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Abstract

This paper introduces a new method for inducing a language contact model
from lexical data. Based on sets of etymologically related words which can be
either automatically inferred or expert-annotated, the method analyses possible
paths of borrowing in terms of lexical flow. The criterion of vanishing lexical flow
gives rise to a conditional independence relation between languages, allowing a
variant of the PC algorithm for causal inference to be applied.

The resulting partially directed network represents a parsimonious model of
common ancestry and directional contact between the languages in the dataset.
In an evaluation on a large lexical database comprising 1,016 concepts across 26
Uralic languages and 18 neighboring languages, the method is shown to detect
and correctly infer the directionality of many instances of cross-family language
contact which had a large impact on the basic lexicon.

1 Introduction

Recent computational methods for historical linguistics have the disadvantage of be-
ing imprecise due to abstraction over relevant details, but the advantage of weigh-
ing more evidence than a human brain can process in principled and reproducible
ways. While methods for estimating phylogenies from cognacy judgments are al-
ready highly developed and in widespread use (e.g. [{, 2, 3]), the network models
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used to account for language contact are still in their infancy [4]. Simple network
methods such as Neighbor-Net [5] offer a visual summary of contradictory signals in
the underlying character data in the form of reticulations, but do not give any hint
about their interpretation. A reticulation in such a network may be the effect of any-
thing from a dialect continuum to massive lexical borrowing.

The Uralic family is an ideal test case for evaluating automated methods because it
is relatively small and quite well-understood. Previous computational work on Uralic
by the BEDLAN group applies standard methods to infer trees [f]] and networks [[7],
with interesting results concerning the reality of subgroupings above the level of pri-
mary branches. For these purposes, the group collected expert cognacy judgments
for the realizations of around 300 concepts across 18 Uralic languages.

The method presented in this paper needs more than a few hundred concepts to
yield good results, but has the advantage of inferring an explicit directional model of
lexical influence between languages. Because expert cognacy judgments for a larger
number of concepts are not readily available, I resort to automatically inferred sets of
correlates (i.e. etymologically related words, not necessarily cognates) over a larger
lexical database which covers Uralic and its neighbors.

Building only on correlate sets, the method uses ideas from causal inference to
infer a partially directed network between attested languages, where each link repre-
sents either common inheritance or contact, and directed links can be taken to repre-
sent the dominant direction of borrowing. An initial evaluation on the Uralic dataset
shows that the method correctly detects all the major cross-family contact events, and
infers the right directionality for all but a few of them.

2 Conditional Independence and Causal Inference

Causal inference [8] is a relatively new subfield of statistics which attempts to infer
causal relationships between variables from observational data alone. While the fact
that correlation is not causation prevents us from inferring the direction of causality
between an isolated pair of variables, the interaction between more than two variables
often provides hints about the possible causal scenarios underlying the data.

The core building block of causal inference is a conditional independence relation
between the variables involved. Intuitively, the conditional independence relation
(X LY | Z) expresses that any dependence between the variables X and Y can be
explained by the influence of a third variable Z.

The inference techniques I will be using are inspired by the PC algorithm [9]. The
first stage of the PC algorithm uses a sequence of conditional independence tests to
reduce a complete graph to a causal skeleton, an undirected graph over the variables



where each link expresses an interaction which cannot be explained away by condi-
tioning on other variables. Each removal of alink X —Y relies on finding a separating
set, i.e. a set of variables {Z1,...,Z,} suchthat (X LY | Zy,...,Z,).

In the second stage, the separating sets which were used to explain away each link
are used to detect v-structures among triples of variables, i.e. causal patterns of the
shape X — Z - Y. The presence of v-structures typically allows the PC algorithm
to infer the directionality of causal influence along many links in the skeleton.

3 The Data

I am testing my inference procedure on a development version of NorthEuraLex [[10],
a lexical database of Northern Eurasia which aims to cover the realizations of 1,016
concepts across 100 languages of Northern Eurasia. The version I am using contains
near-complete coverage of this concept list for 26 Uralic languages, and 18 languages
which have historically been in close contact with Uralic languages.

On the Uralic side, the database includes six Finnic languages (Finnish, North
Karelian, Livvi-Karelian, Veps, Standard Estonian, Livonian), six Saami languages
(Southern Saami, Lule Saami, Northern Saami, Inari Saami, Skolt Saami, and Kildin
Saami), the two written variants of both Mordvinian (Erzya and Moksha) and Mari
(Meadow Mari and Hill Mari), three Permic languages (Komi-Zyrian, Komi-Permyak,
Udmurt), Northern Khanty, Northern Mansi, Hungarian, and four Samoyed languages
(Nothern Selkup, Tundra Nenets, Tundra Enets, Nganasan).

