

The following rules define the behaviour of a classical propositional tableau:

¬¬φ
φ

φ ∧ ψ
φ
ψ

¬(φ ∨ ψ)
¬φ
¬ψ

¬(φ→ ψ)
φ
¬ψ

φ ∨ ψ
φ ψ

¬(φ ∧ ψ)
¬φ ¬ψ

φ→ ψ
¬φ ψ

The first group of rules is for obvious reasons also called conjunctive or non-
branching, while members of the second group of rules are called branching or
disjunctive rules. Non-branching rules are commonly referred to as α-rules,
while the branching rules are called β-rules.

As can be shown by a simple induction on the depth of the formulae being
expanded using the fact that every rule application lowers the depth of a for-
mula, the tableau calculus for propositional logic is both sound and complete.

4.2 Dealing with Quantification

In order to extend the tableau method to predicate logic, we need additional
rules to reduce the quantifiers. Such rules exist in several variants, all much
more complicated than the rules for the propositional case.

The main problem is that resolving universal quantification would in principle
require us to introduce an infinite number of new leaves to a branch, because
it formally corresponds to a conjunction of infinitely many conjuncts. Analo-
gously, existential quantification can result in infinitely many case distinctions,
because it formally corresponds to a disjunction over an infinite set of formulae.

It is possible to partially resolve this problem by introducing a special treat-
ment for both quantifiers. Existential quantification is generally processed us-
ing skolemization, i.e. the replacement of the variable it binds with a skolem
function. The function’s value can be determined later by unification, mak-
ing skolemization a systematic way of delaying decisions until we know enough
about the domain to avoid infinity. Rules for the treatment of existential quan-
tification in tableaux are traditionally called δ-rules.
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The traditional solution for γ-rules, i.e. the treatment of universal quantifiers,
is to let them range only over the constants as well as the set of entities that are
produced during skolemization. However, universal formulae still cannot become
inactive after being expanded, because they clearly also have to hold for entities
that are introduced later e.g. by resolving some deeper-embedded existential
quantifier. This problem cannot be avoided, so unlike in the propositional case,
we cannot guarantee that at some point the tableau will be completely resolved
without any active formulae left, which forces us to live with non-termination
in some cases, which is also a theoretical limitation.

Two regimes for handling quantifiers have been developed in attempts to maxime
speed and coverage of the tableau method for predicate logic. The method of
analytical tableaux is based on a simple version of skolemization for exis-
tential quantification, and non-deterministically substituting ground terms for
resolving universal quantification:

(∀)∀x.γ(x)
γ(t)

, where t is an arbitrary ground term

(∃)∃x.δ(x)
δ(c)

, where c is new constant symbol

The advantage of analytical tableaux is that we can introduce skolem functions
of zero arity or skolem constants because the quantification rule eliminates
the dependencies on quantifiers with higher scope and their bound variables.
This is a nice feature because it allows us to get along entirely without costly
unification.

However, in the case of theorem proving, we are interested in closing all branches
of a tableau as quickly as possible. During processing of universal quantifica-
tion this requires us to pick non-deterministically from a potentially huge
set of ground terms one of the few which will give us a valid counterexample
and lead us to the desired contradictions in all cases later in the tableau. Using
no guidance by unification here can lead to substantial amounts of unnecessary
backtracking. As a result, the performance of the method relies entirely on the
quality of early and rather un-informed guesses, with disastrous consequences
for performance on certain malicious problem classes.

For this reason, another alternative for the γ- and δ-rules is more popular in
general-purpose theorem proving. In so-called free-variable tableaux the res-
olution of universal quantification is delayed by replacing the bound variable by
a new one. Existential quantification is then dealt with by skolemizing over the
free variables resulting from this process.

(∀)∀x.γ(x)
γ(x′)

, x′ a variable not occurring elsewhere in the tableau

(∃) ∃x.δ(x)
δ(f(x1, ..., xn)

, f new function symbol, xi free variables in δ

The values of the skolem function are then only determined via unification
during attempts to close branches. The unification causes free variables to be

Johannes Dellert Non-Minimal Model Building for Computational Semantics



4.3 Saturated Open Branches Represent Models Page: 11

∃x∃y : rabbit(x) ∧ carrot(y) ∧ eat(x, y)

∃y : rabbit(c1) ∧ carrot(y) ∧ eat(c1, y)

rabbit(c1) ∧ carrot(c2) ∧ eat(c1, c2)

rabbit(c1)
carrot(c2) ∧ eat(c1, c2)

carrot(c2)

eat(c1, c2)

Figure 1: Classical tableau for ∃x∃y : rabbit(x) ∧ carrot(y) ∧ eat(x, y)

assigned to a value, and this value must be respected in other branches as
well. This method has the advantage that it avoids backtracking by delaying
decisions as much as possible, which is more efficient for theorem proving. The
disadvantage is a higher memory usage because the whole tableau must be kept
in memory and unification always influences formulae everywhere in the tableau,
making the required changes non-local.

4.3 Saturated Open Branches Represent Models

After this sketch of classical tableaux as used in theorem proving applications,
we will now tweak the method a little in order to produce models. To see why
this is relatively straightforward, consider the tableau in Figure 1.

Note that the framed literals in the only branch can directly be used to con-
struct a complete model of the formula, its domain corresponding to the skolem
constants we introduced while extending the branch. We are thus not any longer
interested in closed branches that would indicate contradictions, but our goal is
to find saturated open branches, which cannot be extended any more and
failed to be closed while being extended. The fact that the literals on such
branches can directly be interpreted as descriptions of models is the main ob-
servation made by Boolos (1984) in his pioneering work.

In principle, this approach also works with universal quantification, as demon-
strated in Figure 2. In this more complex case, it becomes obvious that the
method is constructing models of increasing size. If we traverse the branches
of this tableau, we start out with small models and can work our way up to
models of arbitrary size.

It is also important to note that the models are not fully specified by the lit-
erals on the branches. Each set of branch literals merely constitutes a minimal
description for a class of models with additional structure. Consider the second
branch, which contains the literals carrot(c2), eat(c1, c2), and ¬rabbit(c2). Out
of these, we can construct a model which does not specify whether carrot(c1)
or ¬carrot(c1), and whether rabbit(c1) or ¬rabbit(c1). One could treat any of
these combinations as different models, but then one could also integrate all
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∀x(rabbit(x)→ ∃y(carrot(y) ∧ eat(x, y)))

rabbit(c1)→ ∃y(carrot(y) ∧ eat(c1, y))

¬rabbit(c1) ∃y(carrot(y) ∧ eat(c1, y))

carrot(c2) ∧ eat(c1, c2)

carrot(c2)

eat(c1, c2)

rabbit(c2)→ ∃y(carrot(y) ∧ eat(c2, y))

¬rabbit(c2) ∃y(carrot(y) ∧ eat(c2, y))

carrot(c3) ∧ eat(c2, c3)

carrot(c3)

eat(c2, c3)

rabbit(c3)→ ∃y(carrot(y) ∧ eat(c3, y))

¬rabbit(c3) ∃y(carrot(y) ∧ eat(c3, y))

...

