
Foundations Techniques Applications References

Model Building

Johannes Dellert

Seminar für Sprachwissenschaft, Universität Tübingen

08.07.2009

1 / 28



Foundations Techniques Applications References

What is a model?

What is a model?

Definition

An interpretation I of some formal language L consists of a
non-empty set D (the domain) and an assignment function that
maps all the function symbols and relation symbols of L onto
functions and relations over D.

Definition

A model M is a pair < D, I >, where D is a set of elements (the
universe) and I is an interpretation.

2 / 28



Foundations Techniques Applications References

What is a model?

When does a formula have a model?

Definition

A model M is a model of a formula φ (written: M � φ) iff for
every variable assignment, mapping the variables in φ to
elements of M’s domain, the formula evaluates to true.

Definition

If M � φ holds for some model M, φ is called satisfiable.

Definition

If M � φ holds for every model M, φ is called a tautology, and we
write � φ. ¬φ is then automatically unsatisfiable.

3 / 28



Foundations Techniques Applications References

What is a model?

A “simple” task: Model Checking

Example formula

∀x : (red(x) ∧ edible(x)→ apple(x))

Model 1

D := {a, b, c}
GREEN(a)
RED(b),RED(c)
APPLE (A),APPLE (C )
EDIBLE (A),EDIBLE (C )
BOOK (B)

Model 2

D := {a, b, c}
GREEN(a),GREEN(b)
RED(c)
APPLE (b)
EDIBLE (a),EDIBLE (b),EDIBLE (c)
STRAWBERRY (a), STRAWBERRY (c)

4 / 28



Foundations Techniques Applications References

What is a model?

Infinite models

A nasty formula

∀x∃y r(x , y) ∧ ∀x ¬r(x , x) ∧ ∀x∀y∀z (r(x , y) ∧ r(y , z)→ r(x , z))

Is this formula satisfiable?

If yes, what is special about the model(s)?

What would the model(s) correspond to?

Why does this constitute a problem for a model builder?

5 / 28



Foundations Techniques Applications References

Model Building vs. Theorem Proving

Repetition: the purpose of theorem proving

Proof of validity (directly):

∀x (widow(x)→ woman(x)) ∧ widow(y)→ woman(y) X

Proof of unsatisfiability (via negation):

∀x (widow(x)→ woman(x)) ∧ widow(y) ∧ ¬woman(y)⇒
∃x (widow(x) ∧ ¬woman(x)) ∨ ¬widow(y) ∨ woman(y) X

Proof of redundancy or entailment (via implication):

T: ∀x (widow(x)→ woman(x)) ∧ widow(y) H: woman(y)⇒
∀x (widow(x)→ woman(x)) ∧ widow(y)→ woman(y) X

6 / 28



Foundations Techniques Applications References

Model Building vs. Theorem Proving

The purpose of model building

Proof of satisfiability (directly):

∀x (widow(x)→ woman(x)) ∧ woman(y) ∧ ¬widow(y)⇒
produce a model full of women, none of which are widows X

Proof of invalidity (via negation):

∀x (woman(x)→ widow(x))⇒ ∃x (woman(x) ∧ ¬widow(x)),
build such a model = a counterexample for original formula X

Proof of informativity or non-entailment (via implication):

T: ∀x (widow(x)→ woman(x)) H: ∃y widow(y)⇒ negation
∀x (widow(x)→ woman(x)) ∧ ∀y ¬widow(y) is possible X

7 / 28



Foundations Techniques Applications References

Model Building vs. Theorem Proving

Comparison: Theorem Proving vs. Model Building

Theorem Proving

directly: show validity

via negation: show
unsatisfiability

via implication: show
redundancy or
entailment

Model Building

directly: show satisfiability

via negation: show
invalidity (counterexample)

via implication: show
informativity or
non-entailment

the two approaches complement each other

theorem proving is fast but destructive and syntax-oriented

model building is slow but constructive and semantics-oriented

8 / 28



Foundations Techniques Applications References

Limitations of Model Building

Undecidability of first-order logic

Both validity and satisfiability are only semi-decidable:

if there is a finite proof, the theorem prover will find it in a
finite (possibly very large) number of steps

if there is a finite model, the model builder will find it in a
finite number of steps (BUT: no chance for infinite models!)

