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This paper proposes a novel application of causal inference in the area of semantic language
evolution, which attempts to infer unidirectional trends of lexical change exclusively from mas-
sively cross-linguistic dictionary data. First, we show how colexification between concepts can
be modeled mathematically as mutual information between concept variables. Core notions of
causal inference (most prominently, the unshielded collider criterion) are then applied to predict
the dominant directionality in pathways of semantic change. The paper concludes by revisit-
ing a few well-known examples of synchronic polysemies, and illustrating how the method
succeeds in building hypotheses about their historical development.

1. Introduction

As a language evolves over time, all parts of the language system undergo constant
and sometimes drastic change. Compared to phonological and syntactic change,
semantic change is much more subject to historical developments and accidents,
making it notoriously erratic and hard to predict (Hollmann, 2009). Still, the
long search for patterns which allow to predict at least some kinds of semantic
change has started to yield some promising results. Most prominently, Traugott
and Dasher (2002) manage to establish a general tendency for words to evolve
towards more speaker-oriented meanings.
If for a given concept, we want to predict how the words for that concept are likely
to evolve, we have the problem that extralinguistic factors can strongly influence
each individual case, and can easily invert the expected course of events. For
instance, while it is quite common for words denoting large crops to be used col-
loquially as words for the concept HEAD:N (e.g. French citron “lemon”, German
Birne “pear”, and Russian repa “turnip”), the reverse development has occurred
in Thai, where the word hua “head” has become the count noun for large fruit.
Therefore, we can always only talk about tendencies, and a typical question we
might hope to answer has the following form: Is a word denoting the concept
X more likely to additionally develop the sense Y, than a word denoting Y is to
develop the sense X? For the concepts SUN:N and DAY:N, it seems obvious that



semantic change will always occur in one direction. But are such unidirectional
patterns exceptional, or do they occur along many pathways in conceptual space?
Previous attempts to identify such tendencies have relied on intimate knowledge
of historical developments within a small number of languages, e.g. English and
Japanese in the case of Traugott and Dasher (2002). Such a small language sample
detracts from the reliability of broad generalizations, a problem which also con-
cerns more recent computational approaches such as Sagi, Kaufmann, and Clark
(2011). If we want to come to more general conclusions, we will need to consider
a wider range of languages, as did classical work in lexical typology like Viberg
(1984) or Wilkins (1996) for small semantic domains.
To gather evidence for and against a postulated unidirectional change, we could
extensively study all available historical sources and etymological literature for
a large sample of languages. Unfortunately, only very few languages and even
fewer language families are sufficiently well-documented over relevant timespans.
Moreover, the semantic reconstructions presented in etymological dictionaries are
often speculative, and therefore cannot be used as empirical evidence.
Evans and Wilkins (2000) propose synchronic polysemies as a more readily avail-
able source of evidence for semantic evolution, and argue that cross-linguistic
polysemies should be used systematically to constrain the semantic reconstruc-
tions postulated in etymologies. Analyses of semantic change processes have es-
tablished (Zalizniak et al., 2012) that a word undergoing semantic change will
typically pass an intermediary polysemous stage where it denotes both the origi-
nal and the newly developing sense. Synchronic polysemies thus provide us with
a snapshot of semantic evolution in action, which we can exploit as observational
data in order to retrieve hints about tendencies in their historical development.
With massively cross-linguistic lexical databases slowly becoming available, we
can use the power of statistical methods to leverage large amounts of polysemy
data for inferring new general tendencies in semantic evolution, or to gather addi-
tional evidence in favor of or against existing theories. The purpose of this work
is to show that causal inference has the potential to become such a method.