Figure 2: Classical tableau for ∀x(rabbit(x)→ ∃y(carrot(y) ∧ eat(x, y)))
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∀x∃y(love(x, y))

∃y(love(c1, y))

love(c1, c2)

∃y(love(c2, y))

love(c2, c3)

∃y(love(c3, y))

love(c3, c4)

...

Figure 3: Classical tableau for ∀x∃y(love(x, y))

kinds of other entities and relations to the models that have nothing to do with
the formula. In that sense, a model as we are producing it here is always an
underspecified description.

As we can see in Figure 3, the naive use of the tableau method for model building
can quite easily lead to non-determination although the formula is satisfiable.
The problem is that by the default rules, every existential quantifier we meet
requires the introduction of a new constant symbol and thus a new element in
our models. This makes sense for theorem proving, because we want to find
contradictions in the general case, which only requires us to pick a few useful
substitutions during γ-rule application.

However, in model building our goal is not to close all branches for a given
instantiation by finding contradictions, but to be efficient in finding saturated
branches, special cases where the universal formulae hold for all constants con-
tained in the formulae or introduced by δ-rule applications.

If we allow the reuse of introduced skolem constants when expanding existential
quantifiers, this amounts to looking at particular cases with additional identity
assumptions. And indeed, models are nothing other than such particular cases.

This observation leads to the idea of treating existential quantification by al-
lowing skolemization with skolem constants generated at an earlier stage as well
as skolemizing with a new constant. With this modification, our variant of the
tableau method turns into a valid model building mechanism, as can be seen in
Figure 4.

The main problem caused by this change to the tableau building rules is that
we now have to non-deterministically choose existential instantiations. As was
the case for universal quantification before, it is difficult to guess the correct
existential initializations early on, and suboptimal choices can quickly lead to
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∀x∃y(love(x, y))

∃y(love(c1, y))

love(c1, c1) love(c1, c2)

∃y(love(c2, y))

love(c2, c1) love(c2, c2) love(c2, c3)

∃y(love(c3, y))

love(c3, c1) love(c3, c2) love(c3, c3) love(c3, c4)

...

Figure 4: Modified tableau for ∀x∃y(love(x, y))

extensive backtracking and the expansion of intractably many branches that
are doomed to failure. Making these choices in an intelligent and well-informed
manner, or delaying them by means of constraint systems, have been the main
issues in developing refinements to this basic method.

4.4 Completeness for Finite Satisfiability

An important criterion in the evaluation of finite model building methods is
whether they are complete for finite satisfiability. A model building method
has this property if it is guaranteed to find some finite model if any such model
exists. This does not imply that the method must be able to find every possibly
finite model.

The first person to develop a tableau method that was provably complete for fi-
nite satisfiability was Boolos (1984), whose goal was to develop a model building
method with that property. The tableau method we just introduced is largely
based on his ideas, and this method can be considered the ancestor of all tableau
methods for model building.

A problem that has influenced many design decision in tableau-based model
building algorithms is that we would have to avoid skolemization with free vari-
ables in order to preserve completeness for finite satisfiability. To see why this
is so, consider the following example taken from Konrad (2004):

The formula P (a, a)∧∀x(P (x, x)→ ∃y(P (x, y))) obviously has a finite Herbrand
model. But skolemization turns this into P (a, a) ∧ ∀x(P (x, x) → P (x, f(x))),
which only has infinite Herbrand models. This demonstrates that the introduc-
tion of additional function symbols is risky because we lose finite satisfiability.
Unfortunately, no variant of skolemization over free variables can avoid this risk
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in all cases. To retain completeness for finite satisfiability, we can only use
skolem constants as a variant. This is exactly what Bry & Torge (1998) do in
their Extended Positive (EP) tableau calculus.

5 Implementation within Oletin

The claims of this paper have been tested by implementing a new model builder
within the Oletin framework (a Finnish neologism roughly translating as “as-
sumption device”), which is the preliminary name of my self-designed framework
for efficient formula and model manipulation, implemented entirely in Java.

Oletin provides utility classes for processing formulae and models in various
standard formats, e.g. in the Prolog format used by Blackburn & Bos (2005)
and with unicode symbols for pretty pritting. It can read and write formu-
lae and models in MACE format, making it possible for my model builder to
completely copy MACE’s behaviour, so that it can be used and evaluated with
minimum effort in all applications which already provide an interface for MACE.

The framework also features the option of outputting models in the DOT lan-
guage used by GraphViz1. All the models graphs in Chapter 7 were generated
using this method.

5.1 Basic Structures and Architecture

To make the process more transparent, I decided not to convert the logical for-
mulae into a particular simplified form. Instead, the tableau implementation
in OletinMB operates on arbitrary first-order formulae. Usually, one would not
want to do this because it can result in unnecessarily huge tableaux and subop-
timal bounding of the search space.

However, with a few shortcuts and optimizations which I am going to discuss
in the next section, this turned out to be a feasible option, perhaps assisted by
an inherent tendency of linguistic formulae to be structured in a friendly manner.

I decided against a free-variable tableau and opted for the analytical variant
because I wanted to avoid function symbols in my formulae and thus had to
circumvent skolemization, with the added benefit that my system preserves
completeness for finite satisfiability.

Choosing the analytical tableau variant also has the advantage that I can save
all the relevant information about the active branches in an agenda-like struc-
ture without keeping all the inactive formulae in memory.

The established model building method most closely related to mine thus is
the Extended Positive tableau calculus by Bry & Torge (1998), which makes
the same choices concerning tableau formalism and the avoidance of skolemiza-
tion. The most relevant difference is that EP requires formula conversion into

1see http://www.graphviz.org
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a special form, while my implementation works on arbitrary first-order formu-
lae. EP thus chooses efficiency over transparency and modifiability, while for
OletinMB I decided to stay as transparent and open for problem-specific mod-
ifications as possible at the expense of somewhat reduced performance.

The basic working procedure is that the model builder manages a stack of active
branches, leading to a depth-first exploration of the space of possible models.
In each step, as long as the stack is nonempty, the next active branch is taken
from the top of the stack, and the tableau rules are applied. This results ei-
ther in a modified branch that gets pushed onto the stack again, or in two new
branches which are pushed onto the stack while the old branch is discarded. If a
rule results in a closed branch, it will simply not be added to the agenda again.
For δ-rule applications, a stack of backtracking points is maintained, with a
copy of the respective branch at that moment together with an agenda of yet
unconsidered existential instantiations.

5.2 Pruning the Search Space

As was to be expected, my rather naive initial method did not perform as well
as desired because it explored the space of possible models in a rather brute-
force manner. In my attempts to prune the search space as early as possible
without resorting to complicated constraint mechanisms, the following structure
for storing active branches B turned out to be useful:

B =< Φ,Ψ,Ω,C,A > where
Φ is the non-branching agenda, a set of active conjunctive formulae,
Ψ is the branching agenda, a set of active disjunctive formulae,
Ω is the universal theory, a set of active universal formulae,
C is a set of constant symbols, and
A is a set of ground literals together representing a partial model.

For ease and clarity of presentation, I enlarge this structure by an additional
set of pending formulae Π, which makes the formal presentation much more
concise. For efficiency reasons, there is no corresponding structure in the code.