The contact languages consist of four Turkic languages (Chuvash, Tatar, Bashkir,
Kazakh) and 13 Indo-European languages, including four Germanic (German, Danish,
Swedish, Norwegian), two Baltic (Latvian and Lithuanian), and six Slavic languages
(Russian, Polish, Czech, Slovak, Croatian, Bulgarian), as well as a single Romance
language (Romanian). In addition, the Yeniseian language Ket was included as an
important contact language in central Siberia.

3.1 Sound Correspondence Model and Phonetic String Distance

All the data was normalized to the ASJP format [11], a de-facto standard in distance-
based approaches which reduces IPA to 41 equivalence classes. The encoding is de-
signed to make long-distance comparison easier, but ignores some features (such as
vowel length) that are highly relevant for Uralic. To give a few examples, Northern
Saami Calbmi is represented as [CalEbmil, and Hungarian egyediil as [ECEdil].
For each segment in the ASJP strings, the information content was inferred from
trigram models for each language and word class. This is necessary when operating on



dictionary forms, since a string-distance based method would otherwise overestimate
the similarity e.g. between verbs which share an infinitive ending.

To enable the detection of cognates which have become dissimilar due to sound
change, a model of segment correspondences was inferred separately for each lan-
guage pair using a variant of the method described by List [[12], which results in a
segment distance matrix for each language pair. For instance, the distance matrix for
Finnish and Hungarian makes it cheap to align a [k] to an [h], and the matrix for
Hungarian and Northern Saami assigns a low cost to aligning [s] and [C]. Using the
language-specific segment distances and the information content as weights, normal-
ized edit distances were computed for all pairs of realizations of the same concept.

3.2 Correlate Inference

The automated inference of correlate sets (under the name of cognacy detection) is an
emerging subfield of computational historical linguistics [13, 12, 14]. My implemen-
tation of the LexStat toolchain [[15], like the original, uses the UPGMA algorithm [[16]
to derive a hierarchical clustering of the phonetic strings for each concept based on
their pairwise distances, and cuts the tree at a given threshold value to partition the
strings into clusters of similar forms.

For any set of languages L1, . . ., Ly, I will write the number of correlates shared
between all of them according to this partitionas ¢(Ly, . . ., L, ). For a single language
L, ¢(L) then denotes the number of correlate sets covered. This number will later be
used for normalization in order to compensate for the effect of the slightly uneven
coverage of the concept list for the different languages.

4 Modeling Lexical Flow

The application of the PC algorithm to this dataset presupposes a useful definition
of conditional independence between sets of languages. The idea of this paper is to
use a lexical flow model to define such a conditional independence relation. Build-
ing on sets of correlates cor(Ly, ..., L) shared by a the languages L1, ..., Ly, the
independence test can be based on a measure of conditional overlap, which I will call
I(Ly, Lo; Z) because of parallels with conditional mutual information:

_ |cor(Ly, Lo)\{c| H{Z1,...,Zx} C Z: c € cor(Z1,...,Zy)}]
min{|cor(L1)|, |cor(L2)|}

I(Ll,LQ; Z) .
(1)



Informally, (L1, Lo; Z) quantifies the ratio of correlates between L; and Lo which
cannot be explained away by having been borrowed through a subset of the languages
in Z. To use this measure of dependence as a conditional independence test, we simply
check whether I(L1, Ly; Z) < 01, 1, for a threshold 6y, 1.,, which could be derived
from the number of false correlates between L; and Lo which we expect due to au-
tomated correlate detection. In practice, I am setting 07, 1, := 0.02 for all language
pairs because the distribution of false correlates is difficult to estimate, and language-
specific thresholds did not lead to better results in initial experiments on a smaller
language set. On the NorthEuraLex data, this means that languages which share 20
correlates or less will be unconditionally independent, and every link the algorithm
establishes will explain an overlap of at least 20 correlates.

Based on this conditional independence test, the first stage of the PC algorithm
derives a causal skeleton which represents a scenario of contacts between pairs of
input languages that is only as complex as necessary to explain the lexical overlaps.
The model thus assumes that all similarities are primarily due to mutual influence, and
never infers the existence of hidden common causes (i.e. proto-languages), although
the links without any clear unidirectional signal can be interpreted in this way.

The PC algorithm is tractable because it tests separating set candidates in order of
cardinality, and builds on the assumption that any separating set must be a subset of
immediate neighbors of L; and Ly in the current skeleton. For our model, we cannot
make that assumption, because removal of a link between two languages should not
rely on shared correlates with possibly unconnected neighbors. Instead, we need to
explicitly model the lexical flow.