2. Causal Inference

Causal inference (Pearl, 2009) is a relatively recent branch of statistics which has
developed partial solutions to the classical problem that correlation between two
statistical variables does not imply a causal relationship. By taking additional vari-
ables and their covariance patterns into account, the existence and the direction of
immediate causation between statistical variables can often be inferred from ob-
servational data alone, given some reasonable background assumptions.
The central idea of causal inference is to exploit patterns of conditional indepen-
dence. A correlation between two variables may vanish when conditioning on
other variables, i.e. considering every combination of their possible values sep-
arately. The pattern in which some correlations disappear upon conditioning on



sets of other variables provides hints which help us to exclude some causal hy-
potheses, sometimes leaving only one possible direction of causation.
Causal inference depends on a stability condition which is equivalent to postulat-
ing that a true causal connection between two variables can safely be assumed to
exist if the dependence between them cannot be explained away by observing any
subset of the remaining variables. Applying this criterion in a principled way to a
larger number of variables gives us what is called a causal skeleton, an undirected
graph linking all pairs of variables whose covariance cannot be explained away by
conditioning on other possibly intervening variables.
The key to turning such a skeleton into a partially directed causal graph is to con-
sider unshielded triples, i.e. triples of variables of the form A−B−C. Consider
the different conditional independence patterns one would expect for all possible
causal patterns. If the true pattern is A← B → C, we would expect some correla-
tion between A and C which disappears when conditioning on the common cause
B. An analogous argument applies to the cases A→ B → C and A← B ← C.
By contraposition, we can thus infer the unshielded collider A → B ← C if
conditioning on B was not necessary to explain away any possible correlation
between A and C. This pattern of reasoning lies at the heart of causal inference
algorithms such as the PC algorithm (Spirtes, Glymour, & Scheines, 2000), and is
exactly what we will use to infer the directionality of lexical change.

3. Measuring Conditional Independence between Concepts

In order to apply causal inference to the domain of semantic evolution, we model
concepts as statistical variables. Our variables will be language-independent con-
cepts represented by German (or English) glosses, and the observations are re-
alizations of these concepts across a large number of languages. If we do this
for two related concepts, there will be some languages where the two concepts are
colexified, i.e. they can be denoted by the same polysemous lexeme. For instance,
the concepts SUN:N and DAY:N are colexified because the Hungarian word nap
denotes both senses (as do equivalents in many other languages).
Assuming a conceptual space which is given as a set of language-independent
senses, the subset which can be expressed by a word (or lexeme) w in some lan-
guage is called the isolectic set of that word (François, 2008). The isolectic set of
Hungarian nap could be represented as {SUN:N, DAY:N, SOLAR:A}.
For ease of exposition, we assume a one-to-one-mapping from German (or En-
glish) glosses to language-independent concepts. In my data, each “concept” is
defined by a single gloss in German. In what follows, “colexification” therefore
means that two German glosses occur together on one side of a dictionary equa-
tion, and should perhaps more accurately be called co-translation into German.
Because rare polysemies represent intermediary stages of semantic evolution and
are not stable over time, it is possible to count every colexification equally, with-
out correcting for genealogical relatedness.



We now turn to measuring the connectedness of concepts based on overlaps of
isolectic sets across many languages. Mathematically, we will model stochastic
dependence between two concepts in terms of non-vanishing mutual information.
Observations will be in the form of isolectic sets, and the mutual information of
variables for colexified concepts will be non-zero. The joint information mea-
sure R over sets of variables will be designed to be a submodular information
measure, which means that it meets the following axioms:

1. R(∅) = 0

2. S ⊆ T ⇒ R(S) ≤ R(T ) for all sets of variables S and T

3. R(S) +R(T ) ≥ R(S ∪ T ) +R(S ∩ T ) for all sets of variables S and T

Every submodular information measure gives rise to a measure of conditional
mutual information which still has all the essential properties needed for causal
inference (Steudel, Janzing, & Schölkopf, 2010).
To measure joint information in a set of concepts {c1, . . . , cn}, we use a very
simple and trivially submodular measure R based on the sets iso(ci) of isolectic
sets containing each concept ci:

R(c1, . . . , cn) :=

∣∣∣∣∣
n⋃

i=1

iso(ci)