With these preparations, the basic ideas of my optimized implementation for
the tableau rules can then be described as a calculus in the following way:

Initialization and completion:

buildModel(φ)
< ∅, ∅, ∅, ∅, ∅, {φ} >

< ∅, ∅,Ω, C,A, ∅ >
success : C and A define model

During initialization, the formula to be processed is added to the set of pending
formulae, and all other parts of the structure start out empty. Model building is
complete if both the non-branching and the branching agendas are empty, and
there are no more pending formulae to take into account.

Splitting conjunctives:
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< {φ1 ∧ φ2} ∪ Φ, Ψ,Ω,C,A, ∅ >
< Φ,Ψ,Ω,C,A, {φ1, φ2} >

< {¬(φ1 ∨ φ2)} ∪ Φ, Ψ,Ω,C,A, ∅ >
< Φ,Ψ,Ω,C,A, {¬φ1,¬φ2} >

< {¬(φ1 → φ2)} ∪ Φ, Ψ,Ω,C,A, ∅ >
< Φ,Ψ,Ω,C,A, {φ1,¬φ2} >

The splitting rules are the main mechanism of extracting subformulae, always
processing only one agenda formula at a time and adding its components to
Π. All the pending formulae must then be processed before the splitting rule
can be applied again, which turns the splitting of conjunctives into an entirely
deterministic process.

Distributing conjunctives:

< Φ,Ψ,Ω,C,A, {φ1 ∧ φ2} ∪Π >

< {φ1 ∧ φ2} ∪ Φ, Ψ,Ω,C,A,Π >

< Φ,Ψ,Ω,C,A, {¬(φ1 ∨ φ2)} ∪Π >

< {¬(φ1 ∨ φ2)} ∪ Φ, Ψ,Ω,C,A,Π >

< Φ,Ψ,Ω,C,A, {¬(φ1 → φ2)} ∪Π >

< {¬(φ1 → φ2)} ∪ Φ, Ψ,Ω,C,A,Π >

The task of the distribution rules is to correctly assign pending formulae to their
respective agendas. The interplay of splitting and distributing rules is thus re-
sponsible for the recursive construction of the tableau.

Double negation rule:

< {¬¬φ} ∪ Φ, Ψ,Ω,C,A,Π >

< Φ,Ψ,Ω,C,A, {φ} ∪Π >

A treatment for double negation is needed to cover all first order formulae in
arbitrary form, I simply make use of the tautology ¬¬φ→ φ here.

Splitting disjunctives:

< ∅, {ψ1 ∨ ψ2} ∪ Ψ,Ω,C,A, ∅ >
< ∅, Ψ,Ω,C,A, {ψ1} > < ∅, Ψ,Ω,C,A, {ψ2} >

< ∅, {¬(ψ1 ∧ ψ2)} ∪ Ψ,Ω,C,A, ∅ >
< ∅, Ψ,Ω,C,A, {¬ψ1} > < ∅, Ψ,Ω,C,A, {¬ψ2} >

< ∅, {ψ1 → ψ2} ∪ Ψ,Ω,C,A, ∅ >
< ∅, Ψ,Ω,C,A, {¬ψ1} > < ∅, Ψ,Ω,C,A, {ψ2} >

These are the only rules which can introduce additional branches to the tableau.
Observe that they can only be applied if the non-branching agenda is empty.
The efficiency gain resulting from delaying branching is the main reason for
separating the branching from the non-branching agenda.

Distributing disjunctives::

< Φ,Ψ,Ω,C,A, {ψ1 ∨ ψ2} ∪Π >

< Φ, {ψ1 ∨ ψ2} ∪ Ψ,Ω,C,A,Π >

< Φ,Ψ,Ω,C,A, {¬(ψ1 ∧ ψ2)} ∪Π >

< Φ, {¬(ψ1 ∧ ψ2)} ∪ Ψ,Ω,C,A,Π >

< Φ,Ψ,Ω,C,A, {ψ1 → ψ2} ∪Π >

< Φ, {ψ1 → ψ2} ∪ Ψ,Ω,C,A,Π >
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Pending formulae that require branching are moved to the branching agenda.

Closing branches:

< Φ,Ψ,Ω,C, {¬φ} ∪A, {φ} ∪Π >

closed

< Φ, Ψ,Ω,C, {φ} ∪A, {¬φ} ∪Π >

closed

Detecting a contradiction between an established literal and a pending literal
leads to the closing of the current branch. The model builder first considers
other active branches introduced by splitting disjunctives. Then, if all branches
resulting from some existential instantiation are closed, the model builder back-
tracks and tries another instantiation instead.

Adding literals:

< Φ,Ψ,Ω,C,A, {φ} ∪Π >

< Φ,Ψ,Ω,C, {φ} ∪A,Π >
φ is a literal and ¬φ /∈ A

< Φ,Ψ,Ω,C,A, {¬φ} ∪Π >

< Φ,Ψ,Ω,C, {¬φ} ∪A,Π >
¬φ is a literal and φ /∈ A

If there is no contradiction between the partial model and a pending literal, the
new literal is used to extend the partial model. This rule is the only device for
introducing new facts into the model.

Universal quantification:

< Φ,Ψ,Ω, {c1, ..., cn}, A, {∀x(φ(x))} ∪Π >

< Φ,Ψ, {∀x(φ(x))} ∪Ω, {c1, ..., cn}, A, {φ(c1), ..., φ(cn)} ∪Π >

< Φ,Ψ,Ω, {c1, ..., cn}, A, {¬∃x(φ(x))} ∪Π >

< Φ,Ψ, {∀x(¬φ(x))} ∪Ω, {c1, ..., cn}, A, {¬φ(c1), ...,¬φ(cn)} ∪Π >

Universal quantification is applied as early as possible, introducing instantia-
tions for all the constant symbols defining the universe so far. The universal
statements are then stored in the universal theory to be instantiated again as
soon as new elements are introduced to the universe.

Existential instantiation with previously introduced constant:

< Φ,Ψ,Ω, {c1, ..., ci, ...cn}, A, {∃x(ψ(x))} ∪Π >

< Φ,Ψ,Ω, {c1, ..., ci, ...cn}, A, {ψ(ci)} ∪Π >

< Φ,Ψ,Ω, {c1, ..., ci, ...cn}, A, {¬∀x(ψ(x))} ∪Π >

< Φ,Ψ,Ω, {c1, ..., ci, ...cn}, A, {¬ψ(ci)} ∪Π >

Alternatives for existential instantiations, which are the main decision points
while exploring the search space, include instantiating existentially quantified
formulae with constants introduced during previous existential instantiations.

Existential instantiation with new skolem constant:

< Φ,Ψ, {∀x(φ1(x)), ...,∀x(φm(x))}, {c1, ..., cn−1}, A, {∃x(ψ(x))} ∪Π >

< Φ,Ψ, {∀x(φ1(x)), ...,∀x(φm(x))}, {c1, ..., cn}, A, {ψ(cn), φ1(cn), ..., φm(cn)} ∪Π >
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< Φ,Ψ, {∀x(φ1(x)), ...,∀x(φm(x))}, {c1, ..., cn−1}, A, {¬∀x(ψ(x))} ∪Π >

< Φ,Ψ, {∀x(φ1(x)), ...,∀x(φm(x))}, {c1, ..., cn}, A, {¬ψ(cn), φ1(cn), ..., φm(cn)} ∪Π >

Introducing a new skolem constant makes it necessary to not only enlarge the
partial universe by a new constant symbol, but also to apply the universal the-
ory stored in the branch to the new element.