if a formula is invalid, there is no way for the theorem prover
to see this (it will explore ever more complex proofs)

if a formula is not satisfiable, there is no way for the model
builder to see this (it will construct ever bigger models)

9 / 28



Foundations Techniques Applications References

Limitations of Model Building

How automated reasoning is still possible

It is still possible to build a system that can find all answers for
most formulae, including most formulae relevant in linguistics!

basic idea: start theorem prover and model builder in parallel
on both the formula and its negation, see who answers first

if formula is valid: theorem prover finds a proof

if formula is invalid: model builder finds a counterexample

if formula is satisfiable: model builder finds an example

if formula is unsatisfiable: theorem prover finds a counterproof

in a few cases: neither program terminates (timeout needed!)

10 / 28



Foundations Techniques Applications References

Techniques: Overview

There are three major approaches to model building:

Hyperresolution: very powerful and fast (but too complex to
be discussed here, builds on many other techniques)

SEM-style: very general, good with equations (useful for
advanced group theory and other branches of mathematics)

MACE-style: rather primitive, but produces minimal models
(nice for NLP, delivers discourse representations “for free”)

Here, we will especially discuss MACE in detail.

11 / 28



Foundations Techniques Applications References

SEM-style Model Building

SEM-style Model Building

Basic procedure

a problem consists of sorts, functions and clauses that
determine constraints

model is a definition of the functions that satisfies the axioms

in principle, the problem is seen as a constraint satisfaction
problem (CSP) and solved via backtracking

variables: the cells in the operation tables of the functions
constraints: the set of ground instances of the clauses
goal: a set of assignments such that the ground clauses hold

search tree: cells are inner nodes, assignments correspond to
edges, assignment propagation by constraint rewriting

search space reduction: always choose cell with smallest
number of possible values, “least number heuristic” to avoid
producing isomorphic models

12 / 28



Foundations Techniques Applications References

MACE-style Model Building

MACE-style Model Building

Basic procedure

always try to find a model of some finite size m

if no model was found, increment m and repeat the process

resolve quantification by using conjunctions or disjunctions
over the whole now finite domain

introduce propositional variables for each predicate with all
the different argument combinations

flatten all complex structures in the clauses (such as variable
inequations) to contain only shallow literals

add more clauses to reflect functionality and totality

apply a standard SAT-solver to the resulting propositional
formula and get a set of “true” relation tuples

13 / 28



Foundations Techniques Applications References

MACE-style Model Building

MACE-style Model Building

Example

Formula: ∀x : man(x)→ (like(m, x) ∧ ¬like(b, x))
Try to build a model with two entities: D = {1,2}
Propositional variables: mi := man(i), lij := like(i , j)
Resolve quantification and consider different assignments:
((m1→ (l11 ∧ ¬l11)) ∧ (m2→ (l12 ∧ ¬l12)))∨
((m1→ (l11 ∧ ¬l21)) ∧ (m2→ (l12 ∧ ¬l22)))∨
((m1→ (l21 ∧ ¬l11)) ∧ (m2→ (l22 ∧ ¬l12)))∨
((m1→ (l21 ∧ ¬l21)) ∧ (m2→ (l22 ∧ ¬l22)))
We transform each disjunct into CNF like this:
((m1→ (l11 ∧ ¬l11)) ∧ (m2→ (l12 ∧ ¬l12)))⇔
((¬m1 ∨ (l11 ∧ ¬l121)) ∧ (¬m2 ∨ (l12 ∧ ¬l12)))⇔
(((¬m1∨ l11)∧ (¬m1∨¬l11))∧ ((¬m2∨ l12)∧ (¬m2∨¬l12)))⇔
((¬m1 ∨ l11) ∧ (¬m1 ∨ ¬l11) ∧ (¬m2 ∨ l12) ∧ (¬m2 ∨ ¬l12))

14 / 28



Foundations Techniques Applications References

MACE-style Model Building

MACE-style Model Building

Example

Running a SAT solver on each of the 4 disjuncts gives us models:

1 ¬m1 ∧ ¬m2, i.e. ¬man(1) ∧ ¬man(2)
If there are no men in the universe, the formula is satisfied.

2 l11 ∧ ¬l21 ∧ l12 ∧ ¬l22 (∧ e.g . ¬m1 ∧m2)
Every entity is liked by some entity and not liked by the other.