∣∣∣∣∣
This is mathematically equivalent to the measure in Steudel et al. (2010, Section
5.4), where the authors propose to use an analogous measure on sets of content
words to measure causal influences between texts.
Informally, the joint information content R of a set of concepts is thus the number
of isolectic sets in which these concepts are involved. If the isolectic sets of two
different lemmas have exactly the same elements, they are still counted separately.
Whenever an isolectic set covers multiple concepts from the set {c1, . . . , cn},
R(c1, . . . , cn) will be different from the sum

∑n
i=1 iso(ci). It is this difference

that the resulting measure of mutual information will quantify. In the case of two
concepts, the derived mutual information i(ci, cj) simply counts the number of
isolectic sets in which the two concepts ci and cj co-occur, i.e. the number of
colexifications in the data:

i(ci, cj) := R(ci) +R(cj)−R(ci, cj)

= |iso(ci)|+ |iso(cj)| − |iso(ci) ∪ iso(cj)| = |iso(ci) ∩ iso(cj)|

For instance, if our entire dataset consisted of three lemmas with the isolectic
sets {SUN:N,DAY:N}, {SUN:N,SOLAR:A}, and {SUN:N,DAY:N,SOLAR:A},
we would have i({SUN:N,DAY:N}) = 3 + 2− 3 = 2.



Conditional mutual information between two concepts ci and cj given a set of
concepts S := {s1, . . . , sn} is then defined in the following way:

i(ci, cj ;S) := R(ci, s1, . . . , sn) +R(cj , s1, . . . , sn)

−R(ci, cj , s1, . . . , sn)−R(s1, . . . , sn)

The submodularity of the information measure R ensures that i(ci, cj ;S) is al-
ways nonnegative (Steudel et al., 2010, Lemma 1).
Intuitively, i(ci, cj ;S) counts the colexifications between ci and cj which can-
not be explained away by colexification with any of the concepts in S. In our
example, we have i({SUN:N,DAY:N;SOLAR:A}) = 2 + 2 − 2 − 1 = 1, but
i({DAY:N,SOLAR:A;SUN:N}) = 2 + 2 − 2 − 2 = 0, which means that DAY:N
and SOLAR:A are independent given SUN:N, and we get the unshielded triple
DAY:N−SUN:N−SOLAR:A in the causal skeleton.
Turning to the question how to detect the directionality of the established causal
links (or possible paths of semantic evolution), we reconsider the inituition behind
the unshielded collider criterion. To infer a causal arrow c1 → c2, we need a third
concept c3 which forms a unshielded collider c1 → c2 ← c3. This means that if c1
and c3 are colexified, none of the isolectic sets in question must extend only to c2,
but there need to be one or several other concepts cs on which we can condition to
remove the link between c1 and c3. Whenever we see such a configuration, it be-
comes more likely that words for c2 were extended to cover the sense c1, because
otherwise we would expect some of these words to also have been extended to c3.
For instance, if words for UNDERSTAND:N were likely to evolve into words for
HEAR::V, the colexification between SEE::V and UNDERSTAND:N would cause
some isolectic areas to cover all three concepts. The absence of such isolectic
areas provides us with evidence that the true pattern is much more likely to be
SEE::V→ UNDERSTAND::V← HEAR::V.
If we check for many different concepts c3 whether they form unshielded collid-
ers together with c1 and c2, the small sample size will often lead to conflicting
evidence, i.e. some unshielded colliders which imply c1 → c2 and others which
imply c2 → c1. In such a case, a scoring scheme can be used to decide whether
one of the directions is more probable. The current version of my implementation
simply weights each arrow c1 → c2 for each concept c3 where R(c1, c3) > 1 or
R(c2, c3) > 1 by the factor w(c1 → c2; c3) :=

R(c1,c2)·R(c3,c2)
R(c2)

, i.e. the number
of colexifications between c1 and c3 which we would have expected if the causal
pattern were c1 ← c2 → c3 or c1 ← c2 ← c3. If the summed arrow score
sc(c1 → c2) :=

∑
c3
w(c1 → c2; c3) is more than 20% higher than sc(c2 → c1),

the current implementation returns the arrow c1 → c2.