Universal quantification is thus handled by applying any new universal state-
ment to all constants introduced so far, and by applying to every new constant
all the universal formulae introduced so far. This means that at any given point
in the process, universal quantification is fully accounted for, in this way the
model builder uses much of the available information at all stages, vastly reduc-
ing the number of branches that have to be explored.

Given this rather straightforward implementation of the full analytical tableau
calculus, it is not surprising that my model builder was still considerably less
efficient than other implementations, which generally have a lot more sophisti-
cated theories behind them, all with the goal of using the information available
at the branches in a much more thorough fashion.

Severe performance problems on the larger formulae I wanted to test my ap-
proach on forced me to develop additional techniques in order to make use of
that information. The guideline for these additional measures was to detect
inconsistencies as early as possible to tame the enormous search spaces.

My current implementation, which is by no means the end of the rope, includes
a special treatment for implications with literal antecedents. Such implications
are stored separately in another structure similar to the universal theory from
the calculus discussed above.

This implicational theory is then used to compute what I call the transitive
implicational closure of every introduced literal, which is essentially the set of
all literals that follow from introducing the new literal by recursive application
of the implicational theory until there are no new literals left to process. If a
literal from this closure clashes with the established facts in the partial model,
we can close the branch already at this stage. If, on the other hand, no clash
between the closure and the partial model arises, we can add the whole closure
to the set of pending formulae, often considerably enlarging the partial model
and bypassing a lot of dead ends in the search space.

The second major optimization in the current version is the usage of partial
model checks when formulae are distributed into the agendas and when par-
tial models are modified by introducing new constants or literals.

My version of partial model checking is able to detect whether a formula can be
guaranteed not to hold in any model which contains the current partial model
as a substructure. The advantage is that model checking is a rather cheap op-
eration in comparison to tableau building, which makes it worthwile to invest
some time in detecting contradictions between the partial model of a branch
and the formulae on its agendas.
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With these optimizations, OletinMB is able to find models of most largish lin-
guistic formulae as they tend to occur in RTE applications in less than a second.
For practical purposes in linguistic applications, the performance of my model
builder is thus comparable to that of MACE, though there are a few caveats
concerning formulae with few models. OletinMB is for various reasons more of
a model builder than a model finder. Further discussion of what this means can
be found in Sections 7.3 and 7.5.

5.3 Guiding Exploration via Prioritized
Identity Assumptions (PRIDAS)

The main hook for customizing the model builder’s behaviour is that while
backtracking on existential initialization decisions, it is possible to influence the
order in which the different alternatives are evaluated.

The basic idea is that the backtracking point generated by the application of a
δ-rule holds an ordered list of alternative initializations which are considered in
linear order. The user has the possibility to influence this ordered list directly
or more elegantly by means of a weighting function. For reasons of descriptivity,
I will call this mechanism PRioritized IDentity ASsumptions (PRIDAS).
The only condition for the weighting function is that it must return values be-
tween 0 and 1 which represent a confidence measure for possible instantiations.
The function can be computed by means of all the knowledge available at the
active branch and in its formulae as well as arbitrary external sources of infor-
mation. Initializations with higher confidence measures will then be considered
earlier than initializations with lower confidence measures.

6 Constructing Non-Minimal Models

An important reason why the minimal model property is so popular in model
builders is that this property makes it a lot easier to prove the formal proper-
ties of a model building algorithm. Moving away from model minimality thus
always includes a risk of breaking some desired properties, such as completeness
for finite satisfiability.

To avoid this, I employ a variant of a model building strategy that has al-
ready been proven complete. What I can influence without risking to break
any formal property is the speed and the order in which the search space is
traversed. I will show that even with these limited possibilities, there is a lot of
potential for improving the quality of model building for linguistic purposes.

The main idea I am pursuing is that in linguistic model building, the advantages
of constructing minimal models are far outweighed by the problems this choice
causes. Chapter 7 gives justification for this opinion in the form of a few exam-
ples from the Nutcracker RTE system. In this chapter, I will first explain more
thoroughly how model building can be steered by the PRIDAS mechanism, and
motivate why I consider it a promising way of allowing the user to interact with
the model building process.
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6.1 Advantages of Externally Guided Exploration

Two sources of information promise to be of value for influencing search space
traversal. The first is process-internal data that can be used to define more
efficient heuristics in order to first explore areas of the search space with a higher
probability. Such probabilites can for example be estimated via overlaps of the
atomic facts in which the predicates occur. Intuitively, if we have two entities
with similar properties, it makes more sense to particular case of the two entities
being identical.

The second, much more variable source of information is domain-specific
knowledge. Such knowledge can come in the form of special information about
the predicate symbols of the logical language, which tend to have a lot of mean-
ing that is not coded into the formula to be satisfied. Often, it is possible to
state that e.g. if an entity has property P, it is not very likely to also have
property Q, making separate instantiations the preferred choice when exploring
the model space.

As we will see in Chapter 7, in a linguistic context such information can be used
to reduce the amount of world knowledge axioms necessary to prevent identity
assumptions between entities which can never be identical (such as places and
events or rabbits and carrots). This bears potential for vast improvements to
linguistic model building because axioms that enforce such constraints tend to
inflate the formulae fed into the model builders, making it very hard to build
larger models for efficiency reasons.

In essence, PRIDAS turns the major weakness of the analytic tableau method
for model building into a strength: at the point where the algorithm has to
non-deterministically choose the next alternative to be considered, we receive a
hook to influence the behavior and help the process with educated guesses that
can be built on external (e.g. linguistic) information.

6.2 Ranking Functions for Element Identity Assumptions

We will now have a more formal look at the PRIDAS mechanism. For clarity of
presentation, I will use the following definition of PRIDAS weighting functions:

A function ρ : C ∪ {c} → [0, 1] is a PRIDAS function iff C is the universe of
a partial model, and c is a new constant symbol, i.e. c /∈ C. As a notational
convention, I will always give the same names to the elements of the universe:
C := {c1, ..., cn}, and I will retain the name c for the newly introduced constant.

With these notations, we can now state backtracking behaviour by giving a more
explicit version of the existential instantiation rules. To describe the backtrack-
ing process, I need to introduce an additional set of instantiation choices D
to some branch representations:

< Φ,Ψ,Ω,C,A, {∃x(ψ(x))} ∪Π >

< Φ,Ψ,Ω,C,A, {∃x(ψ(x))} ∪Π, C ∪ c >
c /∈ C
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< Φ,Ψ,Ω,C,A, {∃x(ψ(x))} ∪Π, D >

< Φ, Ψ,Ω,C,A, {∃x(ψ(x))} ∪Π, D\{ĉ} >< Φ,Ψ,Ω, {ĉ} ∪ C,A, {ψ(ĉ)} ∪Ω(ĉ) ∪Π >
,

where ĉ := argmaxc∈D ρ(c), and Ω(ĉ) :=
{
{φ(ĉ) | ∀x(φ(x)) ∈ Ω} if ĉ /∈ C

∅ if ĉ ∈ C

The right branch is then explored first, until a model is found or all result-
ing branches are closed. Only if the latter case happens (or if it is looking for
multiple models), OletinMB will backtrack to explore the left branch.