To explain away a correlate that is shared between two languages L; and Lo, it
must have been possible for the lexeme in question to have travelled between the
two languages on some other path. Therefore, any minimal separating set must form
a union of acyclic paths between L; and L,. My implementation uses a depth-first
search of the current graph to get all such paths which contain four nodes or less, and
generates all combinations of these paths which lead to separating set candidates of
a given cardinality. Longer paths would need to be considered in theory, but did not
lead to different results on my data, at a much higher computational cost.

5 Deciding Directionality

In the second stage of the standard PC algorithm, directionality inference on the causal
skeleton is performed by asking whether the central variable in each pattern of the
form X — Z — Y was part of the separating set that was used for explaining away
the link X — Y. The idea is that if Z was not necessary to explain away X — Y, this



excludes all causal patterns except X — Z <« Y. Since there will often be many
separating sets of the same size, the result of this decision procedure can be highly
dependent on the order in which separating set candidates are tried out. In practice,
this means that many possible orders have to be tested, often giving rise to conflicting
evidence which needs to be reconciled. Moreover, this type of inference relies on the
very strong assumption that every scenario in which X has an influence on Y and
Y on Z, this would become visible as a dependence between X and Z. While this
assumption may be unproblematic for continuous statistical variables, it is certainly
not true for our notion of independence, since it is easily conceivable that if a language
L, borrows from a language Lo which in turn borrows from a language L3, none of
the lexical material from L3 will appear in L;.

Still, the essential idea behind this reasoning can also be applied to our case. For
each triple of languages (L1, Lo, L3) and a given causal scenario, we can measure
the difference between the expected number of correlates shared between all three
languages, and the observed number of such correlates. More precisely, if the number
of observed correlates ¢(L1, Lo, L3) is significantly lower than the number we expect
under any causal assumption which includes L <— Lo, this gives us evidence in favor
of the arrow L1 — Lo. So what is the expected number of shared correlates between
all three languages under the assumption L; <— Ls? Assuming independent instances
of language contact, both scenarios L1 <— Lo < L3 and L1 <— Ly — L3 allow us
to multiply the ratios r(L1, L2) := ¢(L1, L)/ min{c(L1), c(L2)} and r(Lsy, L) :=
¢(La, L3)/ min{c(Ls), ¢(L3)} to arrive at the percentage of ¢(L1, L3) that we expect
to also be shared with L.

In a triangle Ly — Ly — L3, the amount of the information we can derive about the
directionality of L — Ly in this way becomes higher the more correlate overlap there
is between Lo and Ls3. This gives rise to a definition of the counterevidence score
sc(Ly — Lo) for the arrow sc(L; — L) based on a weighted sum over all triples:

c(Ly, Lo, L3)
(L1, L2) - (Lo, L3) - min{c(L1), c(L3)}

SC(L1 — LQ) = ZC(LQ, L3)2 . , (2)

Ls

Based on these scores, directionality decisions for each language pair L1 — Ly can be
made by comparing the strength of counterevidence for sc(Ly — Ls) and sc(Ly —
Ly). For the experiment, my implementation assumes that the evidence favors one
direction if the ratio of counterevidence scores is lower than 0.9. As in the standard
interpretation of causal graphs returned by the PC algorithm, counterevidence score
ratios near 1.0 can be interpreted as being a consequence of either bidirectional influ-
ence (mutual borrowing) or a hidden common cause (ancestral relationship). Algo-
rithm fi] gives an overview of the entire resulting inference procedure in pseudocode.



Algorithm 1 infer_network(Lq, ..., Ly,)
1: G:=({L1,...., Ly}, {{Li, L;} | 1 < i # j <n}), the complete graph
2: s:=0
3: while s <n —2do

4. for {L;, L;} € G by increasing strength of remaining flow do

5: for each combination P4, ..., P, of paths from L; to L; of length < 4 do
6: if |S|=sforS:={P,..., P} then

7 if ratio of ¢(L;, L;) not explainable by flow across S is < 0.02 then
8: remove {L;, L;} from G

9: end if

10: end if

11: end for

122 end for

13 s:=s+1

14: end while

15: for {L;, L;} € G do

16:  if sc(L; — Lj)/sc(L; — L;) < 0.9 then

17: add arrow L; — L; to network
18:  end if
19: end for

20: return network consisting of G and arrows

6 Results

Using my Java implementation, applying the method to the NorthEuraLex correlate
sets takes less than five minutes on a single core with 2.2 GHz. Figure [l shows the
resulting network. For the visualization, languages (symbolized by their ISO 639-3
codes) are placed roughly at their geographical positions. Contact arrows are colored
green, and links for which directionality evidence did not exceed the threshold are in
black. The thickness of each edge symbolizes the amount of unexplained flow, i.e. the
amount of lexical flow which the model assumes must have gone through the link in
question.