4. Examples

The ideal way to evaluate the method’s potential would be to collect a large num-
ber of clear-cut example cases where the etymological literature across language
families only reconstructs semantic evolution in one direction. Unfortunately,
even the largest available database of semantic shifts (Zalizniak et al., 2012) only
contains very few instances of multiply attested unidirectional semantic shifts, and
many of these involve very specialized concepts which one cannot expect to find
across many dictionaries (e.g. amber, catnip, or woodlouse).
Studies on cross-linguistic patterns of semantic change such as Koch (2008) do
yield some more useful examples, but they typically specialize on very small se-
mantic domains. It is thus extremely difficult to find enough examples of cross-
linguistically attested unidirectional semantic shifts for a numerical evaluation in
terms of precision and recall. Considering only some very prominent examples
instead, it is at least possible to illustrate how the inference method works, and to
highlight both the power and the inadequacies of causal inference in this applica-
tion. To ensure reproducibility of these initial results, isolectic sets for all three
examples, and log files allowing to trace the computations in detail, are available
as supplementary materials on the author’s webpage.

4.1. Example 1: The Eye of a Needle

Consider the three concepts EYE:N, EAR:N, and EYEOFNEEDLE:N. Some lan-
guages use the same word for EYE:N and EYEOFNEEDLE:N, as English does.
Other languages like Polish and Korean use the word for EAR:N to denote the
same concept. In either case, it is clear that the words for body parts are used by
metaphorical extension to describe an oblong hole in a needle, and any method
for analysing semantic shifts should infer that semantic evolution will occur ex-
clusively in the directions EAR→ EYEOFNEEDLE and EYE→ EYEOFNEEDLE.
In this simple case, it turns out that both of the the desired causal arrows can be
derived from a single unshielded collider EYE→ EYEOFNEEDLE← EAR. Table
1 displays some of the relevant isolectic sets. The collider is trivial to infer be-

Table 1. Isolectic sets spanning EYEOFNEEDLE:N and EYE:N or EAR:N.

Language Lemma Isolectic Set
Basque begi {EYE:N, KNAG:N, EYEOFNEEDLE:N,

STITCH:N, DROPOFGREASE:N, CHEESEHOLE:N}
Dutch oog {EYE:N, LOOP:N, EYEOFNEEDLE:N}
Korean gwi {EAR:N, SPOUT:N, CORNER:N, EYEOFNEEDLE:N}
Livonian sı̄lma {EYE:N, LOOP:N, SHACKLE:N, EYEOFNEEDLE:N}
Nenets xa {EAR:N, HANDLE:N, EYEOFNEEDLE:N}
Polish ucho {EAR:N, HANDLE:N, EYEOFNEEDLE:N}

cause there is no lemma in any language which covers both EAR and EYE, while



both concepts are clearly colexified with EYEOFNEEDLE. We therefore have an
unshielded triple where EYEOFNEEDLE is not needed to separate EAR and EYE,
because these two concepts are already independent unconditionally. To illustrate
the causal argument, for any other causal pattern the expected number of colexifi-
cations w(c1 → c2; c3) between c1 = EYE and c3 = EAR is 2.377, as opposed to
zero colexifications in the data.
Overall, building on 130 isolectic sets from 77 languages across 19 language fam-
ilies, the algorithm returns EYE → EYEOFNEEDLE with a score ratio of 1.269.
For EAR → EYEOFNEEDLE, the score ratio based on 112 isolectic sets from 76
languages across 20 families is as high as 2.765. In both cases, we get a clear
result in favor of the expected directionality, showcasing that the method is able
to detect a causal signal representing widespread metaphorical extension.