Note that each time we backtrack, the set of instantiation choices D shrinks
in the left branch. Finally, when all the possible instantiations were exhausted
without finding a model, the whole branch fails:

< Φ,Ψ,Ω,C,A, {∃x(ψ(x))} ∪Π, ∅ >
closed

.

6.3 Ranking Functions for Producing Minimal Models

If we want to simulate the behaviour of model builders which always produce
minimal models, we can impose a very simple condition on the ranking function
to be used for that purpose.

For a PRIDAS function ρmin to produce minimal models, it suffices to en-
sure that ρmin(ck) > ρmin(c) for k = 1, ..., n. The priority ordering of the other
existential instantiations is of no importance for this property, leaving space for
additional heuristics to make performance-improving choices.

Using such a ranking function where the introduction of a new constant al-
ways recieves the lowest confidence value, OletinMB will only introduce new
elements to the universe if everything else failed. This results in a minimal
model because the interpretation with the fewest introduced constant symbols
and thus the smallest universe will be found first.

6.4 Ranking Functions for Producing Maximal Models

The second class of PRIDAS functions we shall consider follow the equally sim-
ple constraint ρmax(ck) < ρmax(c) for k = 1, ..., n. I call such functions ρmax
because of the symmetry in definitions to ρmin.

The models produced by ρmax are maximal in the sense that OletinMB is not
able to produce any larger model. In formulae where no universal quantifier
ranges over an existential quantifier, the size of these “maximal models” is
bounded by (and will usually be equal to) the number of existential quantifiers
in the formula.

The term maximal model is not properly defined otherwise, since many for-
mulae possess models of arbitrary size. For this reason, ρmax easily leads to
non-termination, since we never identify any elements of the universe, but in-
troduce a new skolem constant for each existential quantifier we meet. The
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behaviour of OletinMB steered by ρmax will in effect be identical to that of a
classical analytical tableau, cf. Figure 3.

Even such a simple PRIDAS function can lead to considerable improvements
in the adequateness of constructed models, as we shall see in the next chapter.
However, such a function is also more than slightly dangerous because we have
a severe risk of non-termination even on smallish formulae.

In a very straightforward fashion, it is possible to alleviate this danger by falling
back to a non-maximal ρ if universal quantifiers range over existential quanti-
fiers in the formula. This might sound like a quite crude approach, but the fact
is that many or even most formulae as they turn up in computational seman-
tics do not exhibit the problematic structure (cf. Figure 5 for a typical model
builder input for the RTE task), so why should we renounce on the benefits
of non-minimal model building if we can circumvent the inherent dangers by a
simple superficial check of the formula we want to process?

For my first practical experiments, I have chosen to stick to this simple variant.
A huge variety of more elegant and theoretically appealing solutions are possible
by using more sophisticated PRIDAS functions, as we shall see now.

6.5 Towards Linguistically Motivated Ranking Functions

In some sense, ρmin and ρmax represent the two extremes of how we can in-
fluence the model building process using PRIDAS functions. More interesting
functions can be computed by using some sort of external knowledge, and such
functions will end up somewhere in the continuum between ρmin and ρmax.

It is possible to imagine all kinds of sophisticated PRIDAS functions for special
applications, but I will limit myself here to giving a few ideas on what kind of
functions could be useful for computational semantics. The crucial question to
ask is how we can know as early as possible whether two elements of a partial
model are likely to be identical.

Assume we have an active branch B with partial universe C and a set of estab-
lished ground literals A, and we are about to decide how to instantiate some
existential formula ∃xφ(x).

On the basis that entities with similar properties are more likely to be iden-
tical, an obvious idea would be to measure the overlap of the properties of x
in the existential formula with the properties of each single element from the
partial universe. We can define the set of properties of an entity c at the
current branch B as Prp(c,B) := {(φ, i) | φ(c1, ..., ci−1, c, ci+1, ..., cn) ∈ A},
collecting pairs of predicate names and argument positions.

Extracting a meaningful set of properties Prp(c, φ) for an instantiation of ∃xφ(x)
is more difficult because at that point we have not yet split the existential for-
mula into literals. Naively, we could substitute each candidate constant c for x
and then use the literal subformulae of φ(c) as the basis for property extraction.
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This obviously leads to problems, because we thereby basically assume that
φ(c) has the form of a conjunction of literals, which is a bad assumption for the
general case. If, however, we take a look at the structure of a typical first-order
theory from computational semantics (see e.g. Figure 5), it becomes apparent
that extracting literal subformulae could still be a good heuristics.

To achieve a more general solution, it is possible to extract a set (but not all) of
the literals guaranteed to hold in a formula by means of a polarity automa-
ton. Thoroughly introducing this concept is beyond the scope of this work, I
therefore postpone its discussion to future work on PRIDAS functions.

Whichever way we compute Prp(c,B) and Prp(c, φ), we now have the means
to define a new PRIDAS function ρoverlap(c) := Prp(c,B)∩Prp(c,φ)

Prp(c,B)∪Prp(c,φ) to rank the
different possible existential instantiations in our situation.

Until now, we have defined property overlap on the grounds of predicate name
identitites. However, our predicates have a linguistic meaning, and we ideally
would want ρoverlap to recognize that two entities c1 and c2 with Prp(c1,B) =
{(red, 1), (house, 1)} and Prp(c2,B) = {(crimson, 1), (building, 1)} are better
candidates for an identity assumption than, say, two entities c3 and c4 with
Prp(c3,B) = {(little, 1), (girl, 1)} and Prp(c4,B) = {(old, 1), (man, 1)}.

This is possible by enriching the computation of predicate name similarity by an
external source of lexical semantic information. Measures of conceptual related-
ness are a common tool in shallow semantics, and readily available toolkits such
as WordNet::Similarity by Pedersen et al. (2004) offer implementations of a
range of different methods for computing WordNet-based similarity measures.

For now, I will formalize such methods as a function sim : P × P → [0, 1],
where P is the set of predicate symbols in our signature. Having a continuum
of values instead of just a binary distinction for predicate similarity requires a
more involved definition of a PRIDAS function based on lexical similarity:

ρsim(c) :=
∏

(ψ,i)∈Prp(c,φ)

max
(χ,i)∈Prp(c,B)

sim(ψ, χ)

Approaches to linguistically guided PRIDAS computation need not be based on
predicate similarity only. An example of an additional factor that could con-
tribute to a promising heuristics is that in linguistic applications, it does not
make much sense to assume identity of two arguments of a predicate.

To see the rationale behind this, consider that a sentence like “a woman loves
a woman”, as a formula ∃x∃y(woman(x) ∧ woman(y) ∧ love(x, y))), is never
interpreted to mean woman(c) ∧ love(c, c) or “a woman loves herself”. A good
computational semantics system would already have translated that sentence
into ∃x(woman(x)∧ love(x, x)), only leaving open the desired interpretation. It
therefore makes sense to punish identity assumptions between two entities that
occur as arguments of the same predicate.

Numerous other such phenomena could be observed and made use of for lin-
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guistically guided model building, and we have only just started to explore the
possibilities. Future research will aim at finding many more such heuristics.