Note that Indo-European (red nodes) and Uralic (blue nodes) form two clusters
of black edges which are only connected by contact edges, i.e. the model correctly
separates these two language families, and can explain all lexical similarity between
them by contact alone. The same is not true for the separation of Turkic (purple
nodes) and Uralic, though. The complex interaction between Chuvash (chv) and the



Figure 1: The lexical flow network derived from the data.



two variants of Mari prevents the method from deriving a directionality. One problem
may be that Chuvash actually exerted most of its considerable influence on an earlier
historical stage of Mari, and not separately on Hill Mari (mrj) and Meadow Mari (mhr),
as the model was forced to infer. Otherwise, all the contacts with Turkic languages
inferred by the model are correct, though of course far from exhaustive [[17].

The internal structure of the language families becomes visible rather nicely in the
different intensities of inferred lexical flow among members of the same branch and
across branches. For instance, the connection between Latvian (lav) and Lithuanian
(lit) is much stronger than the one between Latvian and German (deu). Also, the
dialect chain structure of Saami [18] and Finnic [19] becomes quite clearly visible,
as geographical neighbors share more lexical material than do more distant pairs of
languages from these branches.

Considering the contacts around the Baltic sea, the model correctly detects strong
influence of North Germanic [20] (represented by Norwegian) on Lule Saami (smj) and
Southern Saami (sma). Interestingly, the remaining lexical overlap between Northern
Saami (sme) and Norwegian is not enough to infer direct contact, since all the shared
correlates may have entered Northern Saami through either Lule or Southern Saami.
The strong influence of Swedish (swe) on Finnish (fin) is detected just as well as the in-
fluence of German on Estonian (ekk) [21]. Since this arrow can be interpreted to show
the influence of the Teutonic Order, the link between German and Latvian could have
displayed the same direction, but the flow representing the ancestral relationship of
the two languages is stronger than the layer of German loans in Latvian. The contact
between Livonian (liv) and Latvian is seen as monodirectional, which is justifiable
for the lexicon because there are many Baltic loanwords in Finnic, and an additional
stratum of later Latvian loans into Livonian [22]. This link is further strengthened
by material from German in Livonian, all of which can be explained as either going
through Estonian or Latvian. Finally, the lexical overlap between Russian (rus) and
Livvi-Karelian (olo) as well as Kildin Saami (sjd) is correctly recognized as being due
to heavy Russian influence on the other two languages [23].

Russian is also correctly detected as exerting considerable influence on many of
the Uralic minority languages [23]. In all cases except Udmurt (udm) and Selkup
(sel), Russian is correctly recognized as the donor language. Interestingly, any lexical
material shared between Russian and the Northern Samoyed languages (yrk, enh, nio)
is also shared with Selkup, causing the model to assume that all Russian material in
Northern Samoyed was transmitted via Selkup. This is unexpected, because Russian
influence on Tundra Nenets (yrk) was actually much stronger than on Selkup [23], but
the inferred pattern may be true for the more basic lexicon covered by the database.

The erroneous black edge between Ket (ket) and Russian illustrates that the method
runs into problems when faced with an isolate. A possible way towards resolving this



issue would be to check whether the shared correlates belong to the most stable basic
vocabulary or to later strata, which would indicate contact as opposed to a genealog-
ical relationship.

7 Conclusion and Outlook

We have seen that causal inference built on a conditional independence relation de-
fined by vanishing lexical flow is a powerful tool for inferring network models of
language contact. This new type of network has the advantage of also expressing
hypotheses about the dominant direction of lexical borrowing.

The evaluation on Uralic and its contact languages has shown that the major cross-
family contact events in the history of the current Uralic languages are correctly de-
tected. Moreover, the method was always right when it inferred the existence of a
link, although it could not detect the directionality for all instances of language con-
tact, especially when an isolate was involved. Altogether, the method promises to
be a worthwhile tool for providing initial hypotheses about language relationships in
less well-researched linguistic areas.

The major problem of the current version is that it does not model the existence of
proto-languages, and will therefore always model all instances of contact as occurring
between observed languages. In reality, many of the detected contacts will actually
have occurred between proto-languages. In future work, the lexical flow model will
therefore be combined with ancestral state reconstruction [24] to provide a hypothesis
about the correlate sets present at proto-languages, which should make it possible to
also infer the existence and directionality of contacts between proto-languages, if they
explain the data more parsimoniously than the assumption that only the observed
languages influenced each other.
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