4.2. Example 2: Counting and Calculating

Many languages use the same word for the concepts of counting and calculating.
Instances of isolectic sets subsuming both concepts are given in Table 2. From a
historical perspective, the counting sense arguably is the earlier one, calculation
being a later cultural achievement. Is this fact mirrored by the causal signal we
can detect from synchronic polysemies? Based on 134 isolectic sets from 68

Table 2. Isolectic sets spanning COUNT:V and CALCULATE:V.

Language Lemma Isolectic Set
Coptic op {COUNT:V, CALCULATE:V, ESTIMATE:V}
Czech počı́tat {COUNT:V, CALCULATE:V}
Indonesian membilang {COUNT:V, CALCULATE:V, NARRATE:V}
Udmurt lydjany {COUNT:V, CALCULATE:V}
Spanish contar {COUNT:V, CALCULATE:V, NARRATE::V}

languages covering 21 language families, we get a score ratio of 1.162 in favor of
COUNT:V→ CALCULATE:V. The evidence is thus not strong enough to make a
decision, although it does point into the expected direction. Investigation of the
isolectic sets in question shows that the signal would be quite a bit stronger if
we could remove the effects of polysemy in the German gloss zählen “to count”,
which is also used in the senses “to be valid” and “to have (inhabitants)”.

4.3. Example 3: Hoping and Expecting

Finally, we take a look at a pair of verbal concepts whose semantic relationship is
not clear on external grounds. Between the concepts of HOPE:V and EXPECT:V
(which are frequently colexified), is there a unidirectional pattern we can retrieve
from the data? Existing theories appear not to make any prediction here, since
both concepts refer to mental states, meaning that they belong to roughly the



same level of abstraction. Table 3 gives a number of polysemous verbs which
synchronically denote both HOPE:V and EXPECT:V.

Table 3. Isolectic sets spanning HOPE:V and EXPECT:V.

Language Lemma Isolectic Set
Chinese xı̄wàng {HOPE:V, EXPECT:V, WISH:V}
Hebrew jixel {EXPECT:V, HOPE:V}
Japanese nozomu {EXPECT:V, HOPE:V, WISH:V}
Portuguese esperar {HOPE:V, EXPECT:V, WAIT:V}
Turkish ummak {HOPE:V, EXPECT:V, WAIT:V}

Perhaps surprisingly, the result is very strong. Based on 203 isolectic sets from
70 languages covering 22 families, the score ratio is 2.813 in favor of HOPE:V→
EXPECT:V. The prediction this implies is that words for HOPE:V are more likely
to develop the additional sense EXPECT:V than the reverse pattern. This result
seems plausible in the light of examples known to the author, e.g. the attested
development of Latin spērāre into Spanish esperar, or the Finnish verb toivoa “to
hope”, which nowadays is also used e.g. for expectations from a person. The
algorithm has provided us with a hypothesis based on massively cross-linguistic
data, and we could now look into individual language histories to verify this claim,
or to find counter-examples.

5. Conclusion

In this paper, we have established that causal inference can be applied to an in-
formation geometry defined by cross-linguistic polysemies in order to measure
causal influences between concepts. The resulting causal structures can be taken
to indicate probable vectors of semantic expansion. For three examples, we have
seen that the method does manage to recover some hidden diachronic information
from purely synchronic polysemies, and leads to plausible results.
Since much larger sample sizes are typically needed to guarantee correct results
in causal inference, the approach must not be interpreted as producing objective
proofs of historical events. However, the method does provide an unbiased sum-
mary of large amounts of easily available data which are too varied and extensive
to be processed by a human expert. It allows us to quickly derive interesting hy-
potheses about possible directional patterns of semantic evolution, which can then
be verified and further elucidated based on the documented history of various lan-
guages. Moreover, the new computational tool for quickly developing initial hy-
potheses about the directionality of semantic shifts will be helpful for researchers
seeking to shed more light on this central aspect of language evolution.
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