As a last idea, I would like to briefly mention what I call dynamic PRIDAS
functions. Such functions would make use of the backtracking mechanism,
thereby going beyond exploiting only what is available at the current branch.
For the computation of Prp(c, φ), dynamic PRIDAS functions could for example
take into account literals that were produced during previously tried instantia-
tions. This would help to enrich the decision base for ρoverlap and ρsim, helping
OletinMB to make even more informed instantiation decisions.

7 Evaluation within the Nutcracker System

7.1 The Problem of Evaluating Model Builders

Assessing the performance of algorithms or systems that cannot provide a so-
lution in all cases is always a difficult task because we cannot rely on classical
analysis techniques. Non-termination in the worst case has to be a common
feature of all model builders, which makes it impossible to compare algorithms
in terms of their worst-case complexity. The best we can do formally is to prove
completeness and estimate runtimes for certain classes of formulae, but this
tends to be a tedious task, and there are often no comparable results for other
model builders about the same classes of formulae.

If we try to rely on benchmarking for practical evaluation, the problem is that
unlike for theorem proving, we will not even find standardized sets of test cases.
Until such test sets exist (and for our purposes, we would specifically need one
containing examples from computational semantics), we have to rely on quali-
tative comparison on a few test cases. The Nutcracker RTE system by Bos
& Markert (2005a) turned out to be a good source for such example cases.

7.2 Overview of the Nutcracker System

The Nutcracker system was one of the earliest submissions to the RTE chal-
lenge. In this competition, systems are evaluated according to how well they
can predict textual entailment on a test set of text-hypothesis pairs.

Unlike most other RTE systems, Nutcracker does not rely only on shallow
heuristics, but tries to perform proper logical inference on formal semantic rep-
resentations. To make this possible, the system relies on a rather long toolchain
consisting of a wide-coverage CCG parser, a word sense disambiguation mod-
ule, the Boxer system for DRS generation, a DRS-to-FOL converter, and a
WordNet-based world knowledge database.

If it were possible to reliably translate natural language sentences into appro-
priate first-order representations, it would be possible to decide entailment by
simply applying automated theorem proving to an implication T → H with the
text representation T as the antecedent and the hypothesis representa-
tion H as the consequent.
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While this worked in a few example cases, for most text-hypothesis pairs the
first-order representations produced by the Nutcracker toolchain were not ac-
curate enough to reliably do that. As a fallback mechanism, Bos & Markert
developed the idea of generating models for T and of T ∧ H and comparing
their sizes, with the rationale that a large difference in model size between mod-
els of T and of T ∧ H means that information was added by the hypothesis,
making it unlikely that T entails H.

The size ratios between the models are then used together with other, more
shallow parameters to decide on the entailment prediction. Nutcracker was com-
petitive with other RTE systems in the challenge, but unfortunately it turned
out that the shallow parameters alone could account for that result, and the
effects of adding the deep method were not significant.

On the other hand, in their error analyis, Bos & Markert (2006) found out
that model size comparison alone worked almost as good with and without the
shallow parameters. This means that, quite surprisingly, the two very different
approaches can decide roughly the same class of problems, without complement-
ing each other much. Bos & Markert explain the disappointing performance of
the deep approach with a general lack of appropriate background knowledge,
the traditional limiting factor in computational semantics.

Unlike other RTE systems, Nutcracker is freely available with source code for
non-commercial purposes2, making it ideal for building on an existing infras-
tructure and conducting experiments with advanced techniques without having
to build up the toolchain by oneself. The internals of the system are not ex-
tremely well-documented, but the architecture is nicely modular and allows for
significant modifications without having to understand in detail all the various
components of the system.

7.3 The Structure of Linguistic Formulae
and Useful Specialized Techniques

If we have a look at typical first-order representations generated by Nutcracker
(see Figures 5 and 8), it becomes apparent that these formulae have some inter-
esting syntactic and semantic properties. The most obvious syntactic constraints
are that we do not have any function symbols, and that we see existential and
universal quantifiers, but almost never nested quantification of different types.

The first observation means that a model builder specialized in linguistic for-
mulae need not support function symbols, which makes existential instantiation
a lot easier to implement. The second observation removes most risks of non-
termination, allowing us to use otherwise dangerous heuristics such as depth-first
search of the model space or ρmax to guide existential instantiations. It also
implies that we are usually dealing with finitely satisfiable formulae.

2at http://svn.ask.it.usyd.edu.au/trac/candc/wiki/nutcracker
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On the semantic side, we notice that the set of possible models for a formula is
usually huge because the formulae are not very restrictive and do not contain
much negation. We can thus find valid models in all corners of the search space,
the problem is to find a meaningful and linguistically appropriate one.

Put differently, model building on such formulae can often be achieved by a
rather direct traversal of the search space up to some leaf. To establish a con-
cise terminology, I propose to call OletinMB and similar systems with such a
behaviour model builders in a stricter sense. Model construction systems op-
timized for restrictive axioms I will instead call model finders.

It should be mentioned, however, that it is easily possible to express any first-
order formula in natural language. This includes axiomatization of infinite struc-
tures like the natural numbers, which may serve as a warning that the structural
properties we just saw are by no means universal. They merely hold for almost
all formulae Nutcracker produces on typical sentences from the RTE task.

To the formal semanticist, it might sound quite curious that one of the most-
discussed problems of her trade, ambiguities arising from nested quantification,
rarely play a role in real-life data. But the most urgent problems of semantic
inference on real-life language data lie in other areas, as we shall see now.

7.4 Comparing OletinMB and MACE

As its standard model builders, the Nutcracker system uses MACE or another
MACE-style model builder named Paradox. Integrating an additional model
builder which can behave exactly like MACE into the system turned out to be
rather straightforward. This allowed me to quickly create an environment for
testing OletinMB’s performance and model quality on real-life examples.

Concerning performance, OletinMB can compete with MACE on almost all
formulae from my test set. Given that MACE is a much more mature system, I
attribute this to the fact that OletinMB is specifically tailored towards typical
formulae from computational semantics, while MACE was originally developed
for mathematical problems and will probably perform a lot better on the kind
of problems it was optimized for.

The following section will assess the quality of models produced by OletinMB
and MACE. Specifically, I will argue why I consider OletinMB’s PRIDAS mech-
anism to be more useful for linguistic model building than the minimal model
approach that comes with MACE and most other model builders.