3 l21 ∧ ¬m1 ∧ l22 ∧ ¬l12 (∧ e.g . ¬l11 ∧m2)
There is one entity that is possibly a man liking himself but
not liked by the other entity that is not a man (and who likes
that second entity therefore does not matter).

4 ¬m1 ∧ ¬m2 (∧ e.g . ¬l11 ∧ ¬l12 ∧ ¬l21 ∧ ¬22)
Isomorphic to [1], a spurious model we would want to avoid.

15 / 28



Foundations Techniques Applications References

MACE-style Model Building

MACE-style Model Building

mace4: Model Building in Practice

the prover9-mace4 Debian package offers a nice graphical
interface, with the possibility of running a theorem prover and
a model builder in parallel to find a proof or a counterexample

unfortunately, the examples only comprise mathematical
problems, but also these can be very illustrative

mace4 can be used a console program and as a model building
server that other programs can talk to

many options, mace4 can be instructed e.g. to start at a
certain model size or to proceed incrementally

16 / 28



Foundations Techniques Applications References

MACE-style Model Building

Generalization to Second Order Logic

Second Order Model Building

second order logic allows variables to range over relations
(including sets) instead of just individuals

second order model theory is rather complex and involved
(problems already start with the question whether all possible
relations over the individual elements in the domain are also
included in the domain)

however, with enormous costs, it is possible to describe
second-order structures in first-order logic (use e.g.
isXaryRel, elementOf, isIndividual as first-order
predicates and introduce new axioms)

for very small models, this is a viable option and allows model
building for formulae of second-order logic (KIMBA)

17 / 28



Foundations Techniques Applications References

Applications: Overview

Model Building in NLP

first-order logic is not expressive enough to elegantly cover
many semantic phenomena (e.g. quantifiers such as “most”,
reciprocity, plural semantics)

however, already restricted forms of second-order logic suffice
to express most of these phenomena

for such restricted variants, model building is still
computationally viable (or will be in a few decades)

a very new field, most work that is motivated by linguistics is
exploratory work by Karsten Konrad

his results have not yet been taken up by the RTE community

18 / 28



Foundations Techniques Applications References

Gardent & Konrad 2000: Interpreting Definites

Gardent & Konrad 2000: Interpreting Definites

Claim

Model builders can be used to generate procedural interpretations
for natural language semantics, and they are specifically useful in
anaphoric linking, bridging and accomodation.

Example

Singular definite DPs such as “the rabbit” in
“A rabbit sleeps. The rabbit has a nightmare” or
“Bugs and Bunny are rabbits. Bugs is in the hat. John removes
the rabbit from the hat.”

19 / 28



Foundations Techniques Applications References

Gardent & Konrad 2000: Interpreting Definites

Gardent & Konrad 2000: Basic idea

Approach

Take a sentence or discourse, convert it into a logical formula, give
the formula to a model builder and have it build the minimal
model of the discourse. This model often comes close to intuitive
linguistic interpretation.

Example

Sentence: Bugs likes a white female rabbit.
Formula: ∃x : rab(x) ∧ white(x) ∧ fem(x) ∧ like(bugs, x)
Model 1: {rab(bugs), like(bugs, bugs),white(bugs), fem(bugs)}
+ World knowledge: rab(bugs) ∧ ¬fem(bugs)
Model 2: {rab(bugs), rab(c1), like(bugs, c1),white(c1), fem(c1)}

20 / 28



Foundations Techniques Applications References

Gardent & Konrad 2000: Interpreting Definites

Gardent & Konrad 2000: Semantics of Definites

Definition

[the] = λP1λP2λP3.|P1 ∩ P2| = 1 ∧ P1 ∩ P2 ⊆ P3,
where P1 is the common-noun property, P2 the identifying
property, and P3 the property denoted by the rest of the sentence.

Remarks

note that the definition of the semantics for “the” contains
second-order variables and set-theoretic operations

for this reason, we need a higher-order model builder to
directly construct models from such formulae

Gardent & Konrad use the KIMBA system for this purpose.

