
Foundations Some results Conclusion

Introduction to Tree Automata, with an
application to XML schemas

Johannes Dellert

Seminar für Sprachwissenschaft, Universität Tübingen

03.12.2009

1 / 13



Foundations Some results Conclusion

String languages and tree languages

String languages and tree languages

String languages

are sets of strings, i.e. linear sequences over an alphabet

are recognized by string automata such as FSA, PDA, TMs

Tree languages

are sets of trees, i.e. bracketed structures over an alphabet

are recognized by tree automata such as RTA and PDTA

strings can be seen as non-branching trees, so every string
language is also a tree language which are thus more general

many nice formal properties of string languages carry over

2 / 13



Foundations Some results Conclusion

Regular tree grammars (RTG)

Regular tree grammars (RTGs)

Definition

A regular tree grammar (RTG) is defined by the tuple
G = (N,Σ,Z ,P) where

N is a set of nonterminal symbols

Σ is a ranked alphabet disjoint from N

Z ∈ N is the starting nonterminal

P is a set of productions of the form A→ t with A ∈ N and
t ∈ TΣ(N)

3 / 13



Foundations Some results Conclusion

Regular tree grammars (RTG)

Variant for describing XML Schemata

Definition

A regular tree grammar is defined by the tuple
G = (Σ,D,N,P, ns) where

Σ is a finite set of element types

D is a finite set of data types

N is a finite set of non-terminals

P is a finite set of productions of the form n→ a(r) with
n ∈ N, a ∈ Σ, and either r = w ∈ D or r is a regular
expression over N

ns ∈ N is the starting symbol

The grammar allows a document tree t if it can be produced from
ns using P and does not contain any elements of N.

4 / 13



Foundations Some results Conclusion

Regular tree grammars (RTG)

Example: Translation of an XML DTD

Example: A DTD for a class of XML documents

<!ELEMENT body (paper*)>
<!ELEMENT paper (title,author*,journal?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT journal (#PCDATA | EMPTY)>

Example: The corresponding RTG

Σ := {body , paper , title, author , journal}, D := {#PCDATA, ε},
N := {nb, np, na, nt , nj}, ns := nb, and
P := {nb → body(np∗), np → paper(ntna ∗ nj?), nt →
title(#PCDATA), nj → journal(#PCDATA), nj → journal(ε)}

5 / 13



Foundations Some results Conclusion

Regular tree automata (RTA)

Regular tree automata (RTAs)

Definition

A (bottom-up) finite tree automaton is defined by the tuple
M = (Σ,D,Q, δ,F ) where

Σ and D are finite sets of element types and data types

Q is a finite set of states, F ⊂ Q the set of final states

δ is a function δ : Σ× E → Q, where either E ∈ D or E is a
regular expression over Q

Recognition Procedure

annotate nodes in tree structure with state symbols

begin by annotating leaves, moving upwards in the structure
and making decisions on which rule to apply

a tree is accepted iff its root can be annotated with one of the
final states in this manner

6 / 13



Foundations Some results Conclusion

Regular tree automata (RTA)

Example: Automaton encoding an RTG

Example: An RTG for a class of XML documents

Σ := {section, paragraph}, D := {#PCDATA},
N := {n1, n2, np}, ns := n1, and
P := {n1 → section(n2 ∗ np∗), n2 → section(np), np →
paragraph(#PCDATA)}

Example: An RTA recognizing this language

Σ := {section, paragraph}, D := {#PCDATA},
Q := {q1, q2, qp}, F := {q1}, and δ such that
δ(section, q2 ∗ qp∗) = q1,
δ(section, qp∗) = q2, and
δ(paragraph,#PCDATA) = qp

7 / 13



Foundations Some results Conclusion

Some results: Automata types

Determinism and Non-Determinism

Determinism and Non-Determinism

the example automaton was a non-deterministic automaton
because it allowed a choice of rules at some point

analogously to the set of current states during the run of a
non-deterministic FSA, a step of an automaton can be seen as
annotating a tree node with a set of state symbols

in the case of bottom-up finite tree automata, the
determinisation algorithm for FSAs can easily be generalized

this means that non-deterministic and deterministic
bottom-up finite tree automata are equally powerful

8 / 13



Foundations Some results Conclusion

Some results: Automata types

Bottom-Up and Top-Down Automata

Top-Down Automata

it is also possible to define tree automata that process trees
starting at the root and moving down

instead of final states, we define a set I ⊂ Q of initial states

rules have reverse format of the rules for bottom-up automata

top-down automata are useful for checking trees while they
are being constructed

Determinism and Top-Down Automata

a deterministic top-down tree automaton has to decide which
rule to apply to a parent without inspecting its children

therefore, deterministic top-down finite tree automata are
strictly less powerful than non-deterministic ones

9 / 13



Foundations Some results Conclusion

Some results on Tree Languages

Closure Properties of tree languages

Definition

A tree language is recognizable iff there exists a finite tree
automaton accepting that language.

Theorem

The set of recognizable tree languages is closed under union.

Theorem

The recognizable tree languages are closed under complement.

Theorem

The recognizable tree languages are closed under intersection.

10 / 13



Foundations Some results Conclusion

References

Conclusion and Outlook

Conclusion

tree automata are a generalization of string automata

they are useful in defining and efficiently checking membership
in classes of tree structures (XML schemata, grammars)

have become very popular for implementations of query
languages on tree-structured data (e.g. XML documents)

Outlook

weighted tree automata are used e.g. in grammar induction
from tree banks as an alternative to PCFGs

tree transducers can be used to define and calculate with
changes on trees, e.g. in document standardization or MT

pushdown tree automata are even more powerful than finite
tree automata by employing a stack of subtree structures

11 / 13



Foundations Some results Conclusion

References

Further reading

My source for the examples

Boris Chidlovskii (1999):
Using Regular Tree Automata as XML schemas

The most popular reference work, with all the proofs

H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D.
Lugiez, S. Tison and M. Tommasi (2007): Tree Automata
Techniques and Applications (common abbreviation: TATA)

12 / 13



Foundations Some results Conclusion

Conclusion

The End

Thank you!

13 / 13


	Foundations
	String languages and tree languages
	Regular tree grammars (RTG)
	Regular tree automata (RTA)

	Some results
	Some results: Automata types
	Some results on Tree Languages

	Conclusion
	References
	Conclusion