7.4.1 Improved Model Quality by Non-Minimality

In model building, we tend to be interested in the smallest structure described
by a formula, because we are not interested in superfluous structure that would
not be necessary to satisfy it. Therefore, it generally makes sense to produce
minimal models because this way we never assume too much structure, not
adding any information that is not in the logical specification.
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∃x1∃x2(per1oracle(x1) ∧ n1form(x2) ∧
∃x3∃x4(v1fight(x3)∧ r1agent(x3, x1)∧ r1theme(x3, x4)∧n1proposition(x4)∧
∃x5∃x6∃x7(v1keep(x5)∧ r1agent(x5, x1)∧ r1patient(x5, x2)∧ r1from(x5, x6)∧
v1release(x7)∧ r1patient(x7, x6)∧n1event(x7)∧n1event(x5))∧n1event(x3)))
∀x8(n1abstract entity(x8)→ n1entity(x8))
∀x9(v1release(x9)→ n1event(x9))
∀x10(v1keep(x10)→ n1event(x10))
∀x11(v1fight(x11)→ n1event(x11))
∀x12(n1event(x12)→ n1abstract entity(x12))
∀x13(n1form(x13)→ n1abstract entity(x13))
∀x14(per1oracle(x14)→ n1entity(x14))
∀x15(n1proposition(x15)→ n1abstract entity(x15))
∀x16(v1release(x16)→ ¬v1keep(x16))
∀x17(v1release(x17)→ ¬v1fight(x17))
∀x18(v1keep(x18)→ ¬v1fight(x18))
∀x19(n1event(x19)→ ¬n1form(x19))
∀x20(n1event(x20)→ ¬n1proposition(x20))
∀x21(per1oracle(x21)→ ¬n1abstract entity(x21))
∀x22(n1proposition(x22)→ ¬n1form(x22))

Figure 5: First-order theory produced by Nutcracker for (1)

However, in computational semantics we have other and possibly more rele-
vant criteria for judging the quality of models than their minimality. We have
a sense of which models are adequate for a given sentence and which are not,
and this judgement is based on linguistic meaning. On these grounds, we dislike
models where a rabbit is identified with its own tail or with the carrot it eats.
Yet we are still using model builders whose default strategy is to assume that
such identities hold, and such identities will turn up in minimal models if we
do not explicitly exclude them by introducing world knowledge axioms, whose
sole contribution often is to state which elements may not be identified. So the
assumptions used in minimal model building are in fact rather strong, and we
are at pains to amend the effects of these assumptions.

The problem is that by identifying elements, minimal models actually make
some very strong assumptions about the structure of the world described. By
default, building minimal models means to assume that all elements are identi-
cal, and only to accept more elements if this fails in all cases.

To see in a real-world example why these default identity assumptions are harm-
ful, consider the following sentence from the RTE 1 test corpus:

(1) Oracle had fought to keep the forms from being released.

The logical theory produced by Nutcracker when processing this sentence is
shown in Figure 5. When feeding this theory into OletinMB and comparing
the result of applying ρmin, which simulates the behavior of a minimal model
builder and is identical to MACE’s result, to the result of applying ρmax, we
see that the results are different. Both results are inadequate in many ways,
but this is mainly due to the inadequate logical theory, which fails to capture a

Johannes Dellert Non-Minimal Model Building for Computational Semantics



7.4 Comparing OletinMB and MACE Page: 29

Figure 6: Model for (1) using ρmin; identical to the one produced by MACE

lot of relevant facts. These include that what Oracle is fighting against is the
event of the forms being released, and that there is another unmentioned entity
which is supposed to be kept from releasing the forms, and that is is not the
forms that would have to be kept from doing something.

I have chosen not to use one of the few examples with adequate formulae, also
in order to give an impression of the state of the technology, where virtually
all formulae produced exhibit major weaknesses. With the given theory, we
have no hopes of constructing a completely adequate model. What we can do,
however, is to determine which of the models is less inadequate.

We shall first have a look at the result of minimal model building in Figure 6.
Quite curiously, the patient of the releasing is identified with Oracle here, such
that the model represents the situation where Oracle fights for something, and
Oracle keeps the forms from Oracle while being released by somebody.

So where does this wrong identity assumption come from? It is a result of
the default identity assumption of minimal model building along with the fact
that nothing in the theory excludes this identity. A minimal model builder will
identify elements whenever it gets the chance, whereas a linguistically adequate
one would need some justification for assuming identity.

The non-minimal model shown in Figure 7 contains one additional element
without properties. This element actually corresponds to something which is
released. The whole model could be read to describe a situation where Ora-
cle fights for something, and Oracle keeps the forms from (being) something
which is released by somebody. We see that this model is arguably the best
approximation to the intended meaning that is possible given the problems of
the theory it satisfies.

Using ρmax as our PRIDAS function turns out to work remarkably well in this
and many other cases. From this we can conclude that non-identity seems to
be a much more sensible default assumption for linguistic model building than
identity. However, ρmax certainly will not work in many other cases, especially
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Figure 7: Model for (1) using ρmax; note the additional entity without properties

when we are trying to build semantic models for entire discourses.

That simply assuming all introduced entities to be separate will not work
becomes obvious when we consider ubiquitous semantic phenomena such as
anaphoras. In a discourse like “The dog chases the cat. The cat flees”, maximal
model building over the conjunction of the logical interpretations of the two
sentences would lead to models containing two cats.

This is why in a good model builder, non-identity would still be the default
assumption, but the PRIDAS function employed should be able to rank iden-
tity assumptions highly if there are good linguistic reasons. Such reasons could
include lexical overlap, agreement e.g. for anaphoric pronouns, or, as in the
example case, the definite article, which could be treated by ranking the in-
troduction of a new element so low that it happens only after all the other
existential instantiations have failed.

Ranking functions which take such phenomena into consideration could be based
on the ideas from Section 6.5. Testing such functions on a large number of cases
is a good starting point for future development of linguistic model building.

7.4.2 A Shift in the Importance of World Knowledge

The main reason why world knowledge is needed so urgently in linguistic model
building is that it provides us with the axioms necessary to get around the ef-
fects of minimal model building. Choosing a PRIDAS function which produces
maximal or near-maximal models works so well in many cases because we are
overriding the default identity assumption.

An interesting observation is that by using non-identity as the default assump-
tion during model building, we can often recieve acceptable models even without
world knowledge. To see this in a typical example, consider the following sen-
tence from the RTE 1 testset:

(2) Singapore scientists reveal that SARS virus has undergone genetic changes.

This sentence is converted to the formula in Figure 8, and the world knowledge
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∃x1∃x2∃x3∃x4(org1singapore(x1) ∧ r1nn(x1, x2) ∧ n1scientist(x2) ∧
v1reveal(x3) ∧ r1agent(x3, x2) ∧ r1theme(x3, x4) ∧ n1proposition(x4) ∧
∃x5∃x6∃x7∃x8(n1sar(x6) ∧ r1nn(x6, x5) ∧ n1virus(x5) ∧ a1genetic(x7) ∧
n1change(x7) ∧ v1undergo(x8) ∧ r1agent(x8, x5) ∧ r1patient(x8, x7) ∧
n1event(x8)) ∧ n1event(x3))

Figure 8: First-order formula produced by Nutcracker for (2)

∀x1(n1abstract entity(x1)→ n1entity(x1))
∀x2(n1change(x2)→ n1event(x2))
∀x3(n1event(x3)→ n1abstract entity(x3))
∀x4(n1proposition(x4)→ n1abstract entity(x4))
∀x5(v1reveal(x5)→ n1event(x5))
∀x6(n1scientist(x6)→ n2being(x6))
∀x7(n2being(x7)→ n1object(x7))
∀x8(n1object(x8)→ n1entity(x8))
∀x9(org1singapore(x9)→ n1object(x9))
∀x10(v1undergo(x10)→ n1event(x10))
∀x11(n1virus(x11)→ n2being(x11))
∀x12(n1abstract entity(x12)→ ¬n1object(x12))
∀x13(n1sar(x13)→ ¬n1entity(x13))
∀x14(n1change(x14)→ ¬v1reveal(x14))
∀x15(n1event(x15)→ ¬n1proposition(x15))
∀x16(org1singapore(x16)→ ¬n2being(x16))
∀x17(v1undergo(x17)→ ¬n1change(x17))
∀x18(v1undergo(x18)→ ¬v1reveal(x18))
∀x19(n1virus(x19)→ ¬n1scientist(x19))

Figure 9: World knowledge axioms produced by Nutcracker for (2)
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Figure 10: Model for (2) using ρmin without world knowledge

Figure 11: Model for (2) using ρmax without world knowledge

axioms Nutcracker generates for it are listed in Figure 9. We first let MACE
or, equivalently, OletinMB with ρmin, work on the formula without adding the
world knowledge axioms. The result in Figure 10 illustrates that producing min-
imal models in linguistic model building is useless without world knowledge: all
the elements are assumed to identical, because there is nothing in the formula
which would prevent these assumptions.