21 / 28



Foundations Techniques Applications References

Gardent & Konrad 2000: Interpreting Definites

Gardent & Konrad 2000: Semantics of Definites

Example

Sentence: The red rabbit sleeps.
Common-noun property: red ∩ rab
Identifying property: λx true, provided there is a unique red
rabbit in the context (which we assume here)
VP-property: sleep
Semantic representation: THE (red ∩ rab)(λx true)(sleep)
Applying the definition:
|(red ∩ rab) ∩ (λx true)| = 1 ∧ (red ∩ rab) ∩ (λx true) ⊆ sleep
Simplify: |red ∩ rab| = 1 ∧ red ∩ rab ⊆ sleep

22 / 28



Foundations Techniques Applications References

Gardent & Konrad 2000: Interpreting Definites

Gardent & Konrad 2000: Applications

Example (Anaphoric Linking)

Sentence: A rabbit sleeps. The rabbit dreams.
Semantic representation:
∃x(rab(x) ∧ sleep(x)) ∧ THE (rab)(λx true)(dream)
Model generated: {rab(c1), sleep(c1), dream(c1)}

Example (Bridging)

Sentence: A rabbit sleeps. The tail is twitching.
LF: ∃x(rab(x) ∧ dream(x)) ∧ THE (tail)(λx true)(twitch)
World knowledge:
∀x(rab(x)→ ∃y : tail(y) ∧ of (x , y)) ∧ ∀x(tail(x)→ ¬rab(x))
Model generated:
{rab(c1), sleep(c1), tail(c2), twitch(c2), of (c1, c2)}

23 / 28



Foundations Techniques Applications References

Gardent & Konrad 2000: Interpreting Definites

Gardent & Konrad 2000: Applications

Example (Accomodation)

Sentence: The rabbit eats the carrot.
LF: THE (rab)(λx true)(λx THE (crt)(λx true)(λz eat(x , z)))
Model generated: {rab(c1), crt(c2), eat(c1, c2)}

Example (Uniqueness)

Discourse: Bugs and Bunny are rabbits. Bugs is in the hat. John
removes the rabbit from the hat.
Semantic representation for Sentence 3:
THE (rab)(λx inHat(x))(λy THE (hat)(λx true)(λx rmv(j , y , x)))
Model generated:
{rab(bugs), rab(bunny), inHat(bugs), rmv(j , bugs, hat)}

24 / 28



Foundations Techniques Applications References

Gardent & Konrad 2000: Interpreting Definites

Gardent & Konrad 2000: Conclusion

Conclusions

model building offers a unified approach covering both
coreference and accomodation in a natural way

main reason: models generated by model builders represent
locally minimal models of discourse
→ assume coreference if possible, accomodate if necessary

the style of reasoning that results in coverage of some
bridging phenomena is similar to abduction

approach must be extended to deal with conditional and
negative statements

ongoing research focuses on further narrowing down possible
models according to linguistic constraints, possibly resulting in
more efficient model building algorithms for NLP

25 / 28



Foundations Techniques Applications References

Model Building

Conclusion

Model building

tries to find a formal structure in which a formula holds

complements theorem proving in computational semantics

approaches usually rely on constraint satisfaction for
propositional atoms over finite domains

(Potential) Application to RTE

used in generating models of discourse domains

models tend to be minimal, which is useful for modeling
coreference, bridging and accomodation in natural language

second-order model building necessary for NLP

26 / 28



Foundations Techniques Applications References

Model Building

References I

[1] Patrick Blackburn and Johan Bos. Representation and
Inference for Natural Language. A First Course in
Computational Semantics. CSLI Publications, Stanford,
California, 2005.

[2] Claire Gardent and Karsten Konrad. Interpreting Definites
Using Model Generation. 2000.

[3] Karsten Konrad. System Description: Kimba, A Model
Generator for Many-Valued First-Order Logics, 1999.

[4] Karsten Konrad. Model Generation for Natural Language
Interpretation and Analysis. PhD thesis, 2000.

[5] Jian Zhang and Hantao Zhang. Generating Models by SEM.
1996.

27 / 28



Foundations Techniques Applications References

Model Building

The End

Thank you!

28 / 28


	Foundations
	What is a model?
	Model Building vs. Theorem Proving
	Limitations of Model Building

	Techniques
	SEM-style Model Building
	MACE-style Model Building

	Applications
	Gardent & Konrad 2000: Interpreting Definites
	Model Building

	References