If instead, we use ρmax within OletinMB, we do not need any world knowledge
to get the quite reasonable model in Figure 11. As a matter of fact, the re-
sulting model is essentially the same as the one we get if we include the world
knowledge axioms (cf. Figure 12). Essentially the same effect can be observed
for virtually all Nutcracker formulae, making world knowledge much less of a
necessity for OletinMB than for MACE-style model builders.

This has important implications for the use of world knowledge in model build-
ing. I have shown that by using non-minimal PRIDAS functions, the main
reason for generating and including world knowledge axioms can be done away
with. This means that for many sentences, the logical theories needed to pro-
duce acceptable models can become a lot smaller, opening up possibilities for
the treatment of more complex sentences whose formal interpretations were in-
tractably huge before.

On the other hand, this is not meant to imply that world knowledge were of no
use any longer. It only means that the traditional role of world knowledge as
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Figure 12: Model for (2) using ρmin or ρmax with world knowledge

a source for simple axioms which prevent unwanted identity assumptions is not
as crucial as before. In order to exploit the world knowledge, I propose to put
it to good use in computing more sophisticated PRIDAS functions.

Instead of preventing a huge number of useless identity assumptions, world
knowledge would then play a role in justifying only a few useful identity as-
sumptions. From the perspective of the model builder, this would mean a much
less costly guidance of model space exploration. Instead of inflating its universal
theory and forcing it to generate a huge number of instantiations that have to
be checked for clashes, world knowledge would only come in at the real decision
points, nudging the model builder into the right direction by prioritizing its
instantiation choices.

For future work, OletinMB will serve as a very flexible testing platform for such
highly specialized PRIDAS functions. My first experiments have shown that
this approach has some potential for improving linguistic model building, and
future experiments will aim at finding, implementing and evaluating advanced
PRIDAS functions for this purpose.

7.5 Problems and Possible Solutions

The experimental nature of OletinMB results in certain shortcomings in com-
parison to more mature model building systems. The most important problem
is a steep decline in speed for largish domain sizes on certain classes of formulae.
Given the complexity of the satisfiability problem, this is a problem all model
builders face at some point. OletinMB, however, has turned out to run into this
kind of problem a little more often than MACE.

On my machine, both model builders behave rather well for theories requiring
a minimal domain size of 18 or less. Beyond that, MACE runs into a combi-
natorical explosion, while OletinMB is usually not overly sensitive to domain
size. Where differences in performance occur, they can instead be explained by
properties of the space of possible models.
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The problem is that by its constructive and little exploratory nature, Olet-
inMB has trouble finding models in the vast but sparse search spaces of very
restrictive formulae. OletinMB was developed under the assumption that such
problems do not occur very often in linguistic applications. This is a valid as-
sumption as long as we deal with computing the meanings of coherent discourses.

However, Nutcracker systematically requires models for such restrictive formu-
lae when it tries to directly prove T → H. To improve termination behavior,
Nutcracker always searches for a proof and a counter-example in parallel. Find-
ing a counter example to T → H is equivalent to building a model of T ∧ ¬H.
If T and H are semantically close to each other (as is generally the case), this
formula is highly contradictive and possesses a rather sparse model space with
many dead ends.

The model space structure of such a formula is more akin to that of a mathemat-
ical problem with restrictive axioms. It comes as no surprise that OletinMB,
which was designed to be more of a model builder than a model finder, has
trouble in treating such problems.

For practical purposes, this means that OletinMB is not yet ready to com-
pletely replace MACE in a system like Nutcracker. As a preliminary solution, I
combine the advantages of MACE and OletinMB by using MACE as the model
builder to work in parallel with a theorem prover, and OletinMB for construct-
ing linguistically more adequate models to be used in model size comparison.

However, I am confident that it will be possible to improve Oletin’s behaviour as
a model finder in future versions. The possibilities for optimization are far from
exhausted, and it will be possible to integrate a lot more advanced constraint-
based techniques developed for other tableau-based methods.

Another difficulty more on the conceptual side is the construction of mean-
ingful models for negated sentences. By default, a logical representation such
as ¬∃x(woman(x)∧sleep(x)) for “a woman does not sleep” will instantly result
in an empty model, which is logically sound, but not very helpful in a linguis-
tic context. The empty model for negated sentences also breaks Nutcracker’s
model-size based decision procedure if negation is envolved in either H or T.
Enumerative methods have a real advantage here because they operate on given
model sizes and do not have to infer on the fly how many entities are needed.

The problem can partly be attributed to the logical representation. The prob-
lematic formula could be rephrased as “it is not the case that a woman sleeps”,
which indeed tells us little to nothing about the structure of the world, making
the empty model a good solution. A better logical presentation for the sentence
would instead be ∃x(woman(x) ∧ ¬sleep(x)), for which OletinMB would build
the desired model.

However, referring the problem back to the writer of the transformation rules
is a little too easy. Determining the scopus of negations is one of the harder
problems in translating sentences into formulae, and we simply cannot expect
this to work for all cases. One way would be to simulate the behaviour of an
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enumerative model builder by forcing OletinMB to start at a given domain size.
This can easily be achieved by feeding the initial branch with constant symbols.

A perhaps more elegant solution would be to devise something like a presup-
position handling on the formula level. Extracting literals from formulae as in
Section 6.5 could prove to be a worthwile technique in this context as well.

8 Conclusion and Outlook

In this paper, we have seen that off-the-shelf model builders are not the ideal
tools for model building in natural language semantics. The main problem is
the underlying assumption caused by mathematical applications that minimal
models are the models the user is most interested in.

As we have seen, minimal models are almost never linguistically adequate, the
purpose of world knowledge in current systems is largely to get around the neg-
ative effects of minimal model building.

We have seen it might be worthwile to implement specialized model builders for
computational semantics, and we explored various ideas of how world knowledge
could be used more efficiently during the process.

With OletinMB, I have developed and implemented a flexible system for larger
experiments in non-minimal model building. The central decision mechanism
within OletinMB are freely prioritizable identity assumptions.

Future work includes enhacing OletinMB’s model finding capabilities by further
optimization and implementing some of the ideas on more complex PRIDAS
functions, especially different variants using lexical semantic information.

The next major step will then be to find out whether the improvements in
model structure are good enough to significantly improve the results achieved
by Nutcracker for the RTE task so far.